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Preface
These lecture notes were prepared for use in the 2023 ASU research-

oriented course on Reinforcement Learning (RL), the fifth offering of this
course Their purpose is to give an overview of the RL methodology, par-
ticularly as it relates to problems in optimal and suboptimal decision and
control, as well as discrete optimization.

An important part of our line of development is a new conceptual
framework, which aims to bridge the gaps between the artificial intelli-
gence, control theory, and operations research views of the subject. This
framework centers on approximate forms of Dynamic Programming (DP)
that are inspired by some of the major successes of RL involving games.
Primary examples are the recent (2017) AlphaZero program (which plays
chess), and the similarly structured and earlier (1990s) TD-Gammon pro-
gram (which plays backgammon).

Our framework is couched on two general algorithms that are de-
signed largely independently of each other and operate in synergy through
the powerful mechanism of Newton’s method, applied for solution of the
fundamental Bellman equation of DP. We call these the off-line training
and the on-line play algorithms. In the AlphaZero and TD-Gammon game
contexts, the off-line training algorithm is the method used to teach the
program how to evaluate positions and to generate good moves at any given
position, while the on-line play algorithm is the method used to play in real
time against human or computer opponents.

Our synergistic view of off-line training and on-line play is motivated
by some striking empirical observations. In particular, both AlphaZero and
TD-Gammon were trained off-line extensively using neural networks and an
approximate version of the fundamental DP algorithm of policy iteration.
Yet the AlphaZero player that was obtained off-line is not used directly
during on-line play (it is too inaccurate due to approximation errors that
are inherent in off-line neural network training). Instead, a separate on-line
player is used to select moves, based on multistep lookahead minimization
and a terminal position evaluator that was trained using experience with
the off-line player. The on-line player performs a form of policy improve-
ment, which is not degraded by neural network approximations. As a result,
it greatly improves the performance of the off-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end, it uses an off-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator). Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively



trained off-line player. This is due to the beneficial effect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained off-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial ef-
fect of the rollout, which serves as a substitute for long lookahead
minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an off-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the off-line policy, or both), and terminal cost approximation
that is obtained off-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is a focal point of our course: approximation in value space with one-
step lookahead minimization amounts to a step of Newton’s method for
solving Bellman’s equation, while the starting point for the Newton step is
based on the results of off-line training, and may be enhanced by longer
lookahead minimization and on-line rollout . Indeed the major determinant
of the quality of the on-line policy is the Newton step that is performed
on-line, while off-line training plays a secondary role by comparison.

Significantly, the synergy between off-line training and on-line play
also underlies Model Predictive Control (MPC), a major control system
design methodology that has been extensively developed since the 1980s.
This synergy can be understood in terms of abstract models of infinite
horizon DP and simple geometrical constructions, and helps to explain the
all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem parameters
and on-line replanning, similar to the methodology of indirect adaptive con-
trol. In particular, the Bellman equation is perturbed due to the parameter
changes, but approximation in value space still operates as a Newton step.
An essential requirement here is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process.

In these notes we will aim to explain (often with visualization) the
beneficial effects of on-line decision making on top of off-line training. In
the process, we will bring out the strong connections between the artificial
intelligence view of RL, the control theory views of MPC and adaptive con-
trol, and the operations research view of discrete optimization algorithms.
Moreover, we will describe a broad variety of algorithms (especially trun-
cated rollout, but also other methods) that can be used for on-line play.

We will also aim to show, through the algorithmic ideas of Newton’s



method and the unifying principles of abstract DP, that the AlphaZero/TD-
Gammon methodology of approximation in value space and rollout applies
very broadly to deterministic and stochastic optimal control problems, in-
volving both discrete and continuous search spaces, as well as finite and
infinite horizon. Moreover, we will show that in addition to MPC and adap-
tive control, our conceptual framework can be effectively integrated with
other important methodologies such as multiagent systems and decentral-
ized control, discrete and Bayesian optimization, and heuristic algorithms
for discrete optimization.

We finally note that while we will deemphasize mathematical proofs
in these notes, there is considerable related analysis, which supports our
conclusions and can be found in the author’s recent RL and DP books.
These books also contain additional material on off-line training of neural
networks, on the use of policy gradient methods for approximation in policy
space, and on aggregation.

Sources

While these notes are focused primarily on on-line play, the algorithmic
aspects of off-line training are covered at some length (see Chapter 3). They
are also discussed in greater detail in the author’s approximate DP/RL
books:

[1] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control,
Athena Scientific, Belmont, MA.

[2] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Rein-
forcement Learning, Athena Scientific, Belmont, MA.

The two books above also include a far more detailed discussion of
MPC, adaptive control, and discrete optimization topics, than the present
class notes. Moreover, other popular methods, such as temporal difference
methods, Q-learning, policy gradient methods for approximation in policy
space, and a variety of approximation methodologies, are discussed in the
books [1] and [2], but not in these class notes.

The author’s two-volume DP book (4th edition)

[3] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control,
Vol. I, 4th Edition, Athena Scientific, Belmont, MA.

[4] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control,
Vol. II, 4th Edition, Athena Scientific, Belmont, MA.

is a major source on the modeling and mathematical aspects of finite and
infinite horizon DP. Modeling aspects and finite horizon problems are the
principal focus of [3], while the mathematical aspects of infinite horizon
problems are the principal focus of [4]. Both books [3] and [4] provide
substantial accounts of approximate DP/RL methods. Thus these books



are the best entry points for a research-oriented reader that wishes to go
into DP and its connections to RL more deeply.

Two of the author’s recent research monographs are also highly rele-
vant to our course:

[5] Bertsekas, D. P., 2022. Abstract Dynamic Programming, 3rd Ed., Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

This monograph focuses on the analytical aspects of abstract DP on which
the Newton-based methodology is couched, and may serve as a mathemati-
cal supplement to the present class notes. It also provides some supportive
mathematical foundation for the more visually oriented monograph

[6] Bertsekas, D. P., 2022. Lessons from AlphaZero for Optimal, Model
Predictive, and Adaptive Control, Athena Scientific, Belmont, MA (can be
downloaded from the author’s website).

This monograph focuses in greater detail than the present class notes on
the off-line training/on-line play/Newton’s method conceptual framework,
as well as on model predictive and adaptive control, and associated issues
of stability.

All of the above books are available as ebooks as well as in print form;
see the Athena Scientific website. Most of the material in these class notes
is essentially replicated and adapted from these books. However, the books
themselves collectively provide a presentation that is far more detailed and
mathematically rigorous than these notes.

The present class notes can be fruitfully supplemented by the exten-
sive textbook and research monograph literature on RL. This literature is
summarized in Section 1.8, and includes several accounts of RL that are
based on alternative viewpoints of artificial intelligence, control theory, and
operations research.

Structure of the Course Notes - Course Adaptations

An important structural characteristic of these notes is that they are or-
ganized in a modular way, with a view towards flexibility, so they can be
easily modified to accommodate changes in course content. In particular,
the notes are divided in two parts:

(1) A foundational platform, which consists of Chapter 1. It contains
a selective overview of the approximate DP/RL landscape, and a
starting point for a more detailed in-class development of other RL
topics, whose choice can be at the instructor’s discretion.

(2) An in-depth coverage of the methodologies of deterministic and stochas-
tic rollout in Chapter 2, and of the use of neural networks and other
approximation architectures for off-line training in Chapter 3.



In a di↵erent course, other choices for in-depth coverage may be made,
using the same foundational platform. In particular, both more and less
mathematically-oriented courses can be built upon the platform of Chapter
1.

Let us also mention that the notes contain more material than can be
reasonably covered in class in one semester. This provides some flexibility
to the instructor regarding the choice of material to present.

Videolectures and Slides

The present notes and my RL books above, were developed while teaching
several versions of my course at ASU over the last four years. Videolectures
and slides from this course, as well as links to overview videolectures by
the author are available from my website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to these notes.

Thanks and Appreciation

The hospitable and stimulating environment at ASU contributed much to
shaping my course during the period 2019-2023. For this I am also very
thankful to my ASU colleagues and students, including my teaching assis-
tants, Sushmita Bhattacharya, Sahil Badyal, and Jamison Weber. I have
also appreciated fruitful interactions with several colleagues and students
outside ASU, particularly Yuchao Li, who also provided valuable proof-
reading support.

Dimitri P. Bertsekas

May 2023
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Sec. 1.0 3

This chapter has multiple purposes:

(a) To provide an overview of the exact dynamic programming (DP) meth-
odology, with a view towards suboptimal solution methods . We will
first discuss finite horizon problems, which involve a finite sequence
of successive decisions, and are thus conceptually and analytically
simpler. We will consider separately deterministic and stochastic fi-
nite horizon problems (Sections 1.2 and 1.3, respectively). The reason
is that deterministic problems are simpler and have some favorable
characteristics, which allow the application of a broader variety of
methods. Significantly they include challenging discrete and com-
binatorial optimization problems, which can be fruitfully addressed
with some of the reinforcement learning (RL) methods that are the
main subject of the present class notes. We will also discuss some-
what briefly the more intricate infinite horizon methodology (Section
1.4), and refer to the author’s DP textbooks [Ber12], [Ber17a], the
RL books [Ber19a], [Ber20a], and the neuro-dynamic programming
monograph [BeT96] for a fuller presentation.

(b) To discuss in summary the principal RL methodologies, with primary
emphasis towards approximation in value space. This is the architec-
ture that underlies the AlphaZero, AlphaGo, TD-Gammon and other
related programs, as well as the Model Predictive Control (MPC)
methodology, one of the principal control system design methods. We
will also argue later (Chapter 2) that approximation in value space
provides the entry point for the use of RL methods for solving discrete
optimization and integer programming problems.

(c) To explain the major principles of approximation in value space, and
its division into the off-line training and the on-line play algorithms .
A key idea here is the connection of these two algorithms through the
algorithmic methodology of Newton’s method for solving the prob-
lem’s Bellman equation. This viewpoint, recently developed in the
author’s “Rollout and Policy Iteration ...” book [Ber20a] and the vi-
sually oriented “Lessons from AlphaZero ...” monograph [Ber22a],
underlies the entire course and is discussed for the simple, intuitive,
and important class of linear quadratic problems in Section 1.5.

(d) To overview the range of problem types where our RL methods apply,
and to explain some of their major algorithmic ideas (Section 1.6).
Included here are partial state observation problems (POMDP), mul-
tiagent problems, and problems with unknown model parameters,
which can be addressed with adaptive control methods.

We will also discuss selectively in this chapter some major algorithmic
topics in approximate DP and RL, including rollout and policy iteration.
A broader discussion of DP/RL may be found in the RL books [Ber19a],
[Ber20a], the DP textbooks [Ber12], [Ber17a], the neuro-dynamic program-



4 Exact and Approximate Dynamic Programming Chap. 1

ming monograph [BeT96], as well as the textbook literature described in
the last section of this chapter.

The present notes reflect the author’s decision/control and operations
research orientation, which has in turn guided the choices of terminology,
notation, and mathematical style for these notes. On the other hand,
RL methods have been developed within the artificial intelligence commu-
nity, as well as the decision/control and operations research communities.
While the underlying practical problems addressed by these communities
are very similar in their mathematical structure, there are notable differ-
ences in terminology, notation, and culture, which can be quite bewildering
to researchers entering the field. We have thus provided in Section 1.7 a
glossary and an orientation to assist the reader in navigating the full range
of the DP/RL literature.

1.1 ALPHAZERO, OFF-LINE TRAINING, AND ON-LINE PLAY

One of the most exciting recent success stories in RL is the development
of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16],
[SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is
an improvement in terms of performance and generality over AlphaGo,
which plays the game of Go only. Both programs play better than all
competitor computer programs available in 2022, and much better than
all humans. These programs are remarkable in several other ways. In
particular, they have learned how to play without human instruction, just
data generated by playing against themselves. Moreover, they learned how
to play very quickly. In fact, AlphaZero learned how to play chess better
than all humans and computer programs within hours (with the help of
awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its
play is not just better, but it is also very different than human play in
terms of long term strategic vision. Remarkably, AlphaZero has discovered
new ways to play a game that has been studied intensively by humans for
hundreds of years. Still, for all of its impressive success and brilliant imple-
mentation, AlphaZero is couched on well established theory and methodol-
ogy, which is the subject of the present notes, and is portable to far broader
realms of engineering, economics, and other fields. This is the methodology
of DP, policy iteration, limited lookahead, rollout, and approximation in
value space.†

† It is also worth noting that the principles of the AlphaZero design have
much in common with the work of Tesauro [Tes94], [Tes95], [TeG96] on com-

puter backgammon. Tesauro’s programs stimulated much interest in RL in

the middle 1990s, and exhibit similarly different and better play than human
backgammon players. A related impressive program for the (one-player) game
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To understand the overall structure of AlphaZero, and its connection
to our DP/RL methodology, it is useful to divide its design into two parts:
off-line training, which is an algorithm that learns how to evaluate chess
positions, and how to steer itself towards good positions with a default/base
chess player, and on-line play, which is an algorithm that generates good
moves in real time against a human or computer opponent, using the train-
ing it went through off-line. We will next briefly describe these algorithms,
and relate them to DP concepts and principles.

Off-Line Training and Policy Iteration

This is the part of the program that learns how to play through off-line
self-training, and is illustrated in Fig. 1.1.1. The algorithm generates a
sequence of chess players and position evaluators . A chess player assigns
“probabilities” to all possible moves at any given chess position (these are
the probabilities with which the player selects the possible moves at the
given position). A position evaluator assigns a numerical score to any
given chess position (akin to a “probability” of winning the game from
that position), and thus predicts quantitatively the performance of a player
starting from any position. The chess player and the position evaluator are
represented by two neural networks, a policy network and a value network ,
which accept a chess position and generate a set of move probabilities and
a position evaluation, respectively.†

In the more conventional DP-oriented terms of these notes, a position
is the state of the game, a position evaluator is a cost function that gives (an
estimate of) the optimal cost-to-go at a given state, and the chess player
is a randomized policy for selecting actions/controls at a given state.‡

of Tetris, also based on the method of policy iteration, is described by Scherrer

et al. [SGG15], who mention several related antecedent works. For a better un-
derstanding of the connections of AlphaZero and AlphaGo Zero with Tesauro’s

programs and the concepts developed here, the “Methods” section of the paper

[SSS17] is recommended.
† Here the neural networks play the role of function approximators; see Chap-

ter 3. By viewing a player as a function that assigns move probabilities to a

position, and a position evaluator as a function that assigns a numerical score to
a position, the policy and value networks provide approximations to these func-

tions based on training with data (training algorithms for neural networks and
other approximation architectures are also discussed in the RL books [Ber19a],

[Ber20a], and the neuro-dynamic programming book [BeT96]).

‡ One more complication is that chess and Go are two-player games, while
most of our development will involve single-player optimization. However, DP

theory extends to two-player games, although we will not focus on this extension.

Alternately, we can consider training a game program to play against a known
fixed opponent; this is a one-player setting.
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erent! Approximate Value Function Player Features Mappinerent! Approximate Value Function Player Features Mappin
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Figure 1.1.1 Illustration of the AlphaZero training algorithm. It generates a
sequence of position evaluators and chess players. The position evaluator and the
chess player are represented by two neural networks, a value network and a policy
network, which accept a chess position and generate a position evaluation and a
set of move probabilities, respectively.

The overall training algorithm is a form of policy iteration, a clas-
sical DP algorithm that will be of primary interest to us in these notes.
Starting from a given player, it repeatedly generates (approximately) im-
proved players, and settles on a final player that is judged empirically to be
“best” out of all the players generated.† Policy iteration may be separated
conceptually in two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single data
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

(b) Policy improvement : Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results. In Alp-

† Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm

can similarly be understood as an approximate policy iteration scheme in which

MCTS is used for both policy improvement and policy evaluation. Policy im-
provement starts with a neural network policy, executes an MCTS based on that

policy’s recommendations, and then projects the (much stronger) search policy
back into the function space of the neural network. Policy evaluation is applied

to the (much stronger) search policy: the outcomes of selfplay games are also

projected back into the function space of the neural network. These projection
steps are achieved by training the neural network parameters to match the search

probabilities and selfplay game outcome respectively.” Note, however, that a two-

person game player, trained through selfplay is not guaranteed theoretically to
play well against a particular human or computer player.
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haZero this is done with a complicated algorithm called Monte Carlo
Tree Search. However, policy improvement can also be done more
simply. For example one could try all possible move sequences from
a given position, extending forward to a given number of moves, and
then evaluate the terminal position with the player’s position evalu-
ator. The move evaluations obtained in this way are used to nudge
the move probabilities of the current player towards more successful
moves, thereby obtaining data that is used to train a policy network
that represents the new player.

Tesauro’s TD-Gammon algorithm [Tes94] program is similarly based
on approximate policy iteration, but uses a different methodology for ap-
proximate policy evaluation [it is based on the TD(λ) algorithm]; see the
book [BeT96], Section 8.6, for a detailed description. Moreover, it does not
use a policy network and MCTS. It involves only a value network, which
replicates the functionality of a policy network by generating moves on-line
via a one-step or two-step lookahead minimization.

On-Line Play and Approximation in Value Space - Rollout

Suppose that a “final” player has been obtained through the AlphaZero off-
line training process just described. It could then be used in principle to
play chess against any human or computer opponent, since it is capable of
generating move probabilities at each given chess position using its policy
network. In particular, during on-line play, at a given position the player
can simply choose the move of highest probability supplied by the off-line
trained policy network. This player would play very fast on-line, but it
would not play good enough chess to beat strong human opponents. The
extraordinary strength of AlphaZero is attained only after the player and
its position evaluator obtained from off-line training have been embedded
into another algorithm, which we refer to as the “on-line player.” Given
the policy network/player obtained off-line and its value network/position
evaluator, this algorithm plays as follows (see Fig. 1.1.2).

At a given position, it generates a lookahead tree of all possible mul-
tiple move and countermove sequences, up to a given depth. It then runs
the off-line obtained player for some more moves, and then evaluates the
effect of the remaining moves by using the position evaluator of the off-line
obtained value network. Actually the middle portion, called “truncated
rollout,” is not used in the published version of AlphaZero/chess [SHS17],
[SHS17]; the first portion (multistep lookahead) is quite long and imple-
mented efficiently, so that the rollout portion is not essential. Rollout is
used in AlphaGo [SHM16], and plays a very important role the final ver-
sion of Tesauro’s backgammon program [TeG96]. The reason is that in
backgammon, long multistep lookahead is not possible because of rapid
expansion of the lookahead tree with every move.
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Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

. . .. . .x0
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ON-LINE PLAY

ON-LINE PLAY

OFF-LINE TRAINING

OFF-LINE TRAINING

ON-LINE PLAY Lookahead Tree States

ON-LINE PLAY Lookahead Tree States xk+1

Current Position

States xk+2

-Line Obtained Player Off-Line Obtained Cost Approximation

Adaptive Reoptimization Position EvaluatorWithout the Newton Step Base Player

With the Newton Step Adaptive Rollout Cost Approximation

Figure 1.1.2 Illustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position,
it generates a lookahead tree of multiple moves up to some depth, then runs
the off-line obtained player for some more moves, and evaluates the effect of the
remaining moves by using the position evaluator of the off-line player.

We should note that the preceding description of AlphaZero and re-
lated games is oversimplified. We will be discussing refinements and details
as the notes progress. However, DP ideas with cost function approxima-
tions, similar to the on-line player illustrated in Fig. 1.1.2, will be central
for our purposes. Moreover, the algorithmic division between off-line train-
ing and on-line policy implementation will be conceptually very important
for our purposes.

Note that the off-line training and the on-line play algorithms may
be decoupled and may be designed independently. For example the off-line
training portion may be very simple, such as using a simple known policy
for rollout without truncation, or without terminal cost approximation.
Conversely, a sophisticated process may be used for off-line training of a
terminal cost function approximation, which is used immediately following
one-step or multistep lookahead in a value space approximation scheme.

In control system design, similar architectures to the ones of Alp-
haZero and TD-Gammon are employed in model predictive control (MPC).
There, the number of steps in lookahead minimization is called the con-
trol interval , while the total number of steps in lookahead minimization
and truncated rollout is called the prediction interval ; see e.g., Magni et
al. [MDM01].† The benefit of truncated rollout in providing an economi-
cal substitute for longer lookahead minimization is well known within this

† The Matlab toolbox for MPC design explicitly allows the user to set these
two intervals.
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Deterministic Transition xk+1 = fk(xk, uk)

Figure 1.2.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

context.
Dynamic programming frameworks with cost function approxima-

tions that are similar to the on-line player illustrated in Fig. 1.1.2, are
also known as approximate dynamic programming , or neuro-dynamic pro-
gramming , and will be central for our purposes. They will be generically
referred to as approximation in value space in these notes.†

1.2 DETERMINISTIC DYNAMIC PROGRAMMING

In all DP problems, the central object is a discrete-time dynamic system
that generates a sequence of states under the influence of control. The
system may evolve deterministically or randomly (under the additional
influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number N of time
steps (also called stages). The state and control at time k of the system will
be generally denoted by xk and uk, respectively. In deterministic systems,
xk+1 is generated nonrandomly, i.e., it is determined solely by xk and uk;

† The names “approximate dynamic programming” and “neuro-dynamic pro-
gramming” are often used as synonyms to RL. However, RL is generally thought

to also subsume the methodology of approximation in policy space, which in-
volves search for optimal parameters within a parametrized set of policies. The

search is done with methods that are largely unrelated to DP, such as for ex-

ample stochastic gradient or random search methods. Approximation in policy
space may be used off-line to design a policy that can be used for on-line rollout.

It will be discussed very briefly here, but a fuller account that is consistent in

terminology with the present notes may be found in Chapter 5 of the RL book
[Ber19a].
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see Fig. 1.2.1. Thus, a deterministic DP problem involves a system of the
form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where

k is the time index,

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1,

N is the horizon, i.e., the number of times control is applied.

In the case of a finite number of states, the system function fk may be
represented by a table that gives the next state xk+1 for each possible value
of the pair (xk, uk). Otherwise a mathematical expression or a computer
implementation is necessary to represent fk.

The set of all possible xk is called the state space at time k. It can be
any set and may depend on k. Similarly, the set of all possible uk is called
the control space at time k. Again it can be any set and may depend on k.
Similarly the system function fk can be arbitrary and may depend on k.†

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes scalar values, and
may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN ) +
N−1
∑

k=0

gk(xk, uk), (1.2)

† This generality is one of the great strengths of the DP methodology and
guides the exposition style of these notes, and the author’s other DP works.
By allowing general state and control spaces (discrete, continuous, or mixtures
thereof), and a k-dependent choice of these spaces, we can focus attention on
the truly essential algorithmic aspects of the DP approach, exclude extraneous
assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice

of notation. In the artificial intelligence and operations research communities,
finite state models, often referred to as Markovian Decision Problems (MDP),

are common and use a transition probability notation (see Section 1.7.2). Unfor-

tunately, this notation is not well suited for deterministic models, and also for
continuous spaces models, both of which are important for the purposes of these

notes. For the latter models, it involves transition probability distributions over

continuous spaces, and leads to mathematics that are far more complex as well
as less intuitive than those based on the use of the system function (1.1).
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Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk , uk), respectively. We
view the cost gk(xk, uk) of the transition as the length of this arc. The problem is
equivalent to finding a shortest path from initial nodes of stage 0 to the terminal
node t.

where gN(xN ) is a terminal cost incurred at the end of the process. This
is a well-defined scalar, since the control sequence {u0, . . . , uN−1} together
with x0 determines exactly the state sequence {x1, . . . , xN} via the system
equation (1.1). We want to minimize the cost (1.2) over all sequences
{u0, . . . , uN−1} that satisfy the control constraints, thereby obtaining the
optimal value as a function of x0:†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1). (1.3)

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state xk the
possible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.2.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN ).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the

† Here and later we write “min” (rather than “inf”) even if we are not sure

that the minimum is attained; similarly we write “max” (rather than “sup”) even
if we are not sure that the maximum is attained.
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Figure 1.2.3 The transition graph of the deterministic scheduling problem of
Example 1.2.1. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

nodes corresponding to the final stage N . If we view the cost of an arc as
its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated as
deterministic finite-state finite-horizon optimal control problems. The idea
is to break down the solution into components, which can be computed
sequentially. The following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a given machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence

† It turns out also that any shortest path problem (with a possibly nona-

cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem. See [Ber17a], Section 2.1, and [Ber91], [Ber98] for extensive accounts
of shortest path methods, which connect with our discussion here.
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CDBA is not.) The setup cost Cmn for passing from any operation m to any
other operation n is given. There is also an initial startup cost SA or SC for
starting with operation A or C, respectively (cf. Fig. 1.2.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost SA +CAC + CCD +CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost CCD. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.2.3 (which in turn is a special
case of the graph of Fig. 1.2.2). The optimal solution corresponds to the path
that starts at the initial state and ends at some state at the terminal time
and has minimum sum of arc costs plus the terminal cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality , which roughly
states the following; see Fig. 1.2.4.

Principle of Optimality

Let {u∗
0, . . . , u

∗
N−1} be an optimal control sequence, which together

with x0 determines the corresponding state sequence {x∗
1, . . . , x

∗
N} via

the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗
k, uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN ),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗
N−1} is optimal for this

subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x∗

k. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
justification is simple. If the truncated control sequence {u∗

k, . . . , u
∗
N−1}

were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach x∗

k



14 Exact and Approximate Dynamic Programming Chap. 1

Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u∗

k
, . . . , u∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.2.4 Schematic illustration of the principle of optimality. The tail
{u∗

k
, . . . , u∗

N−1} of an optimal sequence {u∗
0 , . . . , u

∗
N−1} is optimal for the tail

subproblem that starts at the state x∗
k
of the optimal state trajectory.

(since the preceding choices of controls, u∗
0, . . . , u

∗
k−1, do not restrict our

future choices).
For an auto travel analogy, suppose that the fastest route from Phoenix

to Boston passes through St Louis. The principle of optimality translates
to the obvious fact that the St Louis to Boston portion of the route is also
the fastest route for a trip that starts from St Louis and ends in Boston.†

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.2.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There is a cost for a transition between
two operations, and the numerical values of the transition costs are shown in
Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule

† In the words of Bellman [Bel57]: “An optimal trajectory has the
property that at an intermediate point, no matter how it was reached, the
rest of the trajectory must coincide with an optimal trajectory as computed
from this intermediate point as the starting point.”
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Figure 1.2.5 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.2.5).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State CA: Here the possibilities are to (a) schedule operation B and then
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D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.2.5, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems
by translating into mathematical terms the heuristic argument underlying
the principle of optimality. The algorithm constructs functions

J*
N (xN ), J*

N−1(xN−1), . . . , J*
0 (x0),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc. We will show that the value J*
k (xk) represents the optimal cost of the

tail subproblem that starts at state xk at time k.
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Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts
at xk at time k minimizes over {uk, . . . , uN−1} the “cost-to-go” from k to N ,

gk(xk , uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN ).

To solve it, we choose uk to minimize the (1st stage cost + Optimal tail problem
cost) or

J∗
k(xk) = min

uk∈Uk(xk)

[

gk(xk , uk) + J∗
k+1

(

fk(xk, uk)
)

]

.

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ), for all xN , (1.4)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.5)

The DP algorithm together with the construction of the functions
J*
k (xk) are illustrated in Fig. 1.2.6. Note that at stage k, the calculation in

Eq. (1.5) must be done for all states xk before proceeding to stage k − 1.
The key fact about the DP algorithm is that for every initial state x0,
the number J*

0 (x0) obtained at the last step, is equal to the optimal cost
J*(x0). Indeed, a more general fact can be shown, namely that for all
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k = 0, 1, . . . , N − 1, and all states xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.6)

where J(xk;uk, . . . , uN−1) is the cost generated by starting at xk and using
subsequent controls uk, . . . , uN−1:

J(xk;uk, . . . , uN−1) = gN(xN ) +
N−1
∑

t=k

gt(xt, ut). (1.7)

Thus, J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem

that starts at state xk and time k, and ends at time N .† Based on the
interpretation (1.6) of J∗

k (xk), we call it the optimal cost-to-go from state
xk at stage k, and refer to J∗

k as the optimal cost-to-go function or optimal
cost function at time k. In maximization problems the DP algorithm (1.5)
is written with maximization in place of minimization, and then J∗

k is
referred to as the optimal value function at time k.

Once the functions J*
0 , . . . , J

*
N have been obtained, we can use a for-

ward algorithm to construct an optimal control sequence {u∗
0, . . . , u

∗
N−1}

and corresponding state trajectory {x∗
1, . . . , x

∗
N} for the given initial state

x0.

† We can prove this by induction. The assertion holds for k = N in view of
the initial condition

J∗
N (xN) = gN (xN).

To show that it holds for all k, we use Eqs. (1.6) and (1.7) to write

J∗
k (xk) = min

ut∈Ut(xt)
t=k,...,N−1

[

gN(xN) +

N−1
∑

t=k

gt(xt, ut)

]

= min
uk∈Uk(xk)

[

gk(xk, uk)

+ min
ut∈Ut(xt)

t=k+1,...,N−1

[

gN (xN) +

N−1
∑

t=k+1

gt(xt, ut)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J∗
k+1

(

fk(xk, uk)
)

]

,

where for the last equality we use the induction hypothesis. A subtle mathe-

matical point here is that, through the minimization operation, the cost-to-go

functions J∗
k may take the value −∞ for some xk. Still the preceding induction

argument is valid even if this is so.
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Construction of Optimal Control Sequence {u∗
0, . . . , u

∗
N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗
k ∈ arg min

uk∈Uk(x
∗
k
)

[

gk(x∗
k, uk) + J*

k+1

(

fk(x∗
k, uk)

)

]

, (1.8)

and
x∗
k+1 = fk(x∗

k, u
∗
k).

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.2.5 traces the calculations of the DP
algorithm for the scheduling Example 1.2.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

The following example deals with the classical traveling salesman
problem involving N cities. Here, the number of states grows exponen-
tially with N , and so does the corresponding amount of computation for
exact DP. We will show later that with rollout, we can solve the problem
approximately with computation that grows polynomially with N .

Example 1.2.2 (The Traveling Salesman Problem)

Here we are given N cities and the travel time between each pair of cities.
We wish to find a minimum time travel that visits each of the cities exactly
once and returns to the start city. To convert this problem to a DP problem,
we form a graph whose nodes are the sequences of k distinct cities, where
k = 1, . . . , N . The k-city sequences correspond to the states of the kth stage.
The initial state x0 consists of some city, taken as the start (city A in the
example of Fig. 1.2.7). A k-city node/state leads to a (k+1)-city node/state
by adding a new city at a cost equal to the travel time between the last two
of the k + 1 cities; see Fig. 1.2.7. Each sequence of N cities is connected
to an artificial terminal node t with an arc of cost equal to the travel time
from the last city of the sequence to the starting city, thus completing the
transformation to a DP problem.

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
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Figure 1.2.7 The DP formulation of the traveling salesman problem of Ex-
ample 1.2.2. The travel times between the four cities A, B, C, and D are
shown in the matrix at the bottom. We form a graph whose nodes are the
k-city sequences and correspond to the states of the kth stage, assuming that
A is the starting city. The transition costs/travel times are shown next to the
arcs. The optimal costs-to-go are generated by DP starting from the termi-
nal state and going backwards towards the initial state, and are shown next
to the nodes. There is a unique optimal sequence here (ABDCA), and it is
marked with thick lines. The optimal sequence can be obtained by forward
minimization [cf. Eq. (1.8)], starting from the initial state x0.

traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed in future chapters.

Q-Factors and Q-Learning

An alternative (and equivalent) form of the DP algorithm (1.5), uses the
optimal cost-to-go functions J*

k indirectly. In particular, it generates the
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optimal Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.9)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.5).†

Note that the optimal cost function J*
k can be recovered from the

optimal Q-factor Q*
k by means of the minimization

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk). (1.10)

Moreover, the DP algorithm (1.5) can be written in an essentially equivalent
form that involves Q-factors only [cf. Eqs. (1.9)-(1.10)]:

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

Exact and approximate forms of this and other related algorithms, in-
cluding counterparts for stochastic optimal control problems, comprise an
important class of RL methods known as Q-learning.

1.2.3 Approximation in Value Space and Rollout

The forward optimal control sequence construction of Eq. (1.8) is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because the
number of possible xk and k can be very large. However, a similar forward
algorithmic process can be used if the optimal cost-to-go functions J*

k are
replaced by some approximations J̃k. This is the basis for an idea that is
central in RL: approximation in value space.‡ It constructs a suboptimal
solution {ũ0, . . . , ũN−1} in place of the optimal {u∗

0, . . . , u
∗
N−1}, based on

using J̃k in place of J*
k in the DP algorithm (1.8).

† The term “Q-factor” has been used in the books [BeT96], [Ber19a], [Ber20a]

and is adopted here as well. Another term used is “action value” (at a given
state). The terms “state-action value” and “Q-value” are also common in the

literature. The name “Q-factor” originated in reference to the notation used in

an influential Ph.D. thesis [Wat89] that proposed the use of Q-factors in RL.
‡ Approximation in value space is a simple idea that has been used quite

extensively for deterministic problems, well before the development of the mod-

ern RL methodology. For example it underlies the widely used A∗ method for
computing approximate solutions to large scale shortest path problems.



22 Exact and Approximate Dynamic Programming Chap. 1

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.11)

and
x̃k+1 = fk(x̃k, ũk).

In approximation in value space the calculation of the suboptimal
sequence {ũ0, . . . , ũN−1} is done by going forward (no backward calcula-
tion is needed once the approximate cost-to-go functions J̃k are available).
This is similar to the calculation of the optimal sequence {u∗

0, . . . , u
∗
N−1},

and is independent of how the functions J̃k are computed. The motivation
for approximation in value space for stochastic DP problems is vastly re-
duced computation relative to the exact DP algorithm (once J̃k have been
obtained): the minimization (1.11) needs to be performed only for the N
states x0, x̃1, . . . , x̃N−1 that are encountered during the on-line control of
the system, and not for every state within the potentially enormous state
space, as is the case for exact DP.

The algorithm (1.11) is said to involve a one-step lookahead minimiza-
tion, since it solves a one-stage DP problem for each k. In what follows we
will also discuss the possibility of multistep lookahead , which involves the
solution of an "-step DP problem, where " is an integer, 1 < " < N − k,
with a terminal cost function approximation J̃k+!. Multistep lookahead
typically (but not always) provides better performance over one-step looka-
head in RL approximation schemes. For example in AlphaZero chess, long
multistep lookahead is critical for good on-line performance. The intuitive
reason is that with " stages being treated “exactly” (by optimization), the
effect of the approximation error

J̃k+! − J*
k+!

tends to become less significant as " increases. However, the solution of the
multistep lookahead optimization problem, instead of the one-step looka-
head counterpart of Eq. (1.11), becomes more time consuming.
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Rollout with a Base Heuristic for Deterministic Problems

A major issue in value space approximation is the construction of suitable
approximate cost-to-go functions J̃k. This can be done in many different
ways, giving rise to some of the principal RL methods. For example, J̃k may
be constructed with a sophisticated off-line training method, as discussed in
Section 1.1. Alternatively, J̃k may be obtained on-line with rollout , which
will be discussed in detail in these notes. In rollout, the approximate values
J̃k(xk) are obtained when needed by running a heuristic control scheme,
called base heuristic or base policy, for a suitably large number of stages,
starting from the state xk, and accumulating the costs incurred at these
stages.

The major theoretical property of rollout is cost improvement : the
cost obtained by rollout using some base heuristic is less or equal to the
corresponding cost of the base heuristic. This is true for any starting state,
provided the base heuristic satisfies some simple conditions, which will be
discussed in Chapter 2.†

There are also several variants of rollout, including versions involv-
ing multiple heuristics, combinations with other forms of approximation
in value space methods, multistep lookahead, and stochastic uncertainty.
We will discuss such variants later. For the moment we will focus on a
deterministic DP problem with a finite number of controls. Given a state
xk at time k, this algorithm considers all the tail subproblems that start
at every possible next state xk+1, and solves them suboptimally by using
some algorithm, referred to as base heuristic.

Thus when at xk, rollout generates on-line the next states xk+1 that
correspond to all uk ∈ Uk(xk), and uses the base heuristic to compute the
sequence of states {xk+1, . . . , xN} and controls {uk+1, . . . , uN−1} such that

xt+1 = ft(xt, ut), t = k, . . . , N − 1,

and the corresponding cost

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN ).

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk) +Hk+1(xk+1).

† For an intuitive justification of the cost improvement mechanism, note that

the rollout control ũk is calculated from Eq. (1.11) to attain the minimum over

uk over the sum of two terms: the first stage cost gk(x̃k, uk) plus the cost of the
remaining stages (k+1 to N) using the heuristic controls. Thus rollout involves a

first stage optimization (rather than just using the base heuristic), which accounts

for the cost improvement. This reasoning also explains why multistep lookahead
tends to provide better performance than one-step lookahead in rollout schemes.
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Figure 1.2.9 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base
heuristic generates an approximate Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,

and selects the control µ̃k(xk) with minimal Q-factor.

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (1.12)

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

; (1.13)

see Fig. 1.2.9.
Note that the rollout algorithm requires running the base heuristic

for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to N , it requires computation equal to a small multiple of N
times the computation time for a single application of the base heuristic.
Similarly, if n is bounded by a polynomial in N , the ratio of the rollout
algorithm computation time to the base heuristic computation time is a
polynomial in N .

Example 1.2.3 (Traveling Salesman Problem)

Let us consider the traveling salesman problem of Example 1.2.2, whereby a
salesman wants to find a minimum cost tour that visits each of N given cities
c = 0, . . . , N − 1 exactly once and returns to the city he started from. With
each pair of distinct cities c, c′, we associate a traversal cost g(c, c′). Note
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Figure 1.2.10 Rollout with the nearest neighbor heuristic for the traveling
salesman problem of Example 1.2.3. The initial state x0 consists of a single
city. The final state xN is a complete tour of N cities, containing each city
exactly once.

that we assume that we can go directly from every city to every other city.
There is no loss of generality in doing so because we can assign a very high
cost g(c, c′) to any pair of cities (c, c′) that is precluded from participation in
the solution. The problem is to find a visit order that goes through each city
exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling salesman
problem. For illustration purposes, let us focus on the simple nearest neighbor
heuristic, which starts with a partial tour, i.e., an ordered collection of distinct
cities, and constructs a sequence of partial tours, adding to the each partial
tour a new city that does not close a cycle and minimizes the cost of the
enlargement. In particular, given a sequence {c0, c1, . . . , ck} (with k < N−1)
consisting of distinct cities, the nearest neighbor heuristic adds a city ck+1

that minimizes g(ck, ck+1) over all cities ck+1 #= c0, . . . , ck, thereby forming
the sequence {c0, c1, . . . , ck, ck+1}. Continuing in this manner, the heuristic
eventually forms a sequence of N cities, {c0, c1, . . . , cN−1}, thus yielding a
complete tour with cost

g(c0, c1) + · · ·+ g(cN−2, cN−1) + g(cN−1, c0). (1.14)

We can formulate the traveling salesman problem as a DP problem as
we discussed in Example 1.2.2. We choose a starting city, say c0, as the
initial state x0. Each state xk corresponds to a partial tour (c0, c1, . . . , ck)
consisting of distinct cities. The states xk+1, next to xk, are sequences of the
form (c0, c1, . . . , ck, ck+1) that correspond to adding one more unvisited city
ck+1 #= c0, c1, . . . , ck (thus the unvisited cities are the feasible controls at a
given partial tour/state). The terminal states xN are the complete tours of
the form (c0, c1, . . . , cN−1, c0), and the cost of the corresponding sequence of
city choices is the cost of the corresponding complete tour given by Eq. (1.14).
Note that the number of states at stage k increases exponentially with k, and
so does the computation required to solve the problem by exact DP.

Let us now use as a base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k < N − 1 it-
erations, we have a state xk, i.e., a sequence {c0, . . . , ck} consisting of dis-
tinct cities. At the next iteration, we add one more city by running the
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Figure 1.2.11 Rollout with the nearest neighbor base heuristic, applied to a
traveling salesman problem. At city A, the nearest neighbor heuristic gener-
ates the tour ACDBA (labelled T0). At city A, the rollout algorithm compares
the tours ABCDA, ACDBA, and ADCBA, finds ABCDA (labelled T1) to have
the least cost, and moves to city B. At AB, the rollout algorithm compares
the tours ABCDA and ABDCA, finds ABDCA (labelled T2) to have the least
cost, and moves to city D. The rollout algorithm then moves to cities C and
A (it has no other choice). The final tour T2 generated by rollout turns out to
be optimal in this example, while the tour T0 generated by the base heuristic
is suboptimal. This is suggestive of a general result: the rollout algorithm for
deterministic problems generates a sequence of solutions of decreasing cost
under some conditions on the base heuristic that we will discuss in Chapter
2, and which are satisfied by the nearest neighbor heuristic.

nearest neighbor heuristic starting from each of the sequences of the form
{c0, . . . , ck, c} where c #= c0, . . . , ck. We then select as next city ck+1 the city
c that yielded the minimum cost tour under the nearest neighbor heuristic;
see Fig. 1.2.10. The overall computation for the rollout solution is bounded
by a polynomial in N , and is much smaller than the exact DP computation.
Figure 1.2.11 provides an example where the nearest neighbor heuristic and
the corresponding rollout algorithm are compared; see also Exercise 1.1.



Sec. 1.3 Stochastic Dynamic Programming 27

1.3 STOCHASTIC DYNAMIC PROGRAMMING

We will now extend the DP algorithm and our discussion of approximation
in value space to problems that involve stochastic uncertainty in their sys-
tem equation and cost function. We will first discuss the finite horizon case,
and the extension of the ideas underlying the principle of optimality and
approximation in value space schemes. We will then consider the infinite
horizon version of the problem, and provide an overview of the underlying
theory and algorithmic methodology.

1.3.1 Finite Horizon Problems

The stochastic optimal control problem differs from its deterministic coun-
terpart primarily in the nature of the discrete-time dynamic system that
governs the evolution of the state xk. This system includes a random
“disturbance” wk with a probability distribution Pk(· | xk, uk) that may
depend explicitly on xk and uk, but not on values of prior disturbances
wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where as earlier xk is an element of some state space, the control uk is an ele-
ment of some control space. The cost per stage is denoted by gk(xk, uk, wk)
and also depends on the random disturbance wk; see Fig. 1.3.1. The control
uk is constrained to take values in a given subset Uk(xk), which depends
on the current state xk.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1,

and the given distributions Pk(· | xk, uk). Thus, for given functions gk,
k = 0, 1, . . . , N , the expected cost of π starting at x0 is

Jπ(x0) = E
wk

k=0,...,N−1

{

gN (xN ) +
N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,

where the expected value operation E{·} is taken with respect to the joint
distribution of all the random variables wk and xk.† An optimal policy π∗

is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

† We assume an introductory probability background on the part of the

reader. For an account that is consistent with our use of probability in these
notes; see the text by Bertsekas and Tsitsiklis [BeT08].
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Random Transition

Random Transition xk+1 = fk(xk, uk, wk) Random cost

) Random Cost
) Random Cost gk(xk, uk, wk)

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN )

Control uk

Stage k k Future Stages

Figure 1.3.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to xk+1 = fk(xk, uk, wk), where wk is the random disturbance, and a
random stage cost gk(xk , uk, wk) is incurred.

where Π is the set of all policies.
An important difference from the deterministic case is that we opti-

mize not over control sequences {u0, . . . , uN−1} [cf. Eq. (1.3)], but rather
over policies (also called closed-loop control laws , or feedback policies) that
consist of a sequence of functions

π = {µ0, . . . , µN−1},

where µk maps states xk into controls uk = µk(xk), and satisfies the con-
trol constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uk that incorporate knowledge of the state xk. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

The optimal cost depends on x0 and is denoted by J*(x0); i.e.,

J*(x0) = min
π∈Π

Jπ(x0).

We view J* as a function that assigns to each initial state x0 the optimal
cost J*(x0), and call it the optimal cost function or optimal value function.

Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting from state xk at stage k.
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(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ),

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

(1.15)
For each xk and k, define µ∗

k(xk) = u∗
k where u∗

k attains the min-
imum in the right side of this equation. Then, the policy π∗ =
{µ∗

0, . . . , µ
∗
N−1} is optimal.

The key fact is that starting from any initial state x0, the optimal
cost is equal to the number J*

0 (x0), obtained at the last step of the above
DP algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (which incidentally involves some mathematical
fine points; see the discussion of Section 1.3 in the textbook [Ber17a]).

Simultaneously with the off-line computation of the optimal cost-
to-go functions J*

0 , . . . , J
*
N , we can compute and store an optimal policy

π∗ = {µ∗
0, . . . , µ

∗
N−1} by minimization in Eq. (1.15). We can then use this

policy on-line to retrieve from memory and apply the control µ∗
k(xk) once

we reach state xk. The alternative is to forego the storage of the policy π∗

and to calculate the control µ∗
k(xk) by executing the minimization (1.15)

on-line.
There are a few favorable cases where the optimal cost-to-go func-

tions J*
k and the optimal policies µ∗

k can be computed analytically using the
stochastic DP algorithm. A prominent such case involves a linear system
and a quadratic cost function, which is a fundamental problem in control
theory. We illustrate the scalar version of this problem next. The anal-
ysis can be generalized to multidimensional systems (see optimal control
textbooks such as [Ber17a]).

Example 1.3.1 (Linear Quadratic Optimal Control)

Here the system is linear,

xk+1 = axk + buk +wk, k = 0, . . . , N − 1,
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and the state, control, and disturbance are scalars. The cost is quadratic of
the form:

qx2
N +

N−1
∑

k=0

(qx2
k + ru2

k),

where q and r are known positive weighting parameters. We assume no
constraints on xk and uk (in reality such problems include constraints, but
it is common to neglect the constraints initially, and check whether they are
seriously violated later).

As an illustration, consider a vehicle that moves on a straight-line road
under the influence of a force uk and without friction. Our objective is to
maintain the vehicle’s velocity at a constant level v̄ (as in an oversimplified
cruise control system). The velocity vk at time k, after time discretization of
its Newtonian dynamics and addition of stochastic noise, evolves according
to

vk+1 = vk + buk +wk, (1.16)

where wk is a stochastic disturbance with zero mean and given variance σ2.
By introducing xk = vk − v̄, the deviation between the vehicle’s velocity vk
at time k from the desired level v̄, we obtain the system equation

xk+1 = xk + buk + wk.

Here the coefficient b relates to a number of problem characteristics including
the weight of the vehicle, the road conditions. The cost function expresses
our desire to keep xk near zero with relatively little force.

We will apply the DP algorithm, and derive the optimal cost-to-go
functions J∗

k and optimal policy. We have

J∗
N (xN) = qx2

N ,

and by applying Eq. (1.15), we obtain

J∗
N−1(xN−1) = min

uN−1

E
{

qx2
N−1 + ru2

N−1 + J∗
N (axN−1 + buN−1 + wN−1)

}

= min
uN−1

E
{

qx2
N−1 + ru2

N−1 + q(axN−1 + buN−1 + wN−1)
2
}

= min
uN−1

[

qx2
N−1 + ru2

N−1 + q(axN−1 + buN−1)
2

+ 2qE{wN−1}(axN−1 + buN−1) + qE{w2
N−1}

]

,

and finally, using the assumptions E{wN−1} = 0, E{w2
N−1} = σ2, and bring-

ing out of the minimization the terms that do not depend on uN−1,

J∗
N−1(xN−1) = qx2

N−1 + qσ2 + min
uN−1

[

ru2
N−1 + q(axN−1 + buN−1)

2
]

. (1.17)

The expression minimized over uN−1 in the preceding equation is convex
quadratic in uN−1, so by setting to zero its derivative with respect to uN−1,

0 = 2ruN−1 + 2qb(axN−1 + buN−1),
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we obtain the optimal policy for the last stage:

µ∗
N−1(xN−1) = − abq

r + b2q
xN−1.

Substituting this expression into Eq. (1.17), we obtain with a straightforward
calculation

J∗
N−1(xN−1) = KN−1x

2
N−1 + qσ2,

where

KN−1 =
a2rq

r + b2q
+ q.

We can now continue the DP algorithm to obtain J∗
N−2 from J∗

N−1.
An important observation is that J∗

N−1 is quadratic (plus an inconsequential
constant term), so with a similar calculation we can derive µ∗

N−2 and J∗
N−2

in closed form, as a linear and a quadratic (plus constant) function of xN−2,
respectively. This process can be continued going backwards, and it can be
verified by induction that for all k, we obtain the optimal policy and optimal
cost-to-go function in the form

µ∗
k(xk) = Lkxk, k = 0, 1, . . . , N − 1,

J∗
k (xk) = Kkx

2
k + σ2

N−1
∑

t=k

Kt+1, k = 0, 1, . . . , N − 1,

where

Lk = − abKk+1

r + b2Kk+1
, k = 0, 1, . . . , N − 1, (1.18)

and the sequence {Kk} is generated backwards by the equation

Kk =
a2rKk+1

r + b2Kk+1
+ q, k = 0, 1, . . . , N − 1, (1.19)

starting from the terminal condition KN = q.
The process by which we obtained an analytical solution in this example

is noteworthy. A little thought while tracing the steps of the algorithm will
convince the reader that what simplifies the solution is the quadratic nature
of the cost and the linearity of the system equation. Indeed, it can be shown
in generality that when the system is linear and the cost is quadratic, the
optimal policy and cost-to-go function are given by closed-form expressions,
even for multi-dimensional linear systems (see [Ber17a], Section 3.1). The
optimal policy is a linear function of the state, and the optimal cost function
is a quadratic in the state plus a constant.

Another remarkable feature of this example, which can also be extended
to multi-dimensional systems, is that the optimal policy does not depend on
the variance of wk, and remains unaffected when wk is replaced by its mean
(which is zero in our example). This is known as certainty equivalence, and
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17a], Sections 3.1 and 4.2. For example it holds even when wk
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has nonzero mean. For other problems, certainty equivalence can be used as
a basis for problem approximation, e.g., assume that certainty equivalence
holds (i.e., replace stochastic quantities by some typical values, such as their
expected values) and apply exact DP to the resulting deterministic optimal
control problem. This is an important part of the RL methodology, which we
will discuss later in this chapter, and in more detail in Chapter 2.

Note that the linear quadratic type of problem illustrated in the pre-
ceding example is exceptional in that it admits an elegant analytical solu-
tion. Most DP problems encountered in practice require a computational
solution.

Q-Factors and Q-Learning for Stochastic Problems

Similar to the case of deterministic problems [cf. Eq. (1.9)], we can define
optimal Q-factors for a stochastic problem, as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.15).
They are given by

Q*
k(xk, uk) = Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.20)

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =Ewk

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

We will later be interested in approximate Q-factors, where J*
k+1 in

Eq. (1.20) is replaced by an approximation J̃k+1. Again, the Q-factor
corresponding to a state-control pair (xk, uk) is the sum of the expected
first stage cost using (xk, uk), plus the expected cost of the remaining stages
starting from the next state as estimated by the function J̃k+1.

1.3.2 Approximation in Value Space for Stochastic DP

Generally the computation of the optimal cost-to-go functions J*
k can be

very time-consuming or impossible. One of the principal RL methods to
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deal with this difficulty is approximation in value space. Here approxima-
tions J̃k are used in place of J*

k , similar to the deterministic case; cf. Eqs.
(1.8) and (1.11).

Approximation in Value Space - Use of J̃k in Place of J*
k

At any state xk encountered at stage k, set

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

.

(1.21)

The one-step lookahead minimization (1.21) needs to be performed
only for the N states x0, . . . , xN−1 that are encountered during the on-line
control of the system. By contrast, exact DP requires that this type of
minimization be done for every state and stage.

Truncated Rollout

Our discussion of rollout of Section 1.2 also applies to stochastic problems:
we select J̃k to be the cost function of a suitable base policy (perhaps with
some approximation). Note that any policy can be used on-line as base pol-
icy, including policies obtained by a sophisticated off-line procedure, using
for example neural networks and training data.† The rollout algorithm has
the cost improvement property, whereby it yields an improved cost relative
to its underlying base policy.

A major variant of rollout is truncated rollout , which combines the
use of one-step optimization, simulation of the base policy for a certain
number of steps m, and then adds an approximate cost J̃k+m+1(xk+m+1)
to the cost of the simulation, which depends on the state xk+m+1 obtained
at the end of the rollout. Note that if one foregoes the use of a base policy
(i.e., m = 0), one recovers as a special case the general approximation in

† The principal role of neural networks within the context of these notes is to

provide the means for approximating various target functions from input-output

data. This includes cost functions and Q-factors of given policies, and optimal
cost-to-go functions and Q-factors; in this case the neural network is referred to

as a value network (sometimes the alternative term critic network is also used).
In other cases the neural network represents a policy viewed as a function from

state to control, in which case it is called a policy network (the alternative term

actor network is also used). The training methods for constructing the cost
function, Q-factor, and policy approximations themselves from data are mostly

based on optimization and regression, and will be reviewed in Chapter 3. Detailed

discussions are found in many sources, including the RL books [Ber19a], [Ber20a],
and the neuro-dynamic programming book [BeT96].
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Truncated Horizon Rollout
Approximation in Policy Space Heuristic Cost Approximation

for Stages Beyond Truncation
for Stages Beyond Truncation

for Stages Beyond Truncation

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Base Policy

Base Policy m-Step

Rollout with Base Policy

Multiagent Q-factor minimization xk

Possible States Possible States
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, uk, wk)

Figure 1.3.2 Schematic illustration of truncated rollout. One-step lookahead is
followed by simulation of the base policy for m steps, and an approximate cost
J̃k+m+1(xk+m+1) is added to the cost of the simulation, which depends on the
state xk+m+1 obtained at the end of the rollout. If the base policy simulation
is omitted (i.e., m = 0), one recovers the general approximation in value space
scheme (1.21). Truncated rollout with multistep lookahead is also possible and is
discussed in Chapter 2.

value space scheme (1.21); see Fig. 1.3.2. Thus rollout provides an extra
layer of lookahead to the one-step minimization, but this lookahead need
not extend to the end of the horizon.

Note also that versions of truncated rollout with multistep lookahead
minimization are possible. They will be discussed later. The terminal cost
approximation is necessary in infinite horizon problems, since an infinite
number of stages of the base policy rollout is impossible. However, even for
finite horizon problems it may be necessary and/or beneficial to artificially
truncate the rollout horizon. Generally, a large combined number of mul-
tistep lookahead minimization and rollout steps is likely to be beneficial.

Further Approximations

When designing approximation in value space schemes, one may consider
several interesting simplification ideas, which are aimed at alleviating the
computational overhead. One possibility is to simplify the lookahead min-
imization over uk ∈ Uk(xk) [cf. Eq. (1.15)] by replacing Uk(xk) with a
suitably chosen subset of controls that are viewed as most promising based
on some heuristic criterion.

In Section 1.6.5, we will discuss a related idea for control space sim-
plification for the multiagent case where the control consists of multiple
components, uk = (u1

k, . . . , u
m
k ). Then, a sequence of m single component

minimizations can be used instead, with potentially enormous computa-
tional savings resulting.

A different type of simplification relates to approximations in the
computation of the expected value in Eq. (1.21) by using limited Monte
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Steps “Future”Steps “Future” First Step

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

At xk

Min Approximation

Min Approximation E{·} Approximation Cost-to-Go ApproximationOptimal Cost Approximation

Figure 1.3.3 Schematic illustration of approximation in value space for stochas-
tic problems, and the three approximations involved in its design. Typically the
approximations can be designed independently of each other. There are also mul-
tistep lookahead versions of approximation in value space, which will be discussed
later.

Carlo simulation. The Monte Carlo Tree Search method, which will be
discussed in Chapter 2, Section 2.7.4, is one possibility of this type.

Another expected value simplification is based on the certainty equiv-
alence approach, which will be discussed in more detail in Chapter 2, Sec-
tion 2.7.2. In this approach, at stage k, we replace the random variables
wk+1, . . . , wk+m associated with truncated rollout by some deterministic
values wk+1, . . . , wk+m, such as their expected values. We may also view
this as a combination of truncated rollout with a problem approximation ap-
proach, whereby for the purpose of computing J̃k+1(xk+1), we “pretend”
that the problem is deterministic, with the future random quantities re-
placed by deterministic typical values. This is one of the most effective
techniques to make approximation in value space for stochastic problems
computationally tractable, particularly when it is also combined with mul-
tistep lookahead minimization.

Figure 1.3.3 illustrates the three approximations involved in approx-
imation in value space for stochastic problems: cost-to-go approximation,
simplified minimization, and expected value approximation. They may be
designed largely independently of each other, and with a variety of meth-
ods. Much of the discussion in these notes will revolve around different
ways to organize these three approximations for both cases of one-step and
multistep lookahead.

Cost Versus Q-Factor Approximations - Robustness and On-
Line Replanning

Similar to the deterministic case, Q-learning involves the calculation of
either the optimal Q-factors (1.20) or approximations Q̃k(xk, uk). The
approximate Q-factors may be obtained using approximation in value space
schemes, and can be used to obtain approximately optimal policies through
the Q-factor minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (1.22)
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Since it is possible to implement approximation in value space by
using cost function approximations [cf. Eq. (1.21)] or by using Q-factor ap-
proximations [cf. Eq. (1.22)], the question arises which one to use in a given
practical situation. One important consideration is the facility of obtain-
ing suitable cost or Q-factor approximations. This depends largely on the
problem and also on the availability of data on which the approximations
can be based. However, there are some other major considerations.

In particular, the cost function approximation scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

(1.23)
has an important disadvantage: the expected value above needs to be com-
puted on-line for all uk ∈ Uk(xk), and this may involve substantial compu-
tation. It also has an important advantage in situations where the system
function fk, the cost per stage gk, or the control constraint set Uk(xk) can
change as the system is operating. Assuming that the new fk, gk, or Uk(xk)
become known to the controller at time k, on-line replanning may be used,
and this may improve substantially the robustness of the approximation in
value space scheme. By comparison, the Q-factor function approximation
scheme (1.22) does not allow for on-line replanning. On the other hand, for
problems where there is no need for on-line replanning, the Q-factor ap-
proximation scheme may not require the on-line computation of expected
values and may allow a much faster on-line computation of the minimizing
control µ̃k(xk) via Eq. (1.22).

One more disadvantage of using Q-factors will emerge later, as we
discuss the synergy between off-line training and on-line play based on
Newton’s method; see Section 1.5. In particular, we will interpret the
cost function of the lookahead minimization policy {µ̃0, . . . , µ̃N−1} as the
result of one step of Newton’s method for solving the Bellman equation
that underlies the DP problem, starting from the terminal cost function
approximations {J̃1, . . . , J̃N}. This synergy tends to be negatively affected
when Q-factor (rather than cost) approximations are used.

1.3.3 Approximation in Policy Space

The major alternative to approximation in value space is approximation in
policy space, whereby we select the policy from a suitably restricted class
of policies, usually a parametric class of some form. In particular, we can
introduce a parametric family of policies (or approximation architecture,
as we will call it in Chapter 3),

µ̃k(xk, rk), k = 0, . . . , N − 1,

where rk is a parameter, and then estimate the parameters rk using some
type of training process or optimization; cf. Fig. 1.3.4.
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Uncertainty System Environment Cost Control Current State
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uk = µ̃k(xk, rk) Current State
(x , u )

) Current State xk

µ̃k(·, rk) Approximate Q-Factor

1 Training Data

Figure 1.3.4 Schematic illustration of parametric approximation in policy space.
A policy

µ̃k(xk , rk), k = 0, 1, . . . , N − 1,

from a parametric class is computed off-line based on data, and it is used to
generate the control uk = µ̃k(xk , rk) on-line, when at state xk.

Neural networks, described in Chapter 3, are often used to gener-
ate the parametric class of policies, in which case rk is the vector of
weights/parameters of the neural network. In Chapter 3, we will also dis-
cuss methods for obtaining the training data required for obtaining the
parameters rk, and we will consider several other classes of approximation
architectures.

A general scheme for parametric approximation in policy space is
to somehow obtain a training set, consisting of a large number of sample
state-control pairs (xs

k, u
s
k), s = 1, . . . , q, such that for each s, us

k is a “good”
control at state xs

k. We can then choose the parameter rk by solving the
least squares/regression problem

min
rk

q
∑

s=1

∥

∥us
k − µ̃k(xs

k, rk)
∥

∥

2
(1.24)

(possibly modified to add regularization).† In particular, we may determine
us
k using a human or a software “expert” that can choose “near-optimal”

† Here ‖ · ‖ denotes the standard quadratic Euclidean norm. It is implicitly

assumed here (and in similar situations later) that the controls are members of
a Euclidean space (i.e., the space of finite dimensional vectors with real-valued

components) so that the distance between two controls can be measured by their

normed difference (randomized controls, i.e., probabilities that a particular action
will be used, fall in this category). Regression problems of this type arise in

the training of parametric classifiers based on data, including the use of neural

networks (see Section 3.4). Assuming a finite control space, the classifier is trained
using the data

(

xs
k, u

s
k

)

, s = 1, . . . , q, which are viewed as state-category pairs,
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controls at given states, so µ̃k is trained to match the behavior of the expert.
Methods of this type are commonly referred to as supervised learning in
artificial intelligence.

An important approach for generating the training set (xs
k, u

s
k), s =

1, . . . , q, for the least squares training problem (1.24) is based on approx-
imation in value space. In particular, we may use a one-step lookahead
minimization of the form

us
k ∈ arg min

u∈Uk(x
s
k
)
E
{

gk(xs
k, u, wk) + J̃k+1

(

fk(xs
k, u, wk)

)

}

,

where J̃k+1 is a suitable (separately obtained) approximation in value
space. Alternatively, we may use an approximate Q-factor based mini-
mization

us
k ∈ arg min

uk∈Uk(x
s
k
)
Q̃k(xs

k, uk),

where Q̃k is a (separately obtained) Q-factor approximation. We may view
this as approximation in policy space built on top of approximation in value
space.

There is a significant advantage of the least squares training procedure
of Eq. (1.24), and more generally approximation in policy space: once the
parametrized policy µ̃k is obtained, the computation of controls

uk = µ̃k(xk, rk), k = 0, . . . , N − 1,

during on-line operation of the system is often much easier compared with
the lookahead minimization (1.23). For this reason, one of the major uses of
approximation in policy space is to provide an approximate implementation
of a known policy (no matter how obtained) for the purpose of convenient
on-line use. On the negative side, such an implementation is less well suited
for on-line replanning.

Model-Free Approximation in Policy Space

There are also alternative optimization-based approaches for policy space
approximation. The main idea is that once we use a vector (r0, r1, . . . , rN−1)
to parametrize the policies π, the expected cost Jπ(x0) is parametrized as
well, and can be viewed as a function of (r0, r1, . . . , rN−1). We can then

and then a state xk is classified as being of “category” µ̃k(xk, rk). Parametric

approximation architectures, and their training through the use of classification
and regression techniques are described in Chapter 3. An important modification

is to use regularized regression where a quadratic regularization term is added

to the least squares objective. This term is a positive multiple of the squared
deviation ‖r − r̂‖2 of r from some initial guess r̂.
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optimize this cost by using a gradient-like or random search method. This
is a widely used approach for optimization in policy space, which, however,
will not be discussed in these notes (for details and many references to the
literature, see the RL book [Ber19a], Section 5.7).

An interesting feature of this approach is that in principle it does
not require a mathematical model of the system and the cost function; a
computer simulator (or availability of the real system for experimentation)
suffices instead. This is sometimes called a model-free implementation.
The advisability of implementations of this type, particularly when they
rely exclusively on simulation (i.e., without the use of prior mathematical
model knowledge), is a hotly debated and much contested issue; see for
example the review paper by Alamir [Ala22].

We finally note an important conceptual difference between approx-
imation in value space and approximation in policy space. The former is
primarily an on-line method (with off-line training used optionally to con-
struct cost function approximations for one-step or multistep lookahead.
The latter is primarily an off-line training method (which may be used
without modification for on-line play or optionally to provide a policy for
on-line rollout).

1.4 INFINITE HORIZON PROBLEMS - AN OVERVIEW

We will now provide an outline of infinite horizon stochastic DP with an
emphasis on its aspects that relate to our RL/approximation methods. We
will deal primarily with infinite horizon stochastic problems, where we aim
to minimize the total cost over an infinite number of stages, given by

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

; (1.25)

see Fig. 1.4.1. Here, Jπ(x0) denotes the cost associated with an initial state
x0 and a policy π = {µ0, µ1, . . .}, and α is a scalar in the interval (0, 1]. The
functions g and f that define the cost per stage and the system equation

xk+1 = f(xk, uk, wk),

do not change from one stage to the next. The stochastic disturbances,
w0, w1, . . ., have a common probability distribution P (· | xk, uk).

When α is strictly less that 1, it has the meaning of a discount factor ,
and its effect is that future costs matter to us less than the same costs
incurred at the present time. Among others, a discount factor guarantees
that the limit defining Jπ(x0) exists and is finite (assuming that the range
of values of the stage cost g is bounded). This is a nice mathematical
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...... ) xk xk+1) x0

Random Transition

) Random Cost

xk+1 = f(xk, uk, wk)

) αkg(xk, uk, wk)

Termination State Infinite Horizon

Figure 1.4.1 Illustration of an infinite horizon problem. The system and cost
per stage are stationary, except for the use of a discount factor α. If α = 1, there
is typically a special cost-free termination state that we aim to reach.

property that makes discounted problems analytically and algorithmically
tractable.

Thus, by definition, the infinite horizon cost of a policy is the limit
of its finite horizon costs as the horizon tends to infinity. The three types
of problems that we will focus on are:

(a) Stochastic shortest path problems (SSP for short). Here, α = 1 but
there is a special cost-free termination state; once the system reaches
that state it remains there at no further cost. In some types of prob-
lems, the termination state may represent a goal state that we are
trying to reach at minimum cost, while in others it may be a state
that we are trying to avoid for as long as possible. We will mostly
assume a problem structure such that termination is inevitable under
all policies. Thus the horizon is in effect finite, but its length is ran-
dom and may be affected by the policy being used. A significantly
more complicated type of SSP problems, which we will discuss selec-
tively, arises when termination can be guaranteed only for a subset
of policies, which includes all optimal policies. Some common types
of SSP belong to this category, including deterministic shortest path
problems that involve graphs with cycles.

(b) Discounted problems . Here, α < 1 and there need not be a termi-
nation state. However, we will see that a discounted problem with
a finite number of states can be readily converted to an SSP prob-
lem. This can be done by introducing an artificial termination state
to which the system moves with probability 1− α at every state and
stage, thus making termination inevitable. As a result, algorithms
and analysis for SSP problems can be easily adapted to discounted
problems; the DP textbook [Ber17a] provides a detailed account of
this conversion, and an accessible introduction to discounted and SSP
problems with a finite number of states.

(c) Deterministic nonnegative cost problems . Here, the disturbance wk

takes a single known value. Equivalently, there is no disturbance in
the system equation and the cost expression, which now take the form

xk+1 = f(xk, uk), k = 0, 1, . . . , (1.26)
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and

Jπ(x0) = lim
N→∞

N−1
∑

k=0

αkg
(

xk, µk(xk)
)

. (1.27)

We assume further that there is a cost-free and absorbing termination
state t, and that we have

g(x, u) ≥ 0, for all x %= t, u ∈ U(x), (1.28)

and g(t, u) = 0 for all u ∈ U(t). This type of structure expresses the
objective to reach or approach t at minimum cost, a classical control
problem. An extensive analysis of the undiscounted version of this
problem was given in the author’s paper [Ber17b].

Discounted stochastic problems with a finite number states [also re-
ferred to as discounted MDP (abbreviation for Markovian Decision Prob-
lem)] are very common in the DP/RL literature, particularly because of
their benign analytical and computational nature. Moreover, there is a
widespread belief that discounted MDP can be used as a universal model,
i.e., that in practice any other kind of problem (e.g., undiscounted problems
with a termination state and/or a continuous state space) can be painlessly
converted to a discounted MDP with a discount factor that is close enough
to 1. This is questionable, however, for a number of reasons:

(a) Deterministic models are common as well as natural in many prac-
tical contexts (including discrete optimization/integer programming
problems), so to convert them to MDP does not make sense.

(b) The conversion of a continuous-state problem to a finite-state prob-
lem through some kind of discretization involves mathematical sub-
tleties that can lead to serious practical/algorithmic complications.
In particular, the character of the optimal solution may be seriously
distorted by converting to a discounted MDP through some form of
discretization, regardless of how fine the discretization is.

(c) For some practical shortest path contexts it is essential that the termi-
nation state is ultimately reached. However, when a discount factor α
is introduced in such a problem, the character of the problem may be
fundamentally altered. In particular, the threshold for an appropriate
value of α may be very close to 1 and may be unknown in practice.
For a simple example consider a shortest path problem with states
1 and 2 plus a termination state t. From state 1 we can go to state
2 at cost 0, from state 2 we can go to either state 1 at a small cost
ε > 0 or to the termination state at a substantial cost C > 0. The
optimal policy over an infinite horizon is to go from 1 to 2 and from 2
to t. Suppose now that we approximate the problem by introducing a
discount factor α ∈ (0, 1). Then it can be shown that if α < 1− ε/C,
it is optimal to move indefinitely around the cycle 1 → 2 → 1 → 2
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and never reach t, while for α > 1− ε/C the shortest path 2 → 1 → t
will be obtained. Thus the solution of the discounted problem varies
discontinuously with α: it changes radically at some threshold, which
in general may be unknown.

An important class of problems that we will consider in some detail
in these notes is finite-state deterministic problems with a large number of
states. Finite horizon versions of these problems include challenging dis-
crete optimization problems, whose exact solution is practically impossible.
An important fact to keep in mind is that we can transform such problems
to infinite horizon SSP problems with a termination state at the end of the
horizon, so that the conceptual framework of the present section applies.
The approximate solution of discrete optimization problems by RL meth-
ods, and particularly by rollout, will be considered in Chapter 2, and has
been discussed at length in the books [Ber19a] and [Ber20a].

1.4.1 Infinite Horizon Methodology

There are several analytical and computational issues regarding our infinite
horizon problems. Many of them revolve around the relation between the
optimal cost function J* of the infinite horizon problem and the optimal
cost functions of the corresponding N -stage problems.

In particular, let JN (x) denote the optimal cost of the problem in-
volving N stages, initial state x, cost per stage g(x, u, w), and zero terminal
cost. This cost is generated after N iterations of the algorithm

Jk+1(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJk
(

f(x, u, w)
)

}

, k = 0, 1, . . . ,

(1.29)
starting from J0(x) ≡ 0.† The algorithm (1.29) is known as the value
iteration algorithm (VI for short). Since the infinite horizon cost of a given
policy is, by definition, the limit of the corresponding N -stage costs as
N → ∞, it is natural to speculate that:

(a) The optimal infinite horizon cost is the limit of the corresponding
N -stage optimal costs as N → ∞; i.e.,

J*(x) = lim
N→∞

JN (x) (1.30)

† This is just the finite horizon DP algorithm of Section 1.3.1, except that we
have reversed the time indexing to suit our infinite horizon context. In particular,
consider the N-stages problem and let VN−k(x) be the optimal cost-to-go starting
at x with k stages to go, and with terminal cost equal to 0. Applying DP, we
have for all x,

VN−k(x) = min
u∈U(x)

Ew

{

αN−kg(x, u,w) + VN−k+1

(

f(x, u, w)
)

}

, VN(x) = 0.

By defining Jk(x) = VN−k(x)/α
N−k, we obtain the VI algorithm (1.29).
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for all states x.

(b) The following equation should hold for all states x,

J*(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJ*
(

f(x, u, w)
)

}

. (1.31)

This is obtained by taking the limit as N → ∞ in the VI algorithm
(1.29) using Eq. (1.30). The preceding equation, called Bellman’s
equation, is really a system of equations (one equation per state x),
which has as solution the optimal costs-to-go of all the states.

(c) If µ(x) attains the minimum in the right-hand side of the Bellman
equation (1.31) for each x, then the policy {µ, µ, . . .} should be opti-
mal. This type of policy is called stationary, and for simplicity it is
denoted by µ.

(d) The cost function Jµ of a stationary policy µ satisfies

Jµ(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(1.32)
We can view this as just the Bellman equation (1.31) for a different
problem, where for each x, the control constraint set U(x) consists
of just one control, namely µ(x). Moreover, we expect that Jµ is
obtained in the limit by the VI algorithm:

Jµ(x) = lim
N→∞

Jµ,N (x), for all x,

where Jµ,N is the N -stage cost function of µ generated by

Jµ,k+1(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ,k
(

f(x, µ(x), w)
)

}

, (1.33)

starting from Jµ,0(x) ≡ 0 or some other initial condition; cf. Eqs.
(1.29)-(1.30).

All four of the preceding results can be shown to hold for finite-
state discounted problems, and also for finite-state SSP problems under
reasonable assumptions. The results also hold for infinite-state discounted
problems, provided the cost per stage function g is bounded over the set
of possible values of (x, u, w), in which case we additionally can show that
J* is the unique solution of Bellman’s equation. The VI algorithm is also
valid under these conditions, in the sense that Jk → J*, even if the initial
function J0 is nonzero. The motivation for a different choice of J0 is faster
convergence to J*; generally the convergence is faster as J0 is chosen closer
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to J*. The associated mathematical proofs can be found in several sources,
e.g., [Ber12], Chapter 1, or [Ber19a], Chapter 4.†

It is important to note that for infinite horizon problems, there are
additional important algorithms that are amenable to approximation in
value space. Approximate policy iteration, Q-learning, temporal difference
methods, linear programming, and their variants are some of these; see the
RL books [Ber19a], [Ber20a]. For this reason, in the infinite horizon case,
there is a richer set of algorithmic options for approximation in value space,
despite the fact that the associated mathematical theory is more complex.
In these notes, we will only discuss approximate forms and variations of
the policy iteration algorithm, which we describe next.

Policy Iteration

A major infinite horizon algorithm is policy iteration (PI for short). We
will argue that PI, together with its variations, forms the foundation for
self-learning in RL, i.e., learning from data that is self-generated (from
the system itself as it operates) rather than from data supplied from an
external source. Figure 1.4.2 describes the method as repeated rollout, and
indicates that each of its iterations consists of two phases:

(a) Policy evaluation, which computes the cost function Jµ of the cur-
rent (or base) policy µ. One possibility is to solve the corresponding
Bellman equation

Jµ(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x,

cf. Eq. (1.32). However, the value Jµ(x) for any x can also be com-
puted by Monte Carlo simulation, by averaging over many randomly
generated trajectories the cost of the policy starting from x.

(b) Policy improvement , which computes the “improved” (or rollout) pol-
icy µ̃ using the one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

We call µ̃ “improved policy” because we can generally prove that

Jµ̃(x) ≤ Jµ(x), for all x.

† For undiscounted problems and discounted problems with unbounded cost

per stage, we may still adopt the four preceding results as a working hypoth-
esis. However, we should also be aware that exceptional behavior is possible

under unfavorable circumstances, including nonuniqueness of solution of Bell-

man’s equation, and nonconvergence of the VI algorithm to J∗ from some initial
conditions; see the books [Ber12], [Ber22b].
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Figure 1.4.2 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy µ in the sequence being the base policy that
generates the next policy µ̃ in the sequence as the corresponding rollout policy.
This rollout policy is used as the base policy in the subsequent iteration.

This cost improvement property will be shown in Chapter 2, Section 2.7,
and can be used to show that PI produces an optimal policy in a finite
number of iterations under favorable conditions (for example for finite-
state discounted problems; see the DP books [Ber12], [Ber17a], or the RL
book [Ber19a]).

The rollout algorithm in its pure form is just a single iteration of
the PI algorithm. It starts from a given base policy µ and produces the
rollout policy µ̃. It may be viewed as approximation in value space with
one-step lookahead that uses Jµ as terminal cost function approximation.
It has the advantage that it can be applied on-line by computing the needed
values of Jµ(x) by simulation. By contrast, approximate forms of PI for
challenging problems, involving for example neural network training, can
only be implemented off-line.

1.4.2 Approximation in Value Space - Infinite Horizon

The approximation in value space approach that we discussed in connec-
tion with finite horizon problems can be extended in a natural way to
infinite horizon problems. Here in place of J*, we use an approximation
J̃ , and generate at any state x, a control µ̃(x) by the one-step lookahead
minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

. (1.34)

This minimization yields a stationary policy {µ̃, µ̃, . . .}, with cost function
denoted Jµ̃ [i.e., Jµ̃(x) is the total infinite horizon discounted cost obtained
when using µ̃ starting at state x]; see Fig. 1.4.3. Note that when J̃ = J*,
the one-step lookahead policy attains the minimum in the Bellman equation
(1.31) and is expected to be optimal. This suggests that one should try to
use J̃ as close as possible to J*, which is generally true as we will argue
later.

Naturally an important goal to strive for is that Jµ̃ is close to J* in
some sense. However, for classical control problems, which involve steering
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{
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∑
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Figure 1.4.3 Schematic illustration of approximation in value space with one-step
and "-step lookahead minimization for infinite horizon problems. In the former
case, the minimization yields at state x a control ũ, which defines the one-step
lookahead policy µ̃ via

µ̃(x) = ũ.

In the latter case, the minimization yields a control ũk policies µ̃k+1, . . . , µ̃k+!−1.
The control ũk is applied at xk while the remaining sequence µ̃k+1, . . . , µ̃k+!−1

is discarded. The control ũk defines the "-step lookahead policy µ̃.

and maintaining the state near a desired reference state (e.g., problems
with a cost-free and absorbing terminal state, and positive cost for all
other states), stability of µ̃ may be a principal objective. In these notes, we
will discuss stability issues primarily for this one class of problems, and we
will consider the policy µ̃ to be stable if Jµ̃ is real-valued , i.e.,

Jµ̃(x) < ∞, for all x ∈ X.

Selecting J̃ so that µ̃ is stable is a question of major interest for some
application contexts, such as model predictive and adaptive control, and
will be discussed in the next section within the limited context of linear
quadratic problems.

"-Step Lookahead

An important extension of one-step lookahead minimization is "-step looka-
head , whereby at a state xk we minimize the cost of the first " > 1
stages with the future costs approximated by a function J̃ (see the bottom
half of Fig. 1.4.3). This minimization yields a control ũk and a sequence
µ̃k+1, . . . , µ̃k+!−1. The control ũk is applied at xk, and defines the "-step
lookahead policy µ̃ via µ̃(xk) = ũk, while µ̃k+1, . . . , µ̃k+!−1 are discarded.
Actually, we may view "-step lookahead minimization as the special case of
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Optimal Cost Approximation

Figure 1.4.4 Approximation in value space with one-step lookahead for infinite
horizon problems. There are three potential areas of approximation, which can
be considered independently of each other: optimal cost approximation, expected
value approximation, and minimization approximation.

its one-step counterpart where the lookahead function is the optimal cost
function of an (" − 1)-stage DP problem with a terminal cost J̃(xk+!) on
the state xk+! obtained after "− 1 stages.

The motivation for "-step lookahead minimization is that by increas-
ing the value of ", we may require a less accurate approximation J̃ to obtain
good performance. Otherwise expressed, for the same quality of cost func-
tion approximation, better performance may be obtained as " becomes
larger. This will be explained visually later, using the formalism of New-
ton’s method in Section 1.5. In particular, for AlphaZero chess, long multi-
step lookahead is critical for good on-line performance. Another motivation
for multistep lookahead is to enhance the stability properties of the gener-
ated on-line policy, as we will discuss later in Section 1.5. On the other
hand, solving the multistep lookahead minimization problem, instead of
the one-step lookahead counterpart of Eq. (1.34), is more time consuming.

The Three Approximations: Optimal Cost, Expected Value,
and Lookahead Minimization Approximations

There are three potential areas of approximation for infinite horizon prob-
lems: optimal cost approximation, expected value approximation, and min-
imization approximation; cf. Fig. 1.4.4. They are similar to their finite
horizon counterparts that we discussed in Section 1.3.2. In particular, we
have potentially:

(a) A terminal cost approximation J̃ of the optimal cost function J*:
A major advantage of the infinite horizon context is that only one
approximate cost function J̃ is needed, rather than the N functions
J̃1, . . . , J̃N of the N -step horizon case.

(b) An approximation of the expected value operation: This operation can
be very time consuming. It may be simplified in various ways. For ex-
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ample some of the random quantities wk, wk+1, . . . , wk+!−1 appearing
in the "-step lookahead minimization may be replaced by determin-
istic quantities; this is another example of the certainty equivalence
approach, which we discussed in Section 1.3.2.

(c) A simplification of the minimization operation: For example in mul-
tiagent problems the control consists of multiple components,

u = (u1, . . . , um),

with each component ui chosen by a different agent/decision maker.
In this case the size of the control space can be enormous, but it
can be simplified in ways that will be discussed later (e.g., choosing
components sequentially, one-agent-at-a-time). This will form the
core of our approach to multiagent problems; see Section 1.6.5 and
Chapter 2, Section 2.9.

We will next describe briefly various approaches for selecting the ter-
minal cost function approximation.

Constructing Terminal Cost Approximations for On-Line Play

A major issue in value space approximation is the construction of a suitable
approximate cost function J̃ . This can be done in many different ways,
giving rise to some of the principal RL methods.

For example, J̃ may be constructed with sophisticated off-line training
methods. Alternatively, the approximate values J̃(x) may be obtained on-
line as needed with truncated rollout, by running an off-line obtained policy
for a suitably large number of steps, starting from x, and supplementing it
with a suitable, perhaps primitive, terminal cost approximation.

For orientation purposes, let us describe briefly four broad types of
approximation. We will return to these approaches later, and we also refer
to the RL and approximate DP literature for more detailed discussions.

(a) Off-line problem approximation: Here the function J̃ is computed off-
line as the optimal or nearly optimal cost function of a simplified op-
timization problem, which is more convenient for computation. Sim-
plifications may include exploiting decomposable structure, reducing
the size of the state space, neglecting some of the constraints, and
ignoring various types of uncertainties. For example we may con-
sider using as J̃ the cost function of a related deterministic problem,
obtained through some form of certainty equivalence approximation,
thus allowing computation of J̃ by gradient-based optimal control
methods or shortest path-type methods.
A major type of problem approximation method is aggregation, which
is described and analyzed in the books [Ber12], [Ber19a], and the pa-
pers [Ber18a], [Ber18b]. Aggregation provides a systematic procedure
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to simplify a given problem by grouping states together into a rela-
tively small number of subsets, called aggregate states. The optimal
cost function of the simpler aggregate problem is computed by exact
DP methods, possibly involving the use of simulation. This cost func-
tion is then used to provide an approximation J̃ to the optimal cost
function J* of the original problem, using some form of interpolation.

(b) On-line simulation: This possibility arises in rollout algorithms for
stochastic problems, where we use Monte-Carlo simulation and some
suboptimal policy µ (the base policy) to compute (whenever needed)
values J̃(x) that are exactly or approximately equal to Jµ(x). The
policy µ may be obtained by any method, e.g., one based on heuris-
tic reasoning (such as in the case of the traveling salesman Example
1.2.3), or off-line training based on a more principled approach, such
as approximate policy iteration or approximation in policy space.
Note that while simulation is time-consuming, it is uniquely well-
suited for the use of parallel computation. Moreover, it can be sim-
plified through the use of certainty equivalence approximations.

(c) On-line approximate optimization. This approach involves the solu-
tion of a suitably constructed shorter horizon version of the problem,
with a simple terminal cost approximation. It can be viewed as ei-
ther approximation in value space with multistep lookahead, or as a
form of rollout algorithm. It is often used in model predictive control
(MPC).

(d) Parametric cost approximation, where J̃ is obtained from a given
parametric class of functions J(x, r), where r is a parameter vector,
selected by a suitable algorithm. The parametric class typically in-
volves prominent characteristics of x called features , which can be
obtained either through insight into the problem at hand, or by using
training data and some form of neural network (see Chapter 3).

Such methods include approximate forms of PI, as discussed in Sec-
tion 1.1 in connection with chess and backgammon. The policy eval-
uation portion of the PI algorithm can be done by approximating
the cost function of the current policy using an approximation ar-
chitecture such as a neural network (see Chapter 3). It can also be
done with stochastic iterative algorithms such as TD(λ), LSPE(λ),
and LSTD(λ), which are described in the DP book [Ber12] and the
RL book [Ber19a]. These methods are somewhat peripheral to our
course, and will not be discussed at any length. We note, however,
that approximate PI methods do not just a yield parametric approx-
imate cost function J(x, r), but also a suboptimal policy, which can
be improved on-line by using (possibly truncated) rollout.

Aside from approximate PI, parametric approximate cost functions
J(x, r) may be obtained off-line with methods such as Q-learning, lin-
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ear programming, and aggregation methods, which are also discussed
in the books [Ber12] and [Ber19a].

Let us also mention that for problems with special structure, J̃ may
be chosen so that the one-step lookahead minimization (1.34) is facilitated.
In fact, under favorable circumstances, the lookahead minimization may be
carried out in closed form. An example is when the system is nonlinear,
but the control enters linearly in the system equation and quadratically
in the cost function, while the terminal cost approximation is quadratic.
Then the one-step lookahead minimization can be carried out analytically,
because it involves a function that is quadratic in u.

From Off-Line Training to On-Line Play - Infinite Horizon

Generally off-line training will produce either just a cost approximation
(as in the case of TD-Gammon), or just a policy (as for example by some
approximation in policy space/policy gradient approach), or both (as in
the case of AlphaZero). We have already discussed in this section one-step
lookahead and multistep lookahead schemes to implement on-line approx-
imation in value space using J̃ ; cf. Fig. 1.4.3. Let us now consider some
additional possibilities, which involve the use of a policy µ that has been
obtained off-line (possibly in addition to a terminal cost approximation).
Here are some of the main possibilities:

(a) Given a policy µ that has been obtained off-line, we may use as termi-
nal cost approximation J̃ the cost function Jµ of the policy. For the
case of one-step lookahead, this requires a policy evaluation opera-
tion, and can be done on-line, by computing (possibly by simulation)
just the values of

E
{

Jµ
(

f(xk, uk, wk)
)

}

that are needed [cf. Eq. (1.34)]. For the case of "-step lookahead, the
values

E
{

Jµ(xk+!)
}

for all states xk+! that are reachable in " steps starting from xk are
needed. This is the simplest form of rollout, and only requires the
off-line construction of the policy µ.

(b) Given a terminal cost approximation J̃ that has been obtained off-
line, we may use it on-line to compute fast when needed the controls of
a corresponding one-step or multistep lookahead policy µ̃. The policy
µ̃ can in turn be used for rollout as in (a) above. In a truncated
variation of this scheme, we may also use J̃ to approximate the tail
end of the rollout process (an example of this is the rollout-based
TD-Gammon algorithm).
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(c) Given a policy µ and a terminal cost approximation J̃ , we may use
them together in a truncated rollout scheme, whereby the tail end of
the rollout with µ is approximated using the cost approximation J̃ .
This is similar to the truncated rollout scheme noted in (b) above,
except that the policy µ is computed off-line rather than on-line using
J̃ and one-step or multistep lookahead.

The preceding three possibilities are the principal ones for using the
results of off-line training within on-line play schemes. Naturally, there are
variations where additional information is computed off-line to facilitate
and/or expedite the on-line play algorithm. As an example, in MPC, in
addition to a terminal cost approximation, a target tube may need to be
computed off-line in order to guarantee that some state constraints can
be satisfied on-line; see the discussion of MPC in Section 1.6.7. Other
examples of this type will be noted in the context of specific applications.

Finally, let us note that while we have emphasized approximation
in value space with cost function approximation, our discussion applies to
Q-factor approximation, involving functions

Q̃(x, u) ≈ E
{

g(x, u, w) + αJ*
(

f(x, u, w)
)

}

.

The corresponding one-step lookahead scheme has the form

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w)+α min
u′∈U(f(x,u,w))

Q̃
(

f(x, u, w), u′
)

}

; (1.35)

cf. Eq. (1.34). The second term on the right in the above equation repre-
sents the cost function approximation

J̃
(

f(x, u, w)
)

= min
u′∈U(f(x,u,w))

Q̃
(

f(x, u, w), u′
)

.

The use of Q-factors is common in the “model-free” case where a
computer simulator is used to generate samples of w, and corresponding
values of g and f . Then, having obtained Q̃ through off-line training, the
one-step lookahead minimization in Eq. (1.35) must be performed on-line
with the use of the simulator.

1.4.3 Understanding Approximation in Value Space

We will now discuss some of our objectives as we try to get insight into
the process of approximation in value space. Clearly, it makes sense to ap-
proximate J* with a function J̃ that is as close as possible to J*. However,
we should also try to understand quantitatively the relation between J̃
and Jµ̃, the cost function of the resulting one-step lookahead (or multistep
lookahead) policy µ̃. Interesting questions in this regard are the following:
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(a) How is the quality of the lookahead policy µ̃ affected by the quality
of the off-line training? Here we are interested in whether Jµ̃(x) is
smaller than J̃(x) across a range of states x of interest, and by how
much. A fundamental fact in this respect is that Jµ̃ is the result of a
step of Newton’s method that starts at J̃ and is applied to the Bellman
Eq. (1.31). This will be explained through intuitive visulaization in
the next section for the case of linear quadratic problems.

A related insight is that in approximation in value space with multi-
step lookahead schemes, Jµ̃ is the result of a step of Newton’s method
that starts at the function obtained by applying multiple value itera-
tions to J̃ .

(b) How sensitive is the quality of the lookahead policy µ̃ to the quality of
the off-line training? Here we are interested to understand how much
Jµ̃ changes when J̃ changes across a range of interest. For example,
how much should we care about improving J̃ through a longer and
more sophisticated training process?

(c) When is µ̃ stable? The question of stability is very important in many
control applications where the objective is to keep the state near some
reference point or trajectory. Indeed, in such applications, stability is
the dominant concern, and optimality is secondary by comparison. As
noted earlier, we will use an optimization-based definition of stability,
calling the lookahead policy µ̃ stable if Jµ̃(x) < ∞, for all x. An
example is an SSP problem with positive cost per stage, where some
policies may not guarantee that the termination state will be reached;
these policies are viewed as unstable. An example of a context where
there are no stability concerns is discounted problems with bounded
cost per stage; here all policies are stable according to our definition.
While there are several alternative definitions of stability, which may
be better-matched to specific contexts, our definition of stability is
suitable for the very broad class of problems that we are dealing with.

(d) What is the region of stability? Here we are interested to character-
ize the set of terminal cost approximations J̃ that lead to a stable
lookahead policy µ̃.

(e) How does the length of lookahead minimization or the length of the
truncated rollout affect the stability and quality of the multistep looka-
head policy µ̃? While it is generally true that the length of lookahead
has a beneficial effect on quality, it turns out that it also has a ben-
eficial effect on the stability properties of the multistep lookahead
policy, and we are interested in the mechanism by which this occurs.

In what follows we will be keeping in mind these questions. In partic-
ular, in the next section, we will discuss them in the context of the simple
and convenient linear quadratic problem. Our conclusions, however, hold
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within a far more general context with the aid of the abstract DP formal-
ism; see the author’s books [Ber20a] and [Ber22a] for a broader presentation
and analysis, which address these questions in greater detail and generality.

1.5 INFINITE HORIZON LINEAR QUADRATIC PROBLEMS

We will now aim to understand the character of the Bellman equation,
approximation in value space, and the VI and PI algorithms within the
context of an important deterministic nonnegative cost problem. This is
the classical continuous-spaces problem where the system is linear, with no
control constraints, and the cost function is quadratic. While this problem
can be solved analytically, it provides a uniquely insightful context for
understanding visually the Bellman equation and its algorithmic solution,
both exactly and approximately.

In its general form, the problem deals with the case where the system
is

xk+1 = Axk +Buk,

where xk and uk are elements of the Euclidean spaces +n and +m, respec-
tively, A is an n × n matrix, and B is an n × m matrix. It is assumed
that there are no control constraints. The cost per stage is quadratic of
the form

g(x, u) = x′Qx+ u′Ru,

where Q and R are positive definite symmetric matrices of dimensions
n× n and m×m, respectively (all finite-dimensional vectors in this work
are viewed as column vectors, and a prime denotes transposition). The
analysis of this problem is well known and is given with proofs in several
control theory texts, including the author’s DP books [Ber17a], Chapter 3,
and [Ber12], Chapter 4.

In what follows, we will focus only on the one-dimensional version of
the problem, where the system has the form

xk+1 = axk + buk; (1.36)

cf. Example 1.3.1. Here the state xk and the control uk are scalars, and
the coefficients a and b are also scalars, with b %= 0. The cost function is
undiscounted and has the form

∞
∑

k=0

(qx2
k + ru2

k), (1.37)

where q and r are positive scalars. The one-dimensional case allows a
convenient and insightful analysis of the algorithmic issues that are cen-
tral for our purposes. This analysis generalizes to multidimensional linear
quadratic problems and beyond, but requires a more demanding mathe-
matical treatment.
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The Riccati Equation and its Justification

The analytical results for our problem may be obtained by taking the limit
in the results derived in the finite horizon Example 1.3.1, as the horizon
length tends to infinity. In particular, we can show that the optimal cost
function is expected to be quadratic of the form

J*(x) = K∗x2, (1.38)

where the scalar K∗ solves the equation

K = F (K), (1.39)

with F defined by

F (K) =
a2rK

r + b2K
+ q. (1.40)

This is the limiting form of Eq. (1.19).
Moreover, the optimal policy is linear of the form

µ∗(x) = L∗x, (1.41)

where L∗ is the scalar given by

L∗ = −
abK∗

r + b2K∗
. (1.42)

For justification of Eqs. (1.39)-(1.42), we show that J* as given by
Eq. (1.38), satisfies the Bellman equation

J(x) = min
u∈'

{

qx2 + ru2 + J(ax+ bu)
}

, (1.43)

and that µ∗(x), as given by Eqs. (1.41)-(1.42), attains the minimum above
for every x when J = J*. Indeed for any quadratic cost function J(x) =
Kx2 with K ≥ 0, the minimization in Bellman’s equation (1.43) is written
as

min
u∈'

{

qx2 + ru2 +K(ax+ bu)2
}

. (1.44)

Thus it involves minimization of a positive definite quadratic in u and can
be done analytically. By setting to 0 the derivative with respect to u of the
expression in braces in Eq. (1.44), we obtain

0 = 2ru + 2bK(ax+ bu),

so the minimizing control and corresponding policy are given by

µK(x) = LKx, (1.45)
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where

LK = −
abK

r + b2K
. (1.46)

By substituting this control, the minimized expression (1.44) takes the form
(

q + rL2
K +K(a+ bLK)2

)

x2.

After straightforward algebra, using Eq. (1.46) for LK , it can be verified
that this expression is written as F (K)x2, with F given by Eq. (1.40).
Thus when J(x) = Kx2, the Bellman equation (1.43) takes the form

Kx2 = F (K)x2

or equivalently K = F (K) [cf. Eq. (1.39)].
In conclusion, when restricted to quadratic functions J(x) = Kx2

with K ≥ 0, the Bellman equation (1.43) is equivalent to the equation

K = F (K) =
a2rK

r + b2K
+ q. (1.47)

We refer to this equation as the Riccati equation† and to the function F
as the Riccati operator .‡ Moreover, the policy corresponding to K∗, as
per Eqs. (1.45)-(1.46), attains the minimum in Bellman’s equation, and is
given by Eqs. (1.41)-(1.42).

The Riccati equation can be visualized and solved graphically as il-
lustrated in Fig. 1.5.1. As shown in the figure, the quadratic coefficient
K∗ that corresponds to the optimal cost function J* [cf. Eq. (1.38)] is the
unique solution of the Riccati equation K = F (K) within the nonnegative
real line.

† This is an algebraic form of the Riccati differential equation, which was in-

vented in its one-dimensional form by count Jacopo Riccati in the 1700s, and has

played an important role in control theory. It has been studied extensively in its
differential and difference matrix versions; see the book by Lancaster and Rod-

man [LR95], and the paper collection by Bittanti, Laub, and Willems [BLW91],

which also includes a historical account by Bittanti [Bit91] of Riccati’s remarkable
life and accomplishments.

‡ The Riccati operator is a special case of the Bellman operator , denoted by
T , which transforms a function J into the right side of Bellman’s equation:

(TJ)(x) = min
u∈U(x)

Ew

{

g(x, u,w) + αJ
(

f(x, u,w)
)

}

, for all x.

Thus the Bellman operator T transforms a function J of x into another func-

tion TJ also of x. Bellman operators allow a succinct abstract description of
the problem’s data, and are fundamental in the theory of abstract DP (see the

author’s monographs [Ber22a] and [Ber22b]). We may view the Riccati operator

as the restriction of the Bellman operator to the subspace of quadratic functions
of x.
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Figure 1.5.1 Graphical construction of the solutions of the Riccati equation
(1.39)-(1.40) for the linear quadratic problem. The optimal cost function is
J∗(x) = K∗x2, where the scalar K∗ solves the fixed point equation K = F (K),
with F being the function given by

F (K) =
a2rK

r + b2K
+ q.

Note that F is concave and monotonically increasing in the interval (−r/b2,∞)
and “flattens out” as K → ∞, as shown in the figure. The quadratic Riccati
equation K = F (K) also has another solution, denoted by K̄, which is negative
and is thus of no interest.

The Riccati Equation for a Stable Linear Policy

We can also characterize the cost function of a policy µ that is linear of the
form µ(x) = Lx, and is also stable, in the sense that the scalar L satisfies
|a+ bL| < 1, so that the corresponding closed-loop system

xk+1 = (a+ bL)xk

is stable (its state xk converges to 0 as k → ∞). In particular, we can show
that its cost function has the form

Jµ(x) = KLx2,

where KL solves the equation

K = FL(K), (1.48)
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Figure 1.5.2 Illustration of the construction of the cost function of a linear policy
µ(x) = Lx, which is stable, i.e., |a + bL| < 1. The cost function Jµ(x) has the
form

Jµ(x) = KLx
2,

with KL obtained as the unique solution of the linear equation K = FL(K), where

FL(K) = (a + bL)2K + q + rL2,

is the Riccati equation operator corresponding to µ(x) = Lx. If µ is not stable,
i.e.,

|a+ bL| ≥ 1,

we have Jµ(x) = ∞ for all x &= 0, but the equation has K = FL(K) still has a
solution that is of no interest within our context.

with FL defined by

FL(K) = (a+ bL)2K + q + rL2. (1.49)

This equation is called the Riccati equation for the stable policy µ(x) = Lx.
It is illustrated in Fig. 1.5.2, and it is linear, with linear coefficient (a+bL)2

that is strictly less than 1. Hence the line that represents the graph of FL

intersects the 45-degree line at a unique point, which defines the quadratic
cost coefficient KL.

The Riccati equation (1.48)-(1.49) for µ(x) = Lx may be justified by
verifying that it is in fact the Bellman equation for µ,

J(x) = (q + rL2)x2 + J
(

(a+ bL)x
)

,

[cf. Eq. (1.32)], restricted to quadratic functions of the form J(x) = Kx2.
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Figure 1.5.3 Graphical illustration of value iteration for the linear quadratic
problem. It has the form Kk+1 = F (Kk), where F is the Riccati operator,

F (K) =
a2rK

r + b2K
+ q.

The algorithm converges to K∗ starting from any K0 ≥ 0.

We note, however, that Jµ(x) = KLx2 is the solution of the Riccati
equation (1.48)-(1.49) only when µ(x) = Lx is stable. If µ is not stable,
i.e., |a + bL| ≥ 1, then (since q > 0 and r > 0) we have Jµ(x) = ∞ for
all x %= 0. Then, the Riccati equation (1.48)-(1.49) is still defined, but its
solution is negative and is of no interest within our context.

Value Iteration

The VI algorithm for our linear quadratic problem is given by

Jk+1(x) = min
u∈'

{

qx2 + ru2 + Jk(ax+ bu)
}

.

When Jk is quadratic of the form Jk(x) = Kkx2 withKk ≥ 0, it can be seen
that the VI iterate Jk+1 is also quadratic of the form Jk+1(x) = Kk+1x2,
where

Kk+1 = F (Kk),

with F being the Riccati operator of Eq. (1.47). The algorithm is illustrated
in Fig. 1.5.3. As can be seen from the figure, when starting from any
K0 ≥ 0, the algorithm generates a sequence {Kk} of nonnegative scalars
that converges to K∗.
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Figure 1.5.4 Illustration of the interpretation of approximation in value space
with one-step lookahead as a Newton step.

1.5.1 Visualizing Approximation in Value Space - Newton’s
Method

The use of Riccati equations allows insightful visualization of approxi-
mation in value space. This visualization, although specialized to linear
quadratic problems, is consistent with related visualizations for more gen-
eral infinite horizon problems. In particular, in the books [Ber20a] and
[Ber22a], Bellman operators, which define the Bellman equations, are used
in place of Riccati operators, which define the Riccati equations.

In summary, we will aim to show that:

(a) Approximation in value space with one-step lookahead can be viewed
as a Newton step for solving the Bellman equation, and maps the
terminal cost function approximation J̃ to the cost function Jµ̃ of the
one-step lookahead policy; see Fig. 1.5.4.

(b) Approximation in value space with multistep lookahead and trun-
cated rollout can be viewed as a Newton step for solving the Bellman
equation, and maps the result of multiple VI iterations starting with
the terminal cost function approximation J̃ to the cost function Jµ̃
of the multistep lookahead policy; see Fig. 1.5.5.

Our derivation will be given for the one-dimensional linear quadratic prob-
lem, but applies far more generally. The reason is that the Bellman equa-
tion is valid universally in DP, and the corresponding Bellman operator
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Figure 1.5.5 Illustration of the interpretation of approximation in value space
with multistep lookahead and truncated rollout as a Newton step.

has a concavity property that is well-suited for the application of Newton’s
method; see the books [Ber20a] and [Ber22a], where the connection of ap-
proximation in value with Newton’s method was first developed in great
detail.

Let us consider one-step lookahead minimization with any terminal
cost function approximation of the form J̃(x) = Kx2, where K ≥ 0. We
have derived the one-step lookahead policy µK(x) in Eqs. (1.45)-(1.46), by
minimizing the right side of Bellman’s equation when J(x) = Kx2:

min
u∈'

{

qx2 + ru2 +K(ax+ bu)2
}

.

We can break this minimization into a sequence of two minimizations as
follows:

F (K)x2 = min
L∈'

min
u=Lx

{

qx2+ru2+K(ax+bu)2
}

= min
L∈'

{

q+bL+K(a+bL)2
}

x2.

From this equation, it follows that

F (K) = min
L∈'

FL(K), (1.50)

where the function FL(K) is defined by

FL(K) = (a+ bL)2K + q + bL. (1.51)

Figure 1.5.6 illustrates the relation (1.50)-(1.51), and shows how the
graph of the Riccati operator F can be obtained as the lower envelope of
the linear operators FL, as L ranges over the real numbers.
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Figure 1.5.6 Illustration of how the graph of the Riccati operator F can be
obtained as the lower envelope of the linear operators

FL(K) = (a + bL)2K + q + bL,

as L ranges over the real numbers. We have

F (K) = min
L∈%

FL(K);

cf. Eq. (1.50). Moreover, for any fixed K̃, the scalar L̃ that attains the minimum
is given by

L̃ = −
abK̃

r + b2K̃

[cf. Eq. (1.46)], and is such that the line corresponding to the graph of FL̃ is

tangent to the graph of F at K̃, as shown in the figure.

One-Step Lookahead Minimization and Newton’s Method

Let us now fix the terminal cost function approximation to some K̃x2,
where K̃ ≥ 0, and consider the corresponding one-step lookahead policy,
which we will denote by µ̃. Figure 1.5.7 illustrates the corresponding linear
function FL̃, and shows that its graph is a tangent line to the graph of F
at the point K [cf. Fig. 1.5.6 and Eq. (1.51)].

Thus the function FL̃ can be viewed as a linearization of F at the point
K, and defines a linearized problem: to find a solution of the equation

K = FL̃(K) = q + bL̃2 +K(a+ bL̃)2.
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Figure 1.5.7 Illustration of approximation in value space with one-step lookahead
for the linear quadratic problem. Given a terminal cost approximation J̃ = K̃x2,
we compute the corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK̃

r + b2K̃
,

and the corresponding cost function KL̃x
2, using the Newton step shown.

The important point now is that the solution of this equation, denoted
KL̃, is the same as the one obtained from a single iteration of Newton’s
method for solving the Riccati equation, starting from the point K̃. This is
illustrated in Fig. 1.5.7, and is also justified analytically in Exercise 1.6.

To explain this connection, we note that the classical form of Newton’s
method for solving a fixed point problem of the form y = T (y), where y
is an n-dimensional vector, operates as follows: At the current iterate yk,
we linearize T and find the solution yk+1 of the corresponding linear fixed
point problem. Assuming T is differentiable, the linearization is obtained
by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n×n Jacobian matrix of T evaluated at the vector
yk, as indicated in Fig. 1.5.7.

The most commonly given convergence rate property of Newton’s
method is quadratic convergence. It states that near the solution y∗, we
have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,
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Figure 1.5.8 Illustration the region of stability, i.e., the set of K ≥ 0 such that
the one-step lookahead policy µK is stable. This is also the set of initial conditions
for which Newton’s method converges to K∗ asymptotically.

where ‖ · ‖ is the Euclidean norm, and holds assuming the Jacobian ma-
trix exists and is Lipschitz continuous (see [Ber16], Section 1.4). There
are extensions of Newton’s method that are based on solving a linearized
system at the current iterate, but relax the differentiability requirement to
piecewise differentiability, and/or component concavity, while maintaining
the either a quadratic or a similarly fast superlinear convergence property
of the method; see the monograph [Ber22a] (Appendix A) and the paper
[Ber22c], which also provide a convergence analysis.

Note also that if the one-step lookahead policy is stable, i.e.,

|a+ bL̃| < 1,

then KL̃ is the quadratic cost coefficient of its cost function, i.e.,

Jµ̃(x) = KL̃x
2.

The reason is that Jµ̃ solves the Bellman equation for policy µ̃. On the
other hand, if µ̃ is not stable, then in view of the positive definite quadratic
cost per stage, we have Jµ̃(x) = ∞ for all x %= 0.
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Figure 1.5.9 Illustration of approximation in value space with two-step looka-
head for the linear quadratic problem. Starting with a terminal cost approxima-
tion J̃ = K̃x2, we obtain K1 using a single value iteration. We then compute the
corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK1

r + b2K1

and the corresponding cost function KL̃x
2, using the Newton step shown. The

figure shows that for any K ≥ 0, the corresponding "-step lookahead policy will
be stable for all " larger than some threshold.

Multistep Lookahead

In the case of "-step lookahead minimization, a similar Newton step inter-
pretation is possible. Instead of linearizing F at K̃, we linearize at

K!−1 = F !−1(K̃),

i.e., the result of " − 1 successive applications of F starting with K̃. Each
application of F corresponds to a value iteration. Thus the effective starting
point for the Newton step is F !−1(K̃). Figure 1.5.9 depicts the case " = 2.

Region of Stability

It is also useful to define the region of stability as the set of K ≥ 0 such
that

|a+ bLK | < 1,
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where LK is the linear coefficient of the one-step lookahead policy corre-
sponding to K; cf. Eq. (1.46). The region of stability may also be viewed
as the region of convergence of Newton’s method . It is the set of start-
ing points K for which Newton’s method, applied to the Riccati equation
F = F (K), converges to K∗ asymptotically, and with a quadratic conver-
gence rate (asymptotically as K → K∗). Note that for our one-dimensional
problem, the region of stability is the interval (KS ,∞) that is characterized
by the single point KS where F has derivative equal to 1; see Fig. 1.5.8.

For multidimensional problems, the region of stability may not be
characterized as easily. Still, however, it is generally true that the region
of stability is enlarged as the length of the lookahead increases .

It is interesting to note that as the length of lookahead increases, the
effective starting point F !−1(K̃) is pushed more and more within the region
of stability. In particular, for any given K ≥ 0, the corresponding "-step
lookahead policy will be stable for all " larger than some threshold ; see Fig.
1.5.9.

We summarize the Riccati equation formulas and the relation between
linear policies of the form µ(x) = Lx and their quadratic cost functions in
the following table.

Riccati Equation Formulas for One-Dimensional Problems

Riccati equation for minimization [cf. Eqs. (1.39) and (1.40)]

K = F (K), F (K) =
a2rK

r + b2K
+ q.

Riccati equation for a linear policy µ(x) = Lx

K = FL(K), FL(K) = (a+ bL)2K + q + rL2.

Cost coefficient KL of a stable linear policy µ(x) = Lx

KL =
q + rL2

1− (a+ bL)2
.

Linear coefficient LK of the one-step lookahead linear policy
µK for K in the region of stability [cf. Eq. (1.46)]

LK = argmin
L

FL(K) = −
abK

r + b2K
.
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Quadratic cost coefficient K̃ of a one-step lookahead linear
policy µK for K in the region of stability

Obtained as the solution of the linearized Riccati equation K̃ = FLK
(K̃),

or equivalently by a Newton iteration starting from K.

1.5.2 Local and Global Error Bounds for Approximation
in Value Space

In approximation in value space, an important analytical issue is to quan-
tify the level of suboptimality of the one-step or multistep lookahead policy
obtained. In this section, we focus on a one-step lookahead scheme that
produces a policy µ̃ where J̃ is the terminal quadratic cost function ap-
proximation. We will try to estimate the difference Jµ̃ − J*, where Jµ̃ is
the cost function of µ̃ and J* is the optimal cost function, assuming that J̃
lies within the region of stability, so that µ̃ is well-defined as a stable policy
and Jµ̃ is finite-valued. The analysis easily extends to "-step lookahead by
viewing it as one-step lookahead with a terminal cost function T !−1J̃ , i.e.,
J̃ transformed by "− 1 value iterations.

There is a classical one-step lookahead error bound for the case of a
discounted problem with finite state space X , which has the form

‖Jµ̃ − J*‖ ≤
2α

1− α
‖J̃ − J*‖; (1.52)

where ‖ · ‖ denotes the maximum norm,

‖Jµ̃ − J*‖ = max
x∈X

∣

∣Jµ̃(x) − J*(x)
∣

∣, ‖J̃ − J*‖ = max
x∈X

∣

∣J̃(x) − J*(x)
∣

∣;

see e.g., [Ber19a], Prop. 5.1.1. This bound also applies more generally, to
the case where the Bellman equation involves a contraction mapping over a
subset of functions; see the RL book [Ber19a], Section 5.9.1, or the abstract
DP book [Ber22b], Section 2.2.

Unfortunately, however, this error bound is very conservative, and
does not reflect practical reality. The reason is that this is a global error
bound, i.e., it holds for all J̃ , even the worst possible. In practice, J̃ is
often chosen sufficiently close to J*, so that the error Jµ̃ − J* behaves
consistently with the superlinear convergence rate of the Newton step that
starts at J̃ . In other words, for J̃ relatively close to J*, we have the local
estimate

‖Jµ̃ − J*‖ = o
(

‖J̃ − J*‖
)

. (1.53)

In practical terms, there is often a huge difference, both quantitative and
qualitative, between the error bounds (1.52) and (1.53).
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For an illustration, consider the one-dimensional linear quadratic prob-
lem, involving the system

xk+1 = axk + buk,

and the cost per stage
qx2

k + ru2
k.

We will consider one-step lookahead, and a quadratic cost function approx-
imation

J̃(x) = K̃x2,

with K̃ within the region of stability, which is some interval of the form
(S,∞). The Riccati operator is

F (K) =
a2rK

r + b2K
+ q,

and the one-step lookahead policy µ̃ has cost function

Jµ̃(x) = Kµ̃x2,

where Kµ̃ is obtained by applying one step of Newton’s method for solving
the Riccati equation K = F (K), starting at K = K̃.

Let S be the boundary of the region of stability, i.e., the value of K
at which the derivative of F with respect to K is equal to 1:

∂F (K)

∂K

∣

∣

∣

K=S
= 1.

Then the Riccati operator F is a contraction within any interval [S,∞) with
S > S, with a contraction modulus α that depends on S. In particular, α
is given by

α =
∂F (K)

∂K

∣

∣

∣

K=S

and satisfies 0 < α < 1 because S > S, and the derivative of F is positive
and monotonically decreasing to 0 as K increases to ∞.

The error bound (1.52) can be rederived for the case of quadratic
functions and can be rewritten in terms of quadratic cost coefficients as

Kµ̃ −K∗ ≤
2α

1− α
|K̃ −K∗|, (1.54)

whereKµ̃ is the quadratic cost coefficient of the lookahead policy µ̃ [and also
the result of a Newton step for solving the fixed point Riccati equation F =
F (K) starting from K̃]. A plot of (Kµ̃−K∗) as a function of K̃, compared
with the bound on the right side of this equation is shown in Fig. 1.5.10. It
can be seen that (Kµ̃ −K∗) exhibits the qualitative behavior of Newton’s
method, which is very different than the bound (1.54). An interesting fact
is that the bound (1.54) depends on α, which in turn depends on how close
K̃ is to the boundary S of the region of stability, while the local behavior
of Newton’s method is independent of S.
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Figure 1.5.10 Illustration of the global error bound (1.54) for the one-step looka-
head error Kµ̃ − K∗ as a function of K̃, compared with the true error obtained
by one step of Newton’s method starting from K̃.

The problem data are a = 2, b = 2, q = 1, and r = 5. With these numerical
values, we have K∗ = 5 and the region of stability is (S,∞) with S = 1.25.
The modulus of contraction α used in the figure is computed at S = S + 0.5.
Depending on the chosen value of S, α can be arbitrarily close to 1, but decreases
as S increases. Note that the error Kµ̃ − K∗ is much smaller when K̃ is larger
than K∗ than when it is lower, because the slope of F diminishes as K increases.
This is not reflected by the global error bound (1.54).

1.5.3 Rollout and Policy Iteration

The rollout algorithm starts from some linear stable base policy µ, and
obtains the rollout policy µ̃ using a policy improvement operation, which by
definition, yields the one-step lookahead policy that corresponds to terminal
cost approximation Jµ. Figure 1.5.11 illustrates the rollout algorithm. It
can be seen from the figure that the rollout policy is in fact an improved
policy, in the sense that Jµ̃(x) ≤ Jµ(x) for all x. Among others, this implies
that the rollout policy is stable.

Since the rollout policy is a one-step lookahead policy, it can also be
described using the formulas that we developed earlier in this section. In
particular, let the base policy have the form

µ0(x) = L0x,
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Figure 1.5.11 Illustration of the rollout algorithm for the linear quadratic prob-
lem. Starting from a linear stable base policy µ, it generates a stable rollout
policy µ̃. The quadratic cost coefficient of µ̃ is obtained from the quadratic cost
coefficient of µ with a Newton step for solving the Riccati equation.

where L0 is a scalar. We require that the base policy must be stable, i.e.,
|a+ bL0| < 1. From our earlier calculations, we have that the cost function
of µ0 is

Jµ0(x) = K0x2, (1.55)

where

K0 =
q + rL2

0

1− (a+ bL0)2
. (1.56)

Moreover, the rollout policy µ1 has the form µ1(x) = L1x, where

L1 = −
abK0

r + b2K0
; (1.57)

cf. Eqs. (1.45)-(1.46).
The PI algorithm is simply the repeated application of nontruncated

rollout, and generates a sequence of stable linear policies {µk}. By repli-
cating our earlier calculations, we see that the policies have the form

µk(x) = Lkx, k = 0, 1, . . . ,

where Lk is generated by the iteration

Lk+1 = −
abKk

r + b2Kk
,
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Figure 1.5.12 Illustration of truncated rollout with a stable base policy µ(x) =
Lx and terminal cost approximation K̃ for the linear quadratic problem. In this
figure, we use one-step lookahead minimization and the number of rollout steps
is m = 4.

with Kk given by

Kk =
q + rL2

k

1− (a+ bLk)2
,

[cf. Eqs. (1.56)-(1.57)].
The corresponding cost function sequence has the form

Jµk(x) = Kkx2;

cf. Eq. (1.55). Part of the classical linear quadratic theory is that Jµk

converges to the optimal cost function J*, while the generated sequence of
linear policies {µk}, where µk(x) = Lkx, converges to the optimal policy,
assuming that the initial policy is linear and stable. The convergence rate of
the sequence {Kk} is quadratic, as indicated earlier. This result was proved
by Kleinman [Kle68] for the continuous-time multidimensional version of
the linear quadratic problem, and it was extended later to more general
problems; see the references given in the books [Ber20a] and [Ber22a].

Truncated Rollout

An m-step truncated rollout scheme with a stable linear base policy µ(x) =
Lx, one-step lookahead minimization, and terminal cost approximation
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J̃(x) = K̃x2 is geometrically interpreted as in Fig. 1.5.12. The truncated
rollout policy µ̃ is obtained by starting at K̃, executing m VI steps using
µ, followed by a Newton step for solving the Riccati equation.

We mentioned some interesting performance issues in our discussion
of truncated rollout in Section 1.1. In particular we noted that:

(a) Lookahead by rollout may be an economic substitute for lookahead by
minimization, in the sense that it may achieve a similar performance
for the truncated rollout policy at significantly reduced computational
cost.

(b) Lookahead by rollout with a stable policy has a beneficial effect on
the stability properties of the lookahead policy.

These statements are difficult to establish analytically in some generality.
However, they can be intuitively understood in the context with our one-
dimensional linear quadratic problem, using geometrical constructions like
the one of Fig. 1.5.12. They are also consistent with the results of compu-
tational experimentation. We refer to the monograph [Ber22a] for further
discussion.

Newton Step Interpretation of Approximation in Value Space
in General

The interpretation of approximation in value space as a Newton step, and
related notions of stability and error bounds that we have discussed in
this section admit a broad generalization to the infinite horizon problems
that we consider in these notes and beyond. The key fact in this respect is
that our DP problem formulation allows arbitrary state and control spaces,
both discrete and continuous, and can be extended even further to general
abstract models with a DP structure; see the abstract DP book [Ber22b].

Within this context, the Riccati operator is replaced by an abstract
Bellman operator, and valuable insight can be obtained from graphical
interpretations of the Bellman equation, the VI and PI algorithms, one-
step and multistep approximation in value space, and the region of stability;
see the book [Ber22a] for an extensive discussion, and Section 1.6.7 for an
example in the context of MPC. Naturally, the graphical interpretations
and visualizations are limited to one dimension. However, the visualizations
provide insight and motivate conjectures and mathematical analysis, some
of which is given in the book [Ber20a].

1.6 EXAMPLES, REFORMULATIONS, AND SIMPLIFICATIONS

In this section we provide a few examples that illustrate problem formula-
tion techniques, exact and approximate solution methods, and adaptations
of the basic DP algorithm to various contexts. We refer to DP textbooks
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for extensive additional discussions of modeling and problem formulation
techniques (see e.g., the many examples that can be found in the author’s
DP and RL textbooks [Ber12], [Ber17a], [Ber19a], [Ber20a], as well as in
the neuro-dynamic programming book [BeT96]).

An important fact to keep in mind is that there are many ways to
model a given practical problem in terms of DP, and that there is no unique
choice for state and control variables. This will be brought out by the
examples in this section, and is facilitated by the generality of DP: its basic
algorithmic principles apply for arbitrary state, control, and disturbance
spaces, and system and cost functions.

1.6.1 A Few Words About Modeling

In practice, optimization problems seldom come neatly packaged as mathe-
matical problems that can be solved by DP/RL or some other methodology.
Generally, a practical problem is a prime candidate for a DP formulation if
it involves multiple sequential decisions, which are separated by feedback,
i.e., by observations that can be used to enhance the effectiveness of future
decisions.

However, there are other types of problems that can be fruitfully
formulated by DP. These include the entire class of deterministic problems,
where there is no information to be collected: all the information needed
in a deterministic problem is either known or can be predicted from the
problem data that is available at time 0 (see, e.g., the traveling salesman
Example 1.2.3). Moreover, for deterministic problems there is a plethora
of non-DP methods, such as linear, nonlinear, and integer programming,
random and nonrandom search, discrete optimization heuristics, etc. Still,
however, the use of RL methods for deterministic optimization is a major
subject in these notes, which will be discussed in Chapter 2. We will argue
there that rollout and its variations, when suitably applied, can improve
substantially on the performance of other heuristic or suboptimal methods,
however derived. Moreover, we will see that often for discrete optimization
problems the DP sequential structure is introduced artificially, with the
aim to facilitate the use of approximate DP/RL methods.

There are also problems that fit quite well into the sequential struc-
ture of DP, but can be fruitfully addressed by RL methods that do not
have a fundamental connection with DP. An important case in point is
policy gradient and policy search methods, which will not be considered
in these notes. Here the policy of the problem is parametrized by a set
of parameters, so that the cost of the policy becomes a function of these
parameters, and can be optimized by non-DP methods such as gradient
or random search-based suboptimal approaches. This generally relates to
the approximation in policy space approach, which we have discussed in
Section 1.3.3 and we will discuss further in Section 3.4; see also Section 5.7
of the RL book [Ber19a].
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As a guide for formulating optimal control problems in a manner that
is suitable for a DP solution the following two-stage process is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is relevant for future optimization,
i.e., the information that is known to the controller at time k and
can be used with advantage in choosing uk. In effect, at time k the
state xk should separate the past from the future, in the sense that
anything that has happened in the past (states, controls, and dis-
turbances from stages prior to stage k) is irrelevant to the choices
of future controls as long we know xk. Sometimes this is described
by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

The control and state selection may also have to be refined or special-
ized in order to enhance the application of known results and algorithms.
This includes the choice of a finite or an infinite horizon, and the availability
of good base policies or heuristics in the context of rollout.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It may thus be worth con-
sidering alternative ways to choose the states; for example try to use states
that minimize the dimensionality of the state space. For a trivial example
that illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk)
also qualifies as state, since (xk−1, xk) contains all the information con-
tained within xk that can be useful to the controller when selecting uk.
However, using (xk−1, xk) in place of xk, gains nothing in terms of optimal
cost while complicating the DP algorithm that would have to be executed
over a larger space.

The concept of a sufficient statistic, which refers to a quantity that
summarizes all the essential content of the information available to the
controller, may be useful in providing alternative descriptions of the state
space. An important paradigm is problems involving partial or imperfect
state information, where xk evolves over time but is not fully accessible
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for measurement (for example, xk may be the position/velocity vector of
a moving vehicle, but we may obtain measurements of just the position).
If Ik is the collection of all measurements and controls up to time k (the
information vector), it is correct to use Ik as state in a reformulated DP
problem that involves perfect state observation. However, a better alter-
native may be to use as state the conditional probability distribution

Pk(xk | Ik),

called belief state, which (as it turns out) subsumes all the information
that is useful for the purposes of choosing a control. On the other hand,
the belief state Pk(xk | Ik) is an infinite-dimensional object, whereas Ik
may be finite dimensional, so the best choice may be problem-dependent.
Still, in either case, the stochastic DP algorithm applies, with the sufficient
statistic [whether Ik or Pk(xk | Ik)] playing the role of the state.

A Few Words about the Choice of an RL Method

An attractive aspect of the current RL methodology is that it can address a
very broad range of challenging problems, deterministic as well as stochas-
tic, discrete as well as continuous, etc. However, in the practical application
of RL methods one has to contend with approximations and limited theo-
retical guarantees. In particular, several of the RL methods that have been
successful in practice have less than solid performance properties, and may
not work on a given problem, even one of the type for which they are
designed.

This is a reflection of the state of the art in the field: there are
no methods that are guaranteed to work for all or even most problems .
However, there are enough methods to try on a given problem with a
reasonable chance of success in the end. For this reason, it is important to
develop insight into the inner workings of each type of method, as a means
of selecting the proper type of methods to try on a given problem.†

A related consideration is the context within which a particular me-
thod is applied. In particular is it a single problem that is being addressed,
such as chess that has fixed rules and a fixed initial condition, or is it a
family of related problems that must be periodically be solved with small
variations in its data or its initial conditions? Moreover, are the problem
data fixed or may they change over time as the system is being controlled?
Generally, RL methods that require extensive tuning of parameters, includ-
ing ones that involve approximation in policy space and the use of neural

† Aside from insight and intuition, it is also important to have a foundational
understanding of the analytical principles of the field and of the mechanisms

underlying the central computational methods. The role of the theory in this

respect is to structure mathematically the methodology, guide the art, delineate
the sound from the flawed ideas.
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networks, may be well suited for a stable problem environment and a single
problem solution. However, they not well suited for problems with a vari-
able environment and/or real-time changes of model parameters. For such
problems, RL methods based on approximation in value space and on-line
play, possibly involving on-line replanning, are much better suited.

Note also that even when on-line replanning is not needed, on-line
play may improve substantially the performance of off-line trained policies,
so we may wish to use it in conjunction with off-line training. This is
due to the Newton step that is implicit in one-step or multistep lookahead
minimization, cf. our discussion of the AlphaZero and TD-Gammon archi-
tectures in Section 1.1. Of course the computational requirements of an
on-line play method may be substantial and have to be taken into account
when assessing its suitability for a particular application. In this connec-
tion, deterministic problems are better suited than stochastic problems for
on-line play. Moreover, methods that are well-suited for parallel compu-
tation, and/or involve the use of certainty equivalence approximations are
generally better suited for a stochastic control environement.

1.6.2 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all wk and uk ∈ Uk(t).

Thus the control process essentially terminates upon reaching t, even if this
happens before the end of the horizon. One may reach t by choice if a special
stopping decision is available, or by means of a random transition from
another state. Problems involving games, such as chess, Go, backgammon,
and others involve a termination state (the end of the game) and have
played an important role in the development of the RL methodology.†

Generally, when it is known that an optimal policy will reach the ter-
mination state with certainty within at most some given number of stages
N , the DP problem can be formulated as an N -stage horizon problem, with
a very large termination cost for the nontermination states.‡ The reason
is that even if the termination state t is reached at a time k < N , we can

† Games often involve two players/decision makers, in which case they can
be addressed by suitably modified exact or approximate DP algorithms. The

DP algorithm that we have discussed in this chapter involves a single decision

maker, but can be used to find an optimal policy for one player against a fixed
and known policy of the other player.

‡ When an upper bound on the number of stages to termination is not known,

the problem may be formulated as an infinite horizon problem of the stochastic
shortest path problem.
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Figure 1.6.1 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

extend our stay at t for an additional N − k stages at no additional cost,
so the optimal policy will still be optimal, since it will not incur the large
termination cost at the end of the horizon.

Example 1.6.1 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0, . . . , N − 1, and a garage
following space N − 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last
parking space N − 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial termination state t that corre-
sponds to having parked; see Fig. 1.6.1. At each stage k = 1, . . . , N − 1, we
have three states: the artificial termination state t, and the two states F and
F , corresponding to space k being free or taken, respectively. At stage 0, we
have only two states, F and F , and at the final stage there is only one state,
the termination state t. The decision/control is to park or continue at state F
[there is no choice at states F and state t]. From location k, the termination
state t is reached at cost c(k) when a parking decision is made (assuming
location k is free). Otherwise, the driver continues to the next state at no
cost. At stage N , the driver must park at cost C.

Let us now derive the form of the DP algorithm, denoting:

J∗
k (F ): The optimal cost-to-go upon arrival at a space k that is free.

J∗
k (F ): The optimal cost-to-go upon arrival at a space k that is taken.

J∗
k (t): The cost-to-go of the “parked”/termination state t.
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The DP algorithm for k = 0, . . . , N − 1 takes the form

J∗
k (F ) =

{

min
[

c(k), p(k + 1)J∗
k+1(F ) +

(

1− p(k + 1)
)

J∗
k+1(F )

]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J∗
k (F ) =

{

p(k + 1)J∗
k+1(F ) +

(

1− p(k + 1)
)

J∗
k+1(F ) if k < N − 1,

C if k = N − 1,

for the states other than the termination state t, while for t we have

J∗
k (t) = 0, k = 1, . . . , N.

The minimization above corresponds to the two choices (park or not park) at
the states F that correspond to a free parking space.

While this algorithm is easily executed, it can be written in a simpler
and equivalent form. This can be done by introducing the scalars

Ĵk = p(k)J∗
k (F ) +

(

1− p(k)
)

J∗
k (F ), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status. Indeed, from the preceding DP
algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy:

Park at space k = 0, . . . , N − 1 if it is free and we have c(k) ≤ Ĵk+1.

This is an example of DP simplification that occurs when the state involves
components that are not affected by the choice of control, and will be ad-
dressed in the next section.

Finite to Infinite Horizon Reformulation

There is a conceptually important reformulation that transforms a finite
horizon problem, possibly involving a nonstationary system and cost per
stage, to an equivalent infinite horizon problem. The reformulation is based
on introducing an expanded state space, which is the union of the state
spaces of the finite horizon problem plus an artificial cost-free termina-
tion state that the system moves into at the end of the horizon. This
reformulation is of great conceptual value, as it provides a mechanism to
bring to bear ideas that can be most conveniently understood within an
infinite horizon context. For example, it helps to understand the synergy
of off-line training and on-line play based on Newton’s method, and the
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Figure 1.6.2 Illustration of the infinite horizon equivalent of a finite horizon
problem. The state space is X =

(

∪N
k=0Xk

)

∪ {t}, and the control space is

U = ∪N−1
k=0 Uk. Transitions from states xk ∈ Xk lead to states in xk+1 ∈ Xk+1

according to the system equation xk+1 = fk(xk , uk, wk), and they are stochas-
tic when they involve the random disturbance wk. The transition from states
xN ∈ XN lead deterministically to the termination state at cost gN (xN ). The
termination state t is cost-free and absorbing.

The infinite horizon optimal cost J∗(xk) and optimal policy µ∗(xk) at state
xk ∈ Xk of the infinite horizon problem are equal to optimal cost-to-go J∗

k (xk)
and optimal policy µ∗

k(xk) of the finite horizon problem.

related insights that explain the good performance of rollout algorithms in
practice.

To define the reformulation, let us consider theN -stage horizon stochas-
tic problem of Section 1.3.1, whose system has the form

xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1, (1.58)

and let us denote by Xk, k = 0, . . . , N , and Uk, k = 0, . . . , N − 1, the
corresponding state spaces and control spaces, respectively. We introduce
an artificial termination state t, and we consider an infinite horizon problem
with state and control spaces X and U given by

X =
(

∪N
k=0Xk

)

∪ {t}, U = ∪N−1
k=0 Uk; (1.59)
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see Fig. 1.6.2.
The system equation and the control constraints of this problem are

also reformulated so that states in Xk, k = 0, . . . , N − 1, are mapped to
states in Xk+1, according to Eq. (1.58), while states xN ∈ XN are mapped
to the termination state t at cost gN (xN ). Upon reaching t, the state stays
at t at no cost. Thus the policies of the infinite horizon problem map states
xk ∈ Xk to controls in Uk(xk) ⊂ Uk, and consist of functions µk(xk) that
are policies of the finite horizon problem. Moreover, the Bellman equation
for the infinite horizon problem is identical to the DP algorithm for the
finite horizon problem.

It can be seen that the optimal cost and optimal control, J*(xk) and
µ∗(xk), at a state xk ∈ Xk in the infinite horizon problem are equal to the
optimal cost-to-go J∗

k (xk) and optimal control µ∗
k(xk) of the original finite

horizon problem, respectively; cf. Fig. 1.6.2. Moreover approximation in
value space and rollout in the finite horizon problem translate to infinite
horizon counterparts, and can be understood as Newton steps for solving
the Bellman equation of the infinite horizon problem (or equivalently the
DP algorithm of the finite horizon problem).

In summary, finite horizon problems can be viewed as infinite hori-
zon problems with a special structure that involves a termination state t,
and the state and control spaces of Eq. (1.59), as illustrated in Fig. 1.6.2.
The Bellman equation of the infinite horizon problem coincides with the
DP algorithm of the finite horizon problem. The PI algorithm for the in-
finite horizon problem can be translated directly to a PI algorithm for the
finite horizon problem, involving repeated policy evaluations and policy
improvements. Finally, the Newton step interpretations for approximation
in value space and rollout schemes for the infinite horizon problem have
straightforward analogs for finite horizon problems, and explain the power-
ful cost improvement mechanism that underlies the rollout algorithm and
its variations.

1.6.3 State Augmentation, Time Delays, Forecasts, and
Uncontrollable State Components

In practice, we are often faced with situations where some of the assump-
tions of our stochastic optimal control problem formulation are violated.
For example, the disturbances may involve a complex probabilistic descrip-
tion that may create correlations that extend across stages, or the system
equation may include dependences on controls applied in earlier stages,
which affect the state with some delay.

Generally, in such cases the problem can be reformulated into our
DP problem format through a technique, which is called state augmentation
because it typically involves the enlargement of the state space. The general
intuitive guideline in state augmentation is to include in the enlarged state
at time k all the information that is known to the controller at time k and
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can be used with advantage in selecting uk. State augmentation allows the
treatment of time delays in the effects of control on future states, correlated
disturbances, forecasts of probability distributions of future disturbances,
and many other complications. We note, however, that state augmentation
often comes at a price: the reformulated problem may have a very complex
state space. We provide some examples.

Time Delays

In some applications the system state xk+1 depends not only on the pre-
ceding state xk and control uk, but also on earlier states and controls. Such
situations can be handled by expanding the state to include an appropriate
number of earlier states and controls.

As an example, assume that there is at most a single stage delay in
the state and control; i.e., the system equation has the form

xk+1 = fk(xk, xk−1, uk, uk−1, wk), k = 1, . . . , N − 1, (1.60)

x1 = f0(x0, u0, w0).

If we introduce additional state variables yk and sk, and we make the
identifications yk = xk−1, zk = uk−1, the system equation (1.60) yields





xk+1

yk+1

zk+1



 =





fk(xk, yk, uk, zk, wk)
xk

uk



 . (1.61)

By defining x̃k = (xk, yk, zk) as the new state, we have

x̃k+1 = f̃k(x̃k, uk, wk),

where the system function f̃k is defined from Eq. (1.61).
By using the preceding equation as the system equation and by ex-

pressing the cost function in terms of the new state, the problem is reduced
to a problem without time delays. Naturally, the control uk should now
depend on the new state x̃k, or equivalently a policy should consist of func-
tions µk of the current state xk, as well as the preceding state xk−1 and
the preceding control uk−1.

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

J*
N (xN ) = gN (xN ),

J*
N−1(xN−1, xN−2, uN−2)

= min
uN−1∈UN−1(xN−1)

EwN−1

{

gN−1(xN−1, uN−1, wN−1)

+ J*
N

(

fN−1(xN−1, xN−2, uN−1, uN−2, wN−1)
)

}

,
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J*
k (xk, xk−1, uk−1) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+ J*
k+1

(

fk(xk, xk−1, uk, uk−1, wk), xk, uk

)

}

, k = 1, . . . , N − 2,

J*
0 (x0) = min

u0∈U0(x0)
Ew0

{

g0(x0, u0, w0) + J*
1

(

f0(x0, u0, w0), x0, u0
)

}

.

Similar reformulations are possible when time delays appear in the
cost or the control constraints; for example, in the case where the cost has
the form

E

{

gN(xN , xN−1) + g0(x0, u0, w0) +
N−1
∑

k=1

gk(xk, xk−1, uk, wk)

}

.

The extreme case of time delays in the cost arises in the nonadditive form

E
{

gN (xN , xN−1, . . . , x0, uN−1, . . . , u0, wN−1, . . . , w0)
}

.

Then, the problem can be reduced to the standard problem format, by
using as augmented state

x̃k =
(

xk, xk−1, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0
)

and E
{

gN(x̃N )
}

as reformulated cost. Policies consist of functions µk of
the present and past states xk, . . . , x0, the past controls uk−1, . . . , u0, and
the past disturbances wk−1, . . . , w0. Naturally, we must assume that the
past disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller, which will
be discussed in the next section.

Forecasts

Consider a situation where at time k the controller has access to a forecast
yk that results in a reassessment of the probability distribution of the sub-
sequent disturbance wk and, possibly, future disturbances. For example, yk
may be an exact prediction of wk or an exact prediction that the probability
distribution of wk is a specific one out of a finite collection of distributions.
Forecasts of interest in practice are, for example, probabilistic predictions
on the state of the weather, the interest rate for money, and the demand for
inventory. Generally, forecasts can be handled by introducing additional
state variables corresponding to the information that the forecasts provide.
We will illustrate the process with a simple example.

Assume that at the beginning of each stage k, the controller receives
an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
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distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by

(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state and disturbance are

x̃k = (xk, yk), w̃k = (wk, ξk).

The probability distribution of w̃k is determined by the distributions Pi

and the probabilities pi, and depends explicitly on x̃k (via yk) but not on
the prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN ),

J*
k (xk, yk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+
m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
)
∣

∣ yk

}

,

(1.62)
where yk may take the values 1, . . . ,m, and the expectation over wk is
taken with respect to the distribution Pyk .

Note that the preceding formulation admits several extensions. One
example is the case where forecasts can be influenced by the control action
(e.g., pay extra for a more accurate forecast), and may involve several
future disturbances. However, the price for these extensions is increased
complexity of the corresponding DP algorithm.
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Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state.

As an example, let the state of the system be a composite (xk, yk) of
two components xk and yk. The evolution of the main component, xk, is
affected by the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),

where the distribution Pk(wk | xk, yk, uk) is given. The evolution of the
other component, yk, is governed by a given conditional distribution Pk(yk |
xk) and cannot be affected by the control, except indirectly through xk.
One is tempted to view yk as a disturbance, but there is a difference: yk is
observed by the controller before applying uk, while wk occurs after uk is
applied, and indeed wk may probabilistically depend on uk.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” (see also the parking Ex-
ample 1.6.1). In particular, let J*

k (xk, yk) denote the optimal cost-to-go at
stage k and state (xk, yk), and define

Ĵk(xk) = Eyk

{

J*
k (xk, yk) | xk

}

.

Note that the preceding expression can be interpreted as an “average cost-
to-go” at xk (averaged over the values of the uncontrollable component yk).
Then, similar to the parking Example 1.6.1, a DP algorithm that generates
Ĵk(xk) can be obtained, and has the following form:

Ĵk(xk) = Eyk

{

min
uk∈Uk(xk,yk)

Ewk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
) ∣

∣ xk, yk, uk

}∣

∣

∣
xk

}

.

(1.63)
This is a consequence of the calculation

Ĵk(xk) = Eyk

{

J∗
k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J∗
k+1(xk+1, yk+1)

∣

∣ xk, yk, uk

} ∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J∗
k+1(xk+1, yk+1)

∣

∣ xk+1

} ∣

∣ xk, yk, uk

}

∣

∣ xk

}

.
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Note that the minimization in the right-hand side of the preceding
equation must still be performed for all values of the full state (xk, yk) in
order to yield an optimal control law as a function of (xk, yk). Nonetheless,
the equivalent DP algorithm (1.63) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ĵk(xk) than to approximate J*

k (xk, yk); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the incor-
poration of forecasts, as described earlier. Then, the forecast yk represents
an uncontrolled state component, so that the DP algorithm can be simpli-
fied as in Eq. (1.63). In particular, assume that the forecast yk can take
values i = 1, . . . ,m with probability pi. Then, by defining

Ĵk(xk) =
m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and ĴN (xN ) = gN (xN ), we have, using Eq. (1.62),

Ĵk(xk) =
m
∑

i=1

pi min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
) ∣

∣ yk = i
}

,

which is executed over the space of xk rather than xk and yk. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.62).

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.63). Here is an example of this type.

Example 1.6.2 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.6.3). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
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Figure 1.6.3 Illustration of a tetris board.

row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a finite horizon stochastic DP problem, with very long horizon. The state
consists of two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

(2) The shape of the current falling block, denoted by y.

The control, denoted by u, is the horizontal positioning and rotation applied
to the falling block. There is also an additional termination state which is
cost-free. Once the state reaches the termination state, it stays there with no
change in score. Moreover there is a very large amount added to the score
when the end of the horizon is reached without the game having terminated.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.63) is executed over the space of board
positions x and has the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x, (1.64)

where

g(x, y, u) is the number of points scored (rows removed),

f(x, y, u) is the next board position (or termination state),

when the state is (x, y) and control u is applied, respectively. The DP algo-
rithm (1.64) assumes a finite horizon formulation of the problem.

Alternatively, we may consider an undiscounted infinite horizon formu-
lation, involving a termination state (i.e., a stochastic shortest path problem).
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The “reduced” form of Bellman’s equation, which corresponds to the DP al-
gorithm (1.64), has the form

Ĵ(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵ
(

f(x, y, u)
)

]

, for all x.

The value Ĵ(x) can be interpreted as an “average score” at x (averaged over
the values of the uncontrollable block shapes y).

Finally, let us note that despite the simplification achieved by elimi-
nating the uncontrollable portion of the state, the number of states x is still
enormous, and the problem can only be addressed by suboptimal methods.†

1.6.4 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value
of the current state xk, so a policy consists of a sequence of functions of
xk. However, in many practical settings, this assumption is unrealistic
because some components of the state may be inaccessible for observation,
the sensors used for measuring them may be inaccurate, or the cost of
measuring them more accurately may be prohibitive.

Often in such situations, the controller has access to only some of
the components of the current state, and the corresponding observations
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the observations may consist of noise-
corrupted radar measurements of the three position components. This
gives rise to problems of partial or imperfect state information, which have
received a lot of attention in the optimization and artificial intelligence
literature (see e.g., [Ber17a], [RuN16]; these problems are also popularly
referred to with the acronym POMDP for partially observed Markovian
Decision problem).

Generally, solving a POMDP exactly is typically intractable, even
though there are DP algorithms for doing so. Thus in practice, POMDP
are solved approximately, except under very special circumstances.

Despite their inherent computational difficulty, it turns out that con-
ceptually, partial state information problems are no different than the per-
fect state information problems we have been addressing so far. In fact by
various reformulations, we can reduce a partial state information problem

† Tetris is generally considered as an interesting and challenging stochastic
testbed for RL algorithms, and has received a lot of attention over a period
spanning 20 years (1995-2015), starting with the papers [TsV96], [BeI96], and the
neuro-dynamic programming book [BeT96], and ending with the papers [GGS13],
[SGG15], which contain many references to related works in the intervening years.
All of these works are based on approximation in value space and various forms
of approximate policy iteration.
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Figure 1.6.4 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free,
can move to k − 1 at cost t−

k
or can move to k + 1 at cost t+

k
. At space N (the

garage) the driver must park at cost C.

to one with perfect state information, which involves a different and more
complicated state, called a sufficient statistic. Once this is done, we can
state an exact DP algorithm that is defined over the space of the sufficient
statistic. Roughly speaking, a sufficient statistic is a quantity that sum-
marizes the content of the information available up to k for the purposes
of optimal control. This statement can be made more precise, but we will
not elaborate further in these notes; see e.g., the DP textbook [Ber17a].

A common sufficient statistic is the belief state, which we will denote
by bk. It is the probability distribution of xk given all the observations that
have been obtained by the controller and all the controls applied by the
controller up to time k, and it can serve as “state” in an appropriate DP
algorithm. The belief state can in principle be computed and updated by a
variety of methods that are based on Bayes’ rule, such as Kalman filtering
(see e.g., [AnM79], [KuV86], [Kri16], [ChC17]) and particle filtering (see
e.g., [GSS93], [DoJ09], [Can16], [Kri16]).

Example 1.6.3 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.6.1. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver
can park at cost c(i) if i is free, can move to i− 1 at a cost t−i or can move to
i+1 at a cost t+i . Moreover, the driver records and remembers the free/taken
status of the spaces previously visited and may return to any of these spaces;
see Fig. 1.6.4.

We assume that the probability p(i) of a space i being free changes over
time, i.e., a space found free (or taken) at a given visit may get taken (or
become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time stage, p(i) increases by a certain
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known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Here the belief state is the vector of current probabilities

(

p(0), . . . , p(N − 1)
)

,

and it can be updated with a simple algorithm at each time based on the new
observation: the free/taken status of the space visited at that time.

We can use the belief state as the basis of an exact DP algorithm
for computing an optimal policy. This algorithm is typically intractable
computationally, but it is conceptually useful, and it can form the starting
point for approximations. It has the form

J*
k (bk) = min

uk∈Uk

[

ĝk(bk, uk) + Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
) ∣

∣ bk, uk

}

]

,

(1.65)
where:

J*
k (bk) denotes the optimal cost-to-go starting from belief state bk at

stage k.

Uk is the control constraint set at time k (since the state xk is un-
known at stage k, Uk must be independent of xk).

ĝk(bk, uk) denotes the expected stage cost of stage k. It is calculated
as the expected value of the stage cost gk(xk, uk, wk), with the joint
distribution of (xk, wk) determined by the belief state bk and the
distribution of wk.

Fk(bk, uk, zk+1) denotes the belief state at the next stage, given that
the current belief state is bk, control uk is applied, and observation
zk+1 is received following the application of uk:

bk+1 = Fk(bk, uk, zk+1). (1.66)

This is the system equation for a perfect state information problem
with state bk, control uk, “disturbance” zk+1, and cost per stage
ĝk(bk, uk). The function Fk is viewed as a sequential belief estimator ,
which updates the current belief state bk based on the new observation
zk+1. It is given by either an explicit formula or an algorithm (such as
Kalman filtering or particle filtering) that is based on the probability
distribution of zk and the use of Bayes’ rule.

The expected value Ezk+1{·
∣

∣ bk, uk} is taken with respect to the
distribution of zk+1, given bk and uk. Note that zk+1 is random, and
its distribution depends on xk and uk, so the expected value

Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
) ∣

∣ bk, uk

}
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Figure 1.6.5 Schematic illustration of the view of an imperfect state information
problem as one of perfect state information, whose state is the belief state bk, i.e.,
the conditional probability distribution of xk given all the observations up to time
k. The observation zk+1 plays the role of the stochastic disturbance. The function
Fk is a sequential estimator that updates the current belief state bk .

in Eq. (1.65) is a function of bk and uk.

The algorithm (1.65) is just the ordinary DP algorithm for the perfect
state information problem shown in Fig. 1.6.5. It involves the system/belief
estimator (1.66) and the cost per stage ĝk(bk, uk). Note that since bk takes
values in a continuous space, the algorithm (1.65) will typically require an
approximate implementation, using approximation in value space methods.

We refer to the textbook [Ber17a], Chapter 4, for a detailed derivation
of the DP algorithm (1.65), and to the monograph [BeS78] for a mathe-
matical treatment that applies to infinite-dimensional state and disturbance
spaces as well.

An Alternative DP Algorithm for POMDP

The DP algorithm (1.65) is not the only one that can be used for POMDP.
There is also an exact DP algorithm that operates in the space of informa-
tion vectors Ik, defined by

Ik = {z0, u0, . . . , zk−1, uk−1, zk},

where zk is the observation received at time k. This is another sufficient
statistic, and hence an alternative to the belief state bk. In particular, we
can view Ik as a state of the POMDP, which evolves over time according
to the equation

Ik+1 = (Ik, zk+1, uk).
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Denoting by J∗
k (Ik) the optimal cost starting at information vector Ik at

time k, the DP algorithm takes the form

J∗
k (Ik) = min

uk∈Uk(xk)
Ewk,zk+1

{

gk(xk, uk, wk)+

J∗
k+1

(

Ik, zk+1, uk

)

| Ik, uk

}

,
(1.67)

for k = 0, . . . , N − 1, with J∗
N (IN ) = E

{

gN (xN ) | IN
}

; see e.g., the DP
textbook [Ber17a], Section 4.1.

A drawback of the preceding approach is that the information vector
Ik is growing in size over time, thereby leading to a nonstationary system
even in the case of an infinite horizon problem with a stationary system and
cost function. This difficulty can be remedied in an approximation scheme
that uses a finite history of the system (a fixed number of most recent
observations) as state, thereby working effectively with a stationary finite-
state system; see the paper by White and Scherer [WhS94]. In particular,
this approach is used in large language models such as ChatGPT.

Finite-memory approximations for POMDP can be viewed within the
context of feature-based approximation architectures, as we will discuss in
Chapter 3 (see Example 3.1.6). Moreover, the finite-history scheme can be
generalized through the concept of a finite-state controller ; see the paper
by Yu and Bertsekas [YuB08], which also addresses the issue of convergence
of the approximation error to zero as the size of the finite-history or finite-
state controller is increased.

1.6.5 Multiagent Problems and Multiagent Rollout

In these notes, we will view a multiagent system as a collection of decision
making entities, called agents , which aim to optimally achieve a common
goal.† The agents accomplish this by collecting and exchanging informa-
tion, and otherwise interacting with each other. The agents can be software
programs or physical entities such as robots, and they may have different
capabilities.

Among the generic challenges of efficient implementation of multia-
gent systems, one may note issues of limited communication and lack of
fully shared information, due to factors such as limited bandwidth, noisy
channels, and lack of synchronization. Another important generic issue
is that as the number of agents increases, the size of the set of possible
joint decisions of the agents increases exponentially, thereby complicating
control selection by lookahead minimization. In this section, we will focus
on ways to resolve this latter difficulty for problems where the agents fully
share information, and in Section 2.9 we will address some of the challenges

† In a more general version of a multiagent system, which is outside our
scope, the agents may have different goals, and act in their own self-interest.
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Figure 1.6.6 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent " = 1, . . . ,m controls its own decision variable u!. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

of problems where the agents may have some autonomy, and act without
fully coordinating with each other.

For a mathematical formulation, let us consider the discounted infinite
horizon problem and a special structure of the control space, whereby the
control u consists of m components, u = (u1, . . . , um), with a separable
control constraint structure u! ∈ U !(x), " = 1, . . . ,m. Thus the control
constraint set is the Cartesian product

U(x) = U1(x)× · · ·× Um(x), (1.68)

where the sets U !(x) are given. This structure arises in applications in-
volving distributed decision making by multiple agents; see Fig. 1.6.6.

In particular, we will view each component u!, " = 1, . . . ,m, as being
chosen from within U !(x) by a separate “agent” (a decision making entity).
For the sake of the following discussion, we assume that each set U !(x) is
finite. Then the one-step lookahead minimization of the standard rollout
scheme with base policy µ is given by

ũ ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, (1.69)

and involves as many as nm Q-factors, where n is the maximum number of
elements of the sets U !(x) [so that nm is an upper bound to the number of
controls in U(x), in view of its Cartesian product structure (1.68)]. Thus
the standard rollout algorithm requires an exponential [order O(nm)] num-
ber of Q-factor computations per stage, which can be overwhelming even
for moderate values of m.
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This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead
minimization (1.69) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, given a base policy µ = (µ1, . . . , µm),
we perform at state x the sequence of minimizations

µ̃1(x) ∈ arg min
u1∈U1(x)

Ew

{

g
(

x, u1, µ2(x), . . . , µm(x), w
)

+ αJµ
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

µ̃2(x) ∈ arg min
u2∈U2(x)

Ew

{

g
(

x, µ̃1(x), u2, µ3(x) . . . , µm(x), w
)

+ αJµ
(

f(x, µ̃1(x), u2, µ3(x), . . . , µm(x), w)
)

}

,

. . . . . . . . . . . .

µ̃m(x) ∈ arg min
um∈Um(x)

Ew

{

g
(

x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w
)

+ αJµ
(

f(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)
)

}

.

Thus each agent component u! is obtained by a minimization with the pre-
ceding agent components u1, . . . , u!−1 fixed at the previously computed val-
ues of the rollout policy, and the following agent components u!+1, . . . , um

fixed at the values given by the base policy. This algorithm requires order
O(nm) Q-factor computations per stage, a potentially huge computational
saving over the order O(nm) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (1.69) are proportional to the number of controls in
the set U(xk) and are independent of the size of the state space. This mo-
tivates a reformulation of the problem, first suggested in the book [BeT96],
Section 6.1.4, whereby control space complexity is traded off with state space
complexity, by “unfolding” the control uk into its m components, which are
applied one agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uk into m individual component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL al-
gorithms, including rollout .

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At the generic state x, we break
down the control u into the sequence of the m controls u1, u2, . . . , um, and
between x and the next state x̄ = f(x, u, w), we introduce artificial inter-
mediate “states” (x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1), and correspond-
ing transitions. The choice of the last control component um at “state”
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Figure 1.6.7 Equivalent formulation of the stochastic optimal control problem
for the case where the control u consists of m components u1, u2, . . . , um:

u = (u1, . . . , um) ∈ U(x) = U1(x)× · · ·× Um(x).

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1),

using the respective controls u1, . . . , um−1. The final control um leads from
(x, u1, . . . , um−1) to x̄ = f(x, u,w), and the random cost g(x, u,w) is incurred.

(x, u1, . . . , um−1) marks the transition to the next state x̄ = f(x, u, w) ac-
cording to the system equation, while incurring cost g(x, u, w); see Fig.
1.6.7.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible
in the other problem, while the cost structure of the two problems is the
same. In particular, every policy µ = (µ1, . . . , µm) of the original problem,
including a base policy in the context of rollout, is admissible for the refor-
mulated problem, and has the same cost function for the original as well
as the reformulated problem.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m−1 additional layers of states,
and the corresponding m− 1 cost-to-go functions

J1(x, u1), J2(x, u1, u2), . . . , Jm−1(x, u1, . . . , um−1).

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the Q-factor minimization (1.69) is performed for just
one state at each stage.

The major fact that can be proved about multiagent rollout (see the
end-of-chapter references) is that it achieves cost improvement :

Jµ̃(x) ≤ Jµ(x), for all x,

where Jµ(x) is the cost function of the base policy µ = (µ1, . . . , µm), and
Jµ̃(x) is the cost function of the rollout policy µ̃ = (µ̃1, . . . , µ̃m), starting
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Figure 1.6.8 Illustration of a 2-dimensional spiders-and-fly problem with 20
spiders and 5 flies (cf. Example 1.6.4). The flies moves randomly, regardless of
the position of the spiders. During a stage, each spider moves to a neighboring
location or stays where it is, so there are 5 moves per spider (except for spiders
at the edges of the grid). The total number of possible joint spiders moves is a
little less than 520.

from state x. Furthermore, this cost improvement property can be ex-
tended to multiagent PI schemes that involve one-agent-at-a-time policy
improvement operations, and have sound convergence properties. More-
over, multiagent rollout becomes the starting point for various related PI
schemes that are well suited for distributed operation in important practi-
cal contexts involving multiple autonomous decision makers; see the book
[Ber20a], the papers [Ber20b], and the tutorial survey [Ber21a].

Example 1.6.4 (Spiders and Flies)

This example is representative of a broad range of practical problems such as
multirobot service systems involving delivery, maintenance and repair, search
and rescue, firefighting, etc. Here there are m spiders and several flies moving
on a 2-dimensional grid; cf. Fig. 1.6.8. The objective is for the spiders to catch
all the flies as fast as possible.

During a stage, each fly moves to a some other position according to a
given state-dependent probability distribution. Each spider learns the current
state (the vector of spiders and fly locations) at the beginning of each stage,
and either moves to a neighboring location or stays where it is. Thus each
spider has as many as 5 choices at each stage. The control is u = (u1, . . . , um),
where u! is the choice of the $th spider, so there are about 5m possible values
of u.
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To apply multiagent rollout, we need a base policy. A simple possibility
is to use the policy that directs each spider to move on the path of minimum
distance to the closest fly position. According to the multiagent rollout for-
malism, the spiders choose their moves one-at-time in the order from 1 to m,
taking into account the current positions of the flies and the earlier moves
of other spiders, and assuming that future moves will be chosen according to
the base policy, which is a tractable computation.

In particular, at the beginning at the typical stage, spider 1 selects
its best move (out of the no more than 5 possible moves), assuming the
other spiders 2, . . . ,m will move towards their closest surviving fly during the
current stage, and all spiders will move towards their closest surviving fly
during the following stages, up to the time where no surviving flies remain.
Spider 1 then broadcasts its selected move to all other spiders. Then spider
2 selects its move taking into account the move already chosen by spider 1,
and assuming that spiders 3, . . . , m will move towards their closest surviving
fly during the current stage, and all spiders will move towards their closest
surviving fly during the following stages, up to the time where no surviving
flies remain. Spider 2 then broadcasts its choice to all other spiders. This
process of one-spider-at-a-time move selection is repeated for the remaining
spiders 3, . . . ,m, marking the end of the stage.

Note that while standard rollout computes and compares 5m Q-factors
(actually a little less to take into account edge effects), multiagent rollout
computes and compares ≤ 5 moves per spider, for a total of less than 5m.
Despite this tremendous computational economy, experiments with this type
of spiders and flies problems have shown that multiagent rollout achieves a
comparable performance to the one of standard rollout.

1.6.6 Problems with Unknown Parameters - Adaptive Control

Our discussion so far dealt with problems with a known mathematical
model, i.e., one where the system equation, cost function, control con-
straints, and probability distributions of disturbances are perfectly known.
The mathematical model may be available through explicit mathematical
formulas and assumptions, or through a computer program that can em-
ulate all of the mathematical operations involved in the model, including
Monte Carlo simulation for the calculation of expected values.

It is important to note here that from our point of view, it makes no
difference whether the mathematical model is available through closed form
mathematical expressions or through a computer simulator : the methods
that we discuss are valid either way, only their suitability for a given prob-
lem may be affected by the availability of mathematical formulas.

In practice, however, it is common that the system parameters are
either not known exactly or can change over time, and this introduces
potentially enormous complications.† As an example consider our oversim-

† The difficulties of decision and control within a changing environment are
often underestimated. Among others, they complicate the balance between off-
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plified cruise control system that we noted in Example 1.3.1 or its infinite
horizon version. The state evolves according to

xk+1 = xk + buk + wk, (1.70)

where xk is the deviation vk−v̄ of the vehicle’s velocity vk from the nominal
v̄, uk is the force that propels the car forward, and wk is the disturbance
that has nonzero mean. However, the coefficient b and the distribution of
wk change frequently, and cannot be modeled with any precision because
they depend on unpredictable time-varying conditions, such as the slope
and condition of the road, and the weight of the car (which is affected by
the number of passengers). Moreover, the nominal velocity v̄ is set by the
driver, and when it changes it may affect the parameter b in the system
equation, and other parameters.†

In this section, we will briefly review some of the most commonly used
approaches for dealing with unknown parameters in optimal control theory
and practice. We should note also that unknown problem environments are
an integral part of the artificial intelligence view of RL. In particular, to
quote from the popular book by Sutton and Barto [SuB18], RL is viewed
as “a computational approach to learning from interaction,” and “learning
from interaction with the environment is a foundational idea underlying
nearly all theories of learning and intelligence.”

The idea of learning from interaction with the environment is often
connected with the idea of exploring the environment to identify its char-
acteristics. In control theory this is often viewed as part of the system
identification methodology, which aims to construct mathematical models
of dynamic systems. The system identification process is often combined
with the control process to deal with unknown or changing problem pa-
rameters, in a framework that is sometimes called dual control . This is one
of the most challenging areas of stochastic optimal and suboptimal control,
and has been studied intensively since the early 1960s.

Robust and Adaptive Control

Given a controller design that has been obtained assuming a nominal DP
problem model, one possibility is to simply ignore changes in problem pa-
rameters. We may then try to investigate the performance of the current

line training and on-line play, which we discussed in Section 1.1 in connection
the AlphaZero. It is worth keeping in mind that as much as learning to play

high quality chess is a great challenge, the rules of play are stable and do not

change unpredictably in the middle of a game! Problems with changing system
parameters can be far more challenging!

† Adaptive cruise control, which can also adapt the car’s velocity based on its

proximity to other cars, has been studied extensively and has been incorporated
in several commercially sold car models.



Sec. 1.6 Examples, Variations, and Simplifications 97

design for a suitable range of problem parameter values, and ensure that it
is adequate for the entire range. This is sometimes called a robust controller
design. For example, consider the oversimplified cruise control system of
Eq. (1.70) with a linear controller of the form µ(x) = Lx for some scalar L.
Then we check the range of parameters b for which the current controller
is stable (this is the interval of values b for which |1+ bL| < 1), and ensure
that b remains within that range during the system’s operation.

The more general class of methods where the controller is modified in
response to problem parameter changes is part of a broad field known as
adaptive control , i.e., control that adapts to changing parameters. This is
a rich methodology with many and diverse applications. Our discussion of
adaptive control in these notes will be limited. Let us just mention for the
moment a simple time-honored adaptive control approach for continuous-
state problems called PID (Proportional-Integral-Derivative) control , for
which we refer to the control literature, including the books by Aström and
Hagglund [AsH95], [AsH06], and the end-of-chapter references on adaptive
control (also the discussion in Section 5.7 of the RL textbook [Ber19a]).

In particular, PID control aims to maintain the output of a single-
input single-output dynamic system around a set point or to follow a given
trajectory, as the system parameters change within a relatively broad range.
In its simplest form, the PID controller is parametrized by three scalar pa-
rameters, which may be determined by a variety of methods, some of them
manual/heuristic. PID control is used widely and with success, although
its range of application is mainly restricted to single-input, single-output
continuous-state control systems.

Dealing with Unknown Parameters Through System Identification

In PID control, no attempt is made to maintain a mathematical model and
to track unknown model parameters as they change. An alternative and
apparently reasonable form of suboptimal control is to separate the control
process into two phases, a system identification phase and a control phase.
In the first phase the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The final parameter
estimates from the first phase are then used to implement an optimal or
suboptimal policy in the second phase. This alternation of estimation and
control phases may be repeated several times during any system run in
order to take into account subsequent changes of the parameters. Moreover,
it is not necessary to introduce a hard separation between the identification
and the control phases. They may be going on simultaneously, with new
parameter estimates being introduced into the control process, whenever
this is thought to be desirable; see Fig. 1.6.9.

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the control process may make some



98 Exact and Approximate Dynamic Programming Chap. 1

k Controller

) System Data Control Parameter Estimation

System Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation
System State Data Control Parameter Estimation

Figure 1.6.9 Schematic illustration of concurrent parameter estimation and sys-
tem control. The system parameters are estimated on-line and the estimates are
periodically passed on to the controller.

of the unknown parameters invisible to the estimation process. This is
known as the problem of parameter identifiability, which is discussed in
the context of optimal control in several sources, including [BoV79] and
[Kum83]; see also [Ber17a], Section 6.7.

Example 1.6.5 (Parameter Identifiability Under Closed-Loop
Control)

For a simple example, consider the scalar system

xk+1 = axk + buk, k = 0, . . . , N − 1,

and the quadratic cost
N
∑

k=1

(xk)
2.

Assuming perfect state information, if the parameters a and b are known, it
can be seen that the optimal control law is

µ∗
k(xk) = −a

b
xk,

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase the
control law

µ̃k(xk) = γxk (1.71)

is used (γ is some scalar; for example, γ = − a

b
, where a and b are some a

priori estimates of a and b, respectively). At the end of the first phase, the
control law is changed to

µk(xk) = − â

b̂
xk,
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where â and b̂ are the estimates obtained from the estimation process. How-
ever, with the control law (1.71), the closed-loop system is

xk+1 = (a+ bγ)xk,

so the estimation process can at best yield the value of (a + bγ) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that

a1 + b1γ = a2 + b2γ.

Therefore, a and b are not identifiable when feedback control of the form
(1.71) is applied.

On-line parameter estimation algorithms, which address among oth-
ers the issue of identifiability, have been discussed extensively in the control
theory literature, but the corresponding methodology is complex and be-
yond our scope in these notes. However, assuming that we can make the
estimation phase work somehow, we are free to revise the controller using
the newly estimated parameters in a variety of ways, in an on-line replan-
ning process.

Unfortunately, there is still another difficulty with this type of on-
line replanning: it may be hard to recompute an optimal or near-optimal
policy on-line, using a newly identified system model. In particular, it may
be impossible to use time-consuming methods that involve for example
the training of a neural network or discrete/integer control constraints. A
simpler possibility is to use rollout, which we discuss next.†

Adaptive Control by Rollout and On-Line Replanning

We will now consider an approach for dealing with unknown or changing
parameters, which is based on on-line replanning. We have discussed this
approach in the context of rollout and multiagent rollout, where we stressed
the importance of fast on-line policy improvement.

Let us assume that some problem parameters change and the current
controller becomes aware of the change “instantly” (i.e., very quickly be-
fore the next stage begins). The method by which the problem parameters

† Another possibility is to deal with this difficulty by precomputation. In

particular, assume that the set of problem parameters may take a known finite
set of values (for example each set of parameter values may correspond to a

distinct maneuver of a vehicle, motion of a robotic arm, flying regime of an

aircraft, etc). Then we may precompute a separate controller for each of these
values. Once the control scheme detects a change in problem parameters, it

switches to the corresponding predesigned current controller. This is sometimes

called a multiple model control design or gain scheduling , and has been applied
with success in various settings over the years.
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are recalculated or become known is immaterial for the purposes of the fol-
lowing discussion. It may involve a limited form of parameter estimation,
whereby the unknown parameters are “tracked” by data collection over a
few time stages, with due attention paid to issues of parameter identifi-
ability; or it may involve new features of the control environment, such
as a changing number of servers and/or tasks in a service system (think
of new spiders and/or flies appearing or disappearing unexpectedly in the
spiders-and-flies Example 1.6.4).

We thus assume away/ignore issues of parameter estimation, and fo-
cus on revising the controller by on-line replanning based on the newly ob-
tained parameters. This revision may be based on any suboptimal method,
but rollout with the current policy used as the base policy is particularly
attractive. Here the advantage of rollout is that it is simple and reliable.
In particular, it does not require a complicated training procedure to re-
vise the current policy, based for example on the use of neural networks or
other approximation architectures, so no new policy is explicitly computed
in response to the parameter changes. Instead the current policy is used as
the base policy for rollout, and the available controls at the current state
are compared by a one-step or mutistep minimization, with cost function
approximation provided by the base policy (cf. Fig. 1.6.10).

Note that over time the base policy may also be revised (on the basis
of an unspecified rationale), in which case the rollout policy will be revised
both in response to the changed current policy and in response to the
changing parameters. This is necessary in particular when the constraints
of the problem change.

The principal requirement for using rollout in an adaptive control
context is that the rollout control computation should be fast enough to
be performed between stages. Note, however, that accelerated/truncated
versions of rollout, as well as parallel computation, can be used to meet
this time constraint.

The following example considers on-line replanning with the use of
rollout in the context of the simple one-dimensional linear quadratic prob-
lem that we discussed earlier in this chapter. The purpose of the example
is to illustrate analytically how rollout with a policy that is optimal for a
nominal set of problem parameters works well when the parameters change
from their nominal values. This property is not practically useful in linear
quadratic problems because when the parameter change, it is possible to
calculate the new optimal policy in closed form, but it is indicative of the
performance robustness of rollout in other contexts. Generally, adaptive
control by rollout and on-line replanning makes sense in situations where
the calculation of the rollout controls for a given set of problem parameters
is faster and/or more convenient than the calculation of the optimal con-
trols for the same set of parameter values. These problems include cases
involving nonlinear systems and/or difficult (e.g., integer) constraints.
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Multiagent Q-factor minimization xk

Possible States
Possible States xk+1

Rollout with Base Policy
Rollout with Base Policy

Changing System, Cost, and Constraint Parameters

Changing System, Cost, and Constraint Parameters
Changing System, Cost, and Constraint Parameters
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Figure 1.6.10 Schematic illustration of adaptive control by rollout. One-step
lookahead is followed by simulation with the base policy, which stays fixed. The
system, cost, and constraint parameters are changing over time, and the most
recent values are incorporated into the lookahead minimization and rollout oper-
ations. For the discussion in this section, we may assume that all the changing
parameter information is provided by some computation and sensor “cloud” that
is beyond our control. The base policy may also be revised based on various
criteria.

Example 1.6.6 (On-Line Replanning for Linear Quadratic
Problems Based on Rollout)

Consider the deterministic undiscounted infinite horizon linear quadratic prob-
lem. It involves the linear system

xk+1 = xk + buk,

and the quadratic cost function

lim
N→∞

N−1
∑

k=0

(x2
k + ru2

k).

The optimal cost function is given by

J∗(x) = K∗x2,
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where K∗ is the unique positive solution of the Riccati equation

K =
rK

r + b2K
+ 1. (1.72)

The optimal policy has the form

µ∗(x) = L∗x, (1.73)

where

L∗ = − bK∗

r + b2K∗
. (1.74)

As an example, consider the optimal policy that corresponds to the
nominal problem parameters b = 2 and r = 0.5: this is the policy (1.73)-
(1.74), with K obtained as the positive solution of the quadratic Riccati Eq.
(1.72) for b = 2 and r = 0.5. In particular, we can verify that

K =
2 +

√
6

4
.

From Eq. (1.74) we then obtain

L = − 2 +
√
6

5 + 2
√
6
. (1.75)

We will now consider changes of the values of b and r while keeping L constant,
and we will compare the quadratic cost coefficient of the following three cost
functions as b and r vary:

(a) The optimal cost function K∗x2, where K∗ is given by the positive
solution of the Riccati Eq. (1.72).

(b) The cost function KLx
2 that corresponds to the base policy

µL(x) = Lx,

where L is given by Eq. (1.75). From our earlier discussion, we have

KL =
1 + rL2

1− (1 + bL)2
.

(c) The cost function K̃Lx
2 that corresponds to the rollout policy

µ̃L(x) = L̃x,

obtained by using the policy µL as base policy. Using the formulas
given earlier, we have

L̃ = − bKL

r + b2KL
,
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and

K̃L =
1 + rL̃2

1− (1 + bL̃)2
.

Figure 1.6.11 shows the coefficients K∗, KL, and K̃L for a range of
values of r and b. We have

K∗ ≤ K̃L ≤ KL.

The differenceKL−K∗ is indicative of the robustness of the policy µL, i.e., the
performance loss incurred by ignoring the values of b and r, and continuing
to use the policy µL, which is optimal for the nominal values b = 2 and
r = 0.5, but suboptimal for other values of b and r. The difference K̃L−K∗ is
indicative of the performance loss due to using on-line replanning by rollout
rather than using optimal replanning. Finally, the difference KL − K̃L is
indicative of the performance improvement due to on-line replanning using
rollout rather than keeping the policy µL unchanged.

Note that Fig. 1.6.11 illustrates the behavior of the error ratio

J̃ − J∗

J − J∗
,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This ratio approaches
0 as J − J∗ becomes smaller because of the quadratic convergence rate of
Newton’s method that underlies the rollout algorithm.

Adaptive Control as POMDP

The preceding adaptive control formulation strictly separates the dual ob-
jective of estimation and control: first parameter identification and then
controller reoptimization (either exact or rollout-based). In an alternative
adaptive control formulation, the parameter estimation and the applica-
tion of control are done simultaneously, and indeed part of the control
effort may be directed towards improving the quality of future estimation.
This alternative (and more principled) approach is based on a view of adap-
tive control as a partially observed Markovian decision problem (POMDP)
with a special structure. We will see in Section 2.11 that this approach is
well-suited for approximation in value space schemes, including forms of
rollout.

To describe briefly the adaptive control reformulation as POMDP, we
introduce a system whose state consists of two components:

(a) A perfectly observed component xk that evolves over time according
to a discrete-time equation.

(b) A component θ which is unobserved but stays constant, and is esti-
mated through the perfect observations of the component xk.
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Figure 1.6.11 Illustration of adaptive control by rollout under changing
problem parameters. The quadratic cost coefficients K∗ (optimal, denoted
by solid line), KL (base policy, denoted by circles), and K̃L (rollout policy,
denoted by asterisks) for the two cases where r = 0.5 and b varies, and b = 2
and r varies. The value of L is fixed at the value that is optimal for b = 2 and
r = 0.5 [cf. Eq. (1.75)].

The rollout policy performance is very close to the one of the exactly
reoptimized policy, while the base policy yields much worse performance. This
is a consequence of the quadratic convergence rate of Newton’s method that
underlies rollout:

lim
J→J∗

J̃ − J∗

J − J∗
= 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance.
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Figure 1.6.12 Schematic illustration of simultaneous control and belief estima-
tion for the unknown system parameter θ. The control applied is a function of the
current belief state (xk, bk), where bk is the conditional probability distribution
of θ given the observations accumulated up to time k (the current and past states
xk, . . . , x0, and the past controls uk−1, . . . , u0).

We view θ as a parameter in the system equation that governs the evolution
of xk. Thus we have

xk+1 = fk(xk, θ, uk, wk), (1.76)

where uk is the control at time k, selected from a set Uk(xk), and wk is
a random disturbance with given probability distribution that depends on
(xk, θ, uk). For convenience, we will assume that θ can take one of m known
values θ1, . . . , θm.

The a priori probability distribution of θ is given and is updated based
on the observed values of the state components xk and the applied controls
uk. In particular, the information vector

Ik = {x0, . . . , xk, u0, . . . , uk−1}

is available at time k, and is used to compute the conditional probabilities

bk,i = P{θ = θi | Ik}, i = 1, . . . ,m.

These probabilities form a vector

bk = (bk,1, . . . , bk,m),

which together with the perfectly observed state xk, form the pair (xk, bk),
which is the belief state of the POMDP at time k. The overall control
scheme takes the form illustrated in Fig. 1.6.12.

As discussed in Section 1.6.4, an exact DP algorithm can be written
for the equivalent POMDP, and this algorithm is suitable for the use of
approximation in value space and rollout. We will describe this approach



106 Exact and Approximate Dynamic Programming Chap. 1

in some detail in Section 2.11. Related ideas will also be discussed in the
context of Bayesian estimation and sequential estimation in Section 2.10.

Note that the case of a deterministic system

xk+1 = fk(xk, θ, uk),

is particularly interesting, because we can then typically expect that the
true parameter θ∗ will be identified in a finite number of stages. The reason
is that at each stage k, we are receiving a noiseless observation relating to θ,
namely the state xk. Once the true parameter θ∗ is identified, the problem
becomes one of perfect state information.

1.6.7 Model Predictive Control

In this section, we will provide a brief summary of the model predictive
control (MPC) methodology for control system design, with a view towards
its connection with approximation in value space and rollout schemes. We
will focus on classical control problems, where the objective is to keep the
state of a deterministic system close to the origin of the state space (see
Fig. 1.6.13). Another type of classical control problem is to keep the system
close to a given trajectory (see Fig. 1.6.14) can also be treated by forms of
MPC, but will not be discussed in these notes.

We discussed earlier the linear quadratic approach, whereby the sys-
tem is represented by a linear model, the cost is quadratic in the state
and the control, and there are no state and control constraints. The linear
quadratic and other approaches based on state variable system representa-
tions and optimal control became popular, starting in the late 50s and early
60s. Unfortunately, however, the analytically convenient linear quadratic
problem formulations are often not satisfactory. There are two main rea-
sons for this:

(a) The system may be nonlinear, and it may be inappropriate to use for
control purposes a model that is linearized around the desired point or
trajectory. Moreover, some of the control variables may be naturally
discrete, and this is incompatible with the linear system viewpoint.

(b) There may be control and/or state constraints, which are not handled
adequately through quadratic penalty terms in the cost function. For
example, the motion of a car may be constrained by the presence of
obstacles and hardware limitations (see Fig. 1.6.14). The solution
obtained from a linear quadratic model may not be suitable for such
a problem, because quadratic penalties treat constraints “softly” and
may produce trajectories that violate the constraints.

These inadequacies of the linear quadratic formulation have moti-
vated MPC, which combines elements of several ideas that we have dis-
cussed so far, such as multistep lookahead, rollout with a base policy, and
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PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

Keep the state near some given point Traditionally 0 (the origin)

µ θ = 0, θ̇ = 0

-Component Control u

Figure 1.6.13 Illustration of a classical regulation problem, known as the “cart-
pole problem” or “inverse pendulum problem.” The state is the two-dimensional
vector of angular position and angular velocity. We aim to keep the pole at the
upright position (state equal to 0) by exerting horizontal force u on the cart.

certainty equivalence. Aside from dealing adequately with state and con-
trol constraints, MPC is well-suited for on-line replanning, like all rollout
methods.

Note that the ideas of MPC were developed independently of the
approximate DP/RL methodology. However, the two fields are closely
related, and there is much to be gained from understanding one field within
the context of the other, as the subsequent development will aim to show. A
major difference between MPC and finite-state stochastic control problems
that are popular in the RL/artificial intelligence literature is that in MPC
the state and control spaces are continuous/infinite, such as for example
in self-driving cars, the control of aircraft and drones, or the operation of
chemical processes.

In this section, we will primarily focus on the undiscounted infinite
horizon deterministic problem, which involves the system

xk+1 = f(xk, uk),

whose state xk and control uk are finite-dimensional vectors. The cost per
stage is assumed nonnegative

g(xk, uk) ≥ 0, for all (xk, uk),

(e.g., a positive definite quadratic cost). There are control constraints uk ∈
U(xk), and to simplify the following discussion, we will initially consider
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Figure 1.6.14 Illustration of constrained motion of a car from point A to point
B. There are state (position/velocity) constraints, and control (acceleration) con-
straints. When there are mobile obstacles, the state constraints may change
unpredictably, necessitating on-line replanning.

no state constraints. We assume that the system can be kept at the origin
at zero cost, i.e.,

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ U(0).

For a given initial state x0, we want to obtain a sequence {u0, u1, . . .} that
satisfies the control constraints, while minimizing the total cost.

This is a classical problem in control system design, known as the
regulation problem, where the aim is to keep the state of the system near the
origin (or more generally some desired set point), in the face of disturbances
and/or parameter changes. In an important variant of the problem, there
are additional state constraints of the form xk ∈ X , and there arises the
issue of maintaining the state within X , not just at the present time but
also in future times. We will address this issue later in this section.

The Classical Form of MPC - View as a Rollout Algorithm

We will first focus on a classical form of the MPC algorithm, proposed in
the form given here by Keerthi and Gilbert [KeG88]. In this algorithm,
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Figure 1.6.15 Illustration of the problem solved by a classical form of MPC at
state xk. We minimize the cost function over the next " stages while imposing
the requirement that xk+! = 0. We then apply the first control of the optimizing
sequence. In the context of rollout, the minimization over uk is the one-step
lookahead, while the minimization over uk+1, . . . , uk+!−1 that drives xk+! to 0
is the base heuristic.

at each encountered state xk, we apply a control ũk that is computed as
follows; see Fig. 1.6.15:

(a) We solve an "-stage optimal control problem involving the same cost
function and the requirement that the state after " steps is driven to
0, i.e., xk+! = 0. This is the problem

min
ut, t=k,...,k+!−1

k+!−1
∑

t=k

g(xt, ut), (1.77)

subject to the system equation constraints

xt+1 = f(xt, ut), t = k, . . . , k + "− 1, (1.78)

the control constraints

ut ∈ U(xt), t = k, . . . , k + "− 1, (1.79)

and the terminal state constraint

xk+! = 0. (1.80)

Here " is an integer with " > 1, which is chosen in some largely
empirical way.
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(b) If {ũk, . . . , ũk+!−1} is the optimal control sequence of this problem,
we apply ũk and we discard the other controls ũk+1, . . . , ũk+!−1.

(c) At the next stage, we repeat this process, once the next state xk+1 is
revealed.

To make the connection of the preceding MPC algorithm with rollout,
we note that the one-step lookahead function J̃ implicitly used by MPC [cf.
Eq. (1.77)] is the cost function of a certain stable base policy. This is the
policy that drives to 0 the state after "− 1 stages (not " stages) and keeps
the state at 0 thereafter, while observing the state and control constraints,
and minimizing the associated ("−1)-stages cost. This rollout view of MPC
was first discussed in the author’s paper [Ber05]. It is useful for making
a connection with the approximate DP/RL, rollout, and its interpretation
in terms of Newton’s method. In particular, an important consequence is
that the MPC policy is stable, since rollout with a stable base policy can
be shown to yield a stable policy under very general conditions, as we have
noted earlier for the special case of linear quadratic problems in Section
1.5; cf. Fig. 1.5.11.

We may also equivalently view the preceding MPC algorithm as roll-
out with "̄-step lookahead, where 1 < "̄ < ", with the base policy that drives
to 0 the state after " − "̄ stages and keeps the state at 0 thereafter. This
suggests variations of MPC that involve truncated rollout with terminal
cost function approximation, which we will discuss shortly.

Terminal Cost Approximation - Stability Issues

In a common variant of MPC, the requirement of driving the system state
to 0 in " steps in the "-stage MPC problem (1.77), is replaced by a terminal
cost G(xk+!), which is positive everywhere except at 0. Thus at state xk,
we solve the problem

min
ut, t=k,...,k+!−1

[

G(xk+!) +
k+!−1
∑

t=k

g(xt, ut)

]

, (1.81)

instead of problem (1.77) where we require that xk+! = 0. This variant can
be viewed as rollout with one-step lookahead, and a base policy, which at
state xk+1 applies the first control ũk+1 of the sequence {ũk+1, . . . , ũk+!−1}
that minimizes

G(xk+!) +
k+!−1
∑

t=k+1

g(xt, ut).

It can also be viewed outside the context of rollout, as approximation in
value space with "-step lookahead minimization and terminal cost approxi-
mation given by G. Thus the cost function of the preceding MPC controller
may be much closer to J* than G is.
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Figure 1.6.16 Illustration of the Bellman operator, defined by

(TJ)(x) = min
u∈U(x)

{

g(x, u) + J
(

f(x, u)
)

}

, for all x.

The condition in (1.82) can be written compactly as (TG)(x) ≤ G(x) for all x.
When satisfied by the terminal cost function G, it guarantees stability of the MPC
policy µ̃ with "-step lookahead minimization. In this figure, " = 3.

An important question is to choose the terminal cost approximation
so that the resulting MPC controller is stable. Our discussion of Section 1.5
on the region of stability of approximation in value space schemes applies
here. In particular, under the nonnegative cost assumption of this section,
the MPC controller can be proved to be stable if a single value iteration
(VI) starting from G produces a function that takes uniformly smaller
values than G:

min
u∈U(x)

{

g(x, u) +G
(

f(x, u)
)

}

≤ G(x), for all x. (1.82)

Figure 1.6.16 provides a graphical illustration. It shows that this condi-
tion guarantees that successive iterates of value iteration, as implemented
through multistep lookahead, lie within the region of stability, so that the
policy produced by MPC is stable.

We also expect that as the length " of the lookahead minimization is
increased, the stability properties of the MPC controller are improved. In
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Figure 1.6.17 An MPC scheme with "-step lookahead minimization, m-step
truncated rollout with a stable base policy µ, and a terminal cost function ap-
proximation G, together with its interpretation as a Newton step. In this figure,
" = 2 and m = 4. The truncated rollout with base policy µ consists of m value
iterations with the Bellman operator corresponding to µ, which is given by

(TµJ)(x) = g
(

x, µ(x)
)

+ J
(

f
(

x, µ(x)
)

)

.

Thus, truncated rollout applies m value iterations with base policy µ, starting
with the function G and yielding the function Tm

µ G. Then "− 1 value iterations
are applied to Tm

µ G through the (" − 1)-step minimization. Finally, the Newton
step is applied to

T !−1(Tm
µ G)

to yield the cost function of the MPC policy µ̃. As m increases, the starting point
for the Newton step moves closer to Jµ, which lies within the region of stability.

particular, given G ≥ 0, the resulting MPC controller is likely to be stable
for " sufficiently large, since the VI algorithm ordinarily converges to J*,
which lies within the region of stability. Results of this type are known
within the MPC framework under various conditions (see the papers by
Mayne at al. [MRR00], Magni et al. [MDM01], the MPC book [RMD17],
and the author’s book [Ber20a], Section 3.1.2). Our discussion of stability
in Section 1.5 is also relevant within this context; cf. Fig. 1.5.9.
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In another variant of MPC, in addition to the terminal cost function
approximation G, we use truncated rollout, which involves running some
stable base policy µ for a number of steps m; see Fig. 1.6.17. This is
quite similar to standard truncated rollout, except that the computational
solution of the lookahead minimization problem (1.81) may become com-
plicated when the control space is infinite. As discussed earlier in Section
1.5, increasing the length of the truncated rollout enlarges the region of sta-
bility of the MPC controller . The reason is that by increasing the length
of the truncated rollout, we push the start of the Newton step towards of
the cost function Jµ of the stable policy, which lies within the region of
stability. The base policy may also be used to address state constraints;
see the papers by Rosolia and Borelli [RoB17], [RoB19], Li et al. [LJM21],
and the discussions in the author’s RL books [Ber20a], [Ber22a].

Finally, let is note that when faced with changing problem parame-
ters, it is natural to consider on-line replanning as per our earlier adaptive
control discussion. In this context, once new estimates of system and/or
cost function parameters become available, MPC can adapt accordingly
by introducing the new parameter estimates into the "-stage optimization
problem in (a) above.

State Constraints, Invariant Sets, and Off-Line Training

Our discussion so far has skirted a major issue in MPC, which is that there
may be additional state constraints of the form xk ∈ X , for all k, where X
is some subset of the true state space. Indeed much of the original work on
MPC was motivated by control problems with state constraints, imposed
by the physics of the problem, which could not be handled effectively with
the nice unconstrained framework of the linear quadratic problem that we
have discussed in Section 1.5.

To deal with additional state constraints of the form xk ∈ X , where
X is some subset of the state space, the MPC problem to be solved at
the kth stage [cf. Eq. (1.81)] must be modified. Assuming that the current
state xk belongs to the constraint set X , the MPC problem should take
the form

min
ut, t=k,...,k+!−1

[

G(xk+!) +
k+!−1
∑

t=k

g(xt, ut)

]

, (1.83)

subject to the control constraints

ut ∈ U(xt), t = k, . . . , k + "− 1, (1.84)

and the state constraints

xt ∈ X, t = k + 1, . . . , k + ". (1.85)

The control ũk thus obtained will generate a state

xk+1 = f(xk, ũk)
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that will belong to X , and similarly the entire state trajectory thus gen-
erated will satisfy the state constraint xt ∈ X for all t, assuming that the
initial state does.

However, there is an important difficulty with the preceding MPC
scheme, namely there is no guarantee that the problem (1.83)-(1.85) has a
feasible solution for all initial states xk ∈ X . Here is a simple example.

Example 1.6.7 (State Constraints in MPC)

Consider the scalar system

xk+1 = 2xk + uk,

with control constraint
|uk| ≤ 1,

and state constraints of the form xk ∈ X, for all k, where

X =
{

xk | |xk| ≤ β
}

. (1.86)

Then if β > 1, the state constraint cannot be satisfied for all initial states
x0 ∈ X. In particular, if we take x0 = β, then 2x0 > 2 and x1 = 2x0+u0 will
satisfy x1 > x0 = β for any value of u0 with |u0| ≤ 1. Similarly the entire
sequence of states {xk} generated by any set of feasible controls will satisfy

xk+1 > xk for all k, xk ↑ ∞.

The state constraint can be satisfied only for initial states x0 in the set X̂
given by

X̂ =
{

xk | |xk| ≤ 1
}

;

see Fig. 1.6.18, which also illustrates the trajectories generated by the MPC
scheme of Eq. (1.81), which does not involve state constraints.

The preceding example illustrates a fundamental point in state-cons-
trained MPC: the state constraint set X must be invariant in the sense that
starting from any one of its points xk there must exist a control uk ∈ U(xk)
for which the next state xk+1 = f(xk, uk) must belong to X . Mathemati-
cally, X is invariant if

for every x ∈ X , there exists u ∈ U(x) such that f(x, u) ∈ X.

In particular, it can be seen that the set X of Eq. (1.86) is invariant if and
only if β ≤ 1.

Given an MPC calculation of the form (1.83)-(1.85), we must make
sure that the set X is invariant, or else it should be replaced by an invariant
subset X̂ ⊂ X . Then the MPC calculation (1.83)-(1.85) will be feasible
provided the initial state x0 belongs to X̂.
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Figure 1.6.18 An illustration of invariance of a state constraint set X. Here the

sets of the form X =
{

xk | |xk| ≤ β
}

are invariant for β ≤ 1. For β = 1, we

obtain the largest invariant set (the one that contains all other invariant sets). The
figure shows some state trajectories produced by MPC. Note that starting with
an initial condition x0 with |x0| > 1 (or |x0| < 1) the closed-loop system obtained
by MPC is unstable (or stable respectively); cf. the red and green trajectories
shown.

This brings up the question of how we compute an invariant subset
of a given constraint set, which is typically an off-line calculation that
cannot be performed during on-line play. It turns out that given X there
exists a largest possible invariant subset of X , which can be computed in
the limit with an algorithm that resembles value iteration. In particular,
starting with X0 = X , we obtain a nested sequence of subsets through the
recursion

Xk+1 =
{

x ∈ Xk | f(x, u) belongs to Xk for some u ∈ U(x)
}

, k ≥ 0.
(1.87)

Clearly, we have Xk+1 ⊂ Xk for all k, and under mild conditions it can be
shown that the intersection set

X̂ = ∩∞
k=0Xk,

is the largest invariant subset of X ; see the author’s PhD thesis [Ber71]
and subsequent paper [Ber72a], which introduced the concept of invariance
and its use in satisfying state constraints in control over a finite and an
infinite horizon.†

As an example, it can be verified that the sequence of value iterates
(1.87) starting with a set X0 = {x | |x| ≤ β} with β > 1 is given by

Xk = {x | |x| ≤ βk}, with β0 = β and βk+1 = βk+1
2 for all k ≥ 0.

† The term used in [Ber71] and [Ber72a] is reachability of a target tube

{X,X, . . .}, which is synonymous to invariance of X.
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It can thus be seen that we have βk+1 < βk for all k and βk ↓ 1, so that
the intersection X̂ = ∩∞

k=0Xk yields the largest invariant set

X̂ =
{

xk | |xk| ≤ 1
}

.

There are several ways to compute invariant subsets of constraint sets
X , for which we refer to the aforementioned author’s work and the MPC
literature; see e.g., the book by Rawlings, Mayne, and Diehl [RMD17], and
the survey by Mayne [May14], which give additional references. An im-
portant point here is that the computation of an invariant subset of the
given constraint set X must be done off-line with one of several available
algorithmic approaches, so it becomes part of the off-line training (in addi-
tion to the terminal cost function G). A relatively simple possibility is to
compute an invariant subset X̂ that corresponds to some nominal policy
µ̂ [i.e., starting from any point x ∈ X̂, the state f

(

x, µ̂(x)
)

belongs to X̂].
Such an invariant subset may be obtained by some form of simulation using
the policy µ̂. Moreover, µ̂ can also be used for truncated rollout and also
provide a terminal cost function approximation.

Given an off-line training process, which provides an invariant set X̂,
a terminal cost function G, and possibly a base policy for truncated rollout,
MPC becomes an on-line play algorithm for which our earlier discussion
applies. Note, however, that in an adaptive control context, where a model
is estimated on-line as it is changing, it may be difficult to recompute on-
line an invariant set that can be used to enforce the state constraints of the
problem. This is particularly so if the state constraints change themselves
as part of the changing problem data.

Stochastic MPC by Certainty Equivalence

Let us finally mention that while in this section we have focused on deter-
ministic problems, there are variants of MPC, which include the treatment
of uncertainty. The books and papers cited earlier contain several ideas
along these lines; see e.g. the books by Kouvaritakis and Cannon [KoC16],
Rawlings, Mayne, and Diehl [RMD17], and the survey by Mesbah [Mes16].

In this connection, it is also worth mentioning the certainty equiv-
alence approach that we discussed briefly earlier. In particular, upon
reaching state xk we may perform the MPC calculations after replac-
ing the uncertain quantities wk+1, wk+2, . . . with deterministic quantities
wk+1, wk+2, . . ., while allowing for the stochastic character of the distur-
bance wk of just the current stage k. Note that only the first step of this
MPC calculation is stochastic. Thus the calculation needed per stage is
not much more difficult than the one for deterministic problems, while still
implementing a Newton step for solving the associated Bellman equation;
see our earlier discussion, and also Section 2.5.3 of the RL book [Ber19a]
and Section 3.2 of the book [Ber22a].
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Figure 1.7.1 A schematic illustration of the synergy of ideas between artificial
intelligence on one hand, and decision and control on the other.

1.7 REINFORCEMENT LEARNING AND DECISION/CONTROL

The current state of RL has greatly benefited from the cross-fertilization
of ideas from decision and control, and from artificial intelligence; see Fig.
1.7.1. The strong connections between these two fields are now widely
recognized. Still, however, there are cultural differences, including the
traditional reliance on mathematical analysis for the decision and con-
trol field, and the emphasis on challenging problem implementations in
the artificial intelligence field. Moreover, substantial differences in lan-
guage and emphasis remain between RL-based discussions (where artificial
intelligence-related terminology is used) and DP-based discussions (where
optimal control-related terminology is used).

1.7.1 Terminology

The terminology used in these notes is standard in DP and optimal control,
and in an effort to forestall confusion of readers that are accustomed to
either the AI or the optimal control terminology, we provide a list of terms
commonly used in RL, and their optimal control counterparts.

(a) Environment = System.

(b) Agent = Decision maker or controller.

(c) Action = Decision or control.
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(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward) function = (Opposite of) Cost function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = State aggregation.

(p) Temporal abstraction = Time aggregation.

(q) Learning a model = System identification.

(r) Episodic task or episode = Finite-step system trajectory.

(s) Continuing task = Infinite-step system trajectory.

(t) Experience replay = Reuse of samples in a simulation process.

(u) Bellman operator = DP mapping or operator.

(v) Backup = Applying the DP operator at some state.

(w) Sweep = Applying the DP operator at all states.

(x) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(y) Afterstate = Post-decision state.

(z) Ground truth = Empirical evidence or information provided by
direct observation.

Some of the preceding terms will be introduced in future chapters; see also
the RL textbook [Ber19a]. The reader may then wish to return to this
section as an aid in connecting with the relevant RL literature.
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1.7.2 Notation

Unfortunately, the confusion arising from different terminology has been
exacerbated by the use of different notations. The present notes roughly
follow the “standard” notation of the Bellman/Pontryagin optimal control
era; see e.g., the books by Athans and Falb [AtF66], Bellman [Bel67], and
Bryson and Ho [BrH75]. This notation is consistent with the author’s other
DP books and is the most appropriate for a unified treatment of the subject,
which simultaneously addresses discrete and continuous spaces problems.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) w: stochastic disturbance.

(g) i: discrete state.

(h) pxy(u): transition probability from state x to state y under control u.

(i) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g.,
the classical books [AtF66] and [BrH75], noted earlier, as well as the more
recent books by Stengel [Ste94], Kirk [Kir04], and Liberzon [Lib11]). The
notations f and g are also used most commonly in the literature of the early
optimal control period as well as later (unfortunately the more natural
symbol “c” has not been used much in place of “g” for the cost per stage).
The discrete system notations i and pij(u) are common in the discrete-state
Markov decision problem and operations research literature, where discrete-
state problems have been treated extensively [sometimes the alternative
notation p(j | i, u) is used for the transition probabilities].

The artificial intelligence literature addresses for the most part finite-
state Markov decision problems, most frequently the discounted and sto-
chastic shortest path infinite horizon problems. The most commonly used
notation is s for state, a for action, r(s, a, s′) for reward per stage, p(s′ | s, a)
or p(s, a, s′) for transition probability from s to s′ under action a, and γ
for discount factor. However, this type of notation is not well suited for
continuous spaces models, which are of major interest in these notes. The
reason is that it requires the use of transition probability distributions de-
fined over continuous spaces, and it leads to more complex and less intuitive
mathematics. Moreover the transition probability notation is cumbersome
for deterministic problems, which involve no probabilistic structure at all.
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1.7.3 A Few Words about Machine Learning and Mathematical
Optimization

Machine learning and optimization are closely intertwined fields, as they fo-
cus on related mathematical models and computational algorithms.† How-
ever, they involve different cultures and application contexts, so it is worth
reflecting on their similarities and differences.

Machine learning can be broadly categorized into three main types of
methods, all of which involve the collection and use of data in some form:

(a) Supervised learning: Here a dataset of many input-output pairs is col-
lected. An optimization algorithm is used to create a parametrized
function that fits well the data, as well as make accurate predictions
on new, unseen data. Supervised learning problems are typically for-
mulated as optimization problems, examples of which we will see in
Chapter 3. A common algorithmic approach is to use a gradient-type
algorithm to minimize a loss function that measures the difference
between the actual outputs of the dataset and the predicted outputs
of the parametrized model.

(b) Unsupervised learning: Here the dataset is “unlabeled” in the sense
that the data are not separated into input and matching output pairs.
Unsupervised learning algorithms aim to identify patterns and struc-
tures in the data, in applications such as clustering, dimensionality
reduction, and density estimation. The main objective is to extract
meaningful insights and features from the data. Some unsupervised
learning techniques can be approached by DP, but the connection is
not strong. Generally speaking, unsupervised learning does not seem
to connect well with the types of sequential decision making applica-
tions of these notes.

(c) Reinforcement learning: RL differs in an important way from super-
vised and unsupervised learning. It does not use a dataset as a start-
ing point . Instead, it generates data on-line or off-line as dictated
by the needs of the optimization algorithm it uses, be it multistep
lookahead minimization, approximate policy iteration and rollout, or
approximation in policy space.‡

Optimization problems and algorithms on the other hand may or
may not involve the collection and use of data. They involve data only in
the context of special applications, most of which are related to machine
learning. In theoretical terms, optimization problems are categorized in

† Both machine learning and optimization are also closely connected with
the field of statistical analysis. However, in this section, we will not focus on this

connection, as it is less relevant to the content of these class notes.

‡ A variant of RL called offline RL or batch RL, starts from a historical
dataset, and does not explore the environment to colect new data.
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terms of their mathematical structure, which is the primary determinant
of the suitability of particular types of methods for their solution. In par-
ticular, it is common to distinguish between static optimization problems
and dynamic optimization problems . The latter problems involve sequen-
tial decision making, with feedback between decisions, while the former
problems involve a single decision. Stochastic problems with perfect or
imperfect state observations are dynamic (unless they involve open-loop
decision making without the use of any feedback), and they require the
use of DP for their optimal solution. Deterministic problems can be for-
mulated as static problems, but they can also be formulated as dynamic
problems for reasons of algorithmic expediency. In this case, the decision
making process is (sometimes artificially) broken down into stages, as is
often done in these class notes in the context of discrete optimization and
other contexts.

Another important categorization of optimization problems is based
on whether their search space is discrete or is continuous . Discrete prob-
lems include deterministic problems such as integer and combinatorial op-
timization problems, and can be addressed by formal methods of integer
programming as well as by DP. Also, because they tend to be difficult,
they are often addressed (suboptimally) with the use of heuristics. Contin-
uous problems are usually addressed with very different methods, which are
based on calculus and convexity, such as Lagrange multiplier theory and
duality, and the computational machinery of linear, nonlinear, and convex
programming. Special cases of discrete problems that involve the use of
graphs, such as matching, transportation, and transhipment, may also be
addressed with network optimization methods, which involve the use of
continuous optimization approaches that are based on linear programming
and duality. Hybrid problems, which involve both continuous and discrete
variables, usually require the use of discrete optimization methods.

The DP methodology, generally speaking, applies to just about any
kind of optimization problem, deterministic or stochastic, static or dy-
namic, discrete or continuous, as long as it is formulated as a sequential
decision problem, in the manner described in Sections 1.2-1.4. In terms
of its algorithmic structure, DP is very different from other optimization
methodologies, particularly the ones that are based on calculus and con-
vexity.

Notice a qualitative difference between optimization and machine
learning: the former is mostly organized around mathematical structures
and the analysis of the corresponding algorithms, while the latter is mostly
organized around how data is collected, used, and analyzed, often with a
strong emphasis on statistical issues . This is a fundamental distinction,
which affects profoundly the perspectives of researchers in the two fields.
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Relations Between RL and DP Methodologies and Applications

In comparing the RL and DP methodologies, we should note that they
are fundamentally connected through their corresponding problem formu-
lations: they both involve sequential decision making. Thus any problem
addressed by DP can in principle be addressed by RL, and reversely.

However, the RL algorithmic methodology is broader than DP, and
includes the use of optimization algorithms of the gradient descent and
random search type, simulation-based methodologies, statistical methods
of sampling and performance evaluation, and neural network design and
training ideas.

Moreover, in the artificial intelligence view of RL, a machine learns
through trial and error by interacting with an environment.† In practical
terms, this is more or less the same as what DP aims to do, but in RL there
is often an emphasis on the presence of uncertainty and exploration of the
environment. This is different from DP, which in addition to stochastic
problems, it is often applied to deterministic problems that do not involve
uncertainty or exploration (adaptive control is the only decision and control
problem type, where uncertainty and exploration arise in a significant way).
We may also add that RL has brought into the field of sequential decision
making a fresh and ambitious spirit that has made possible the solution of
problems thought to be well outside the capabilities of DP.

On the other hand, a substantial portion of the decision, control, and
optimization community views the RL methodology essentially as an ap-
proximate form of DP, which can be applied to difficult problems that are
beyond the reach of exact optimization. In the context of this view, there
is a lot of interest in using RL methods to address intractable problems,
including deterministic discrete/integer optimization, which need not in-
volve data collection, interaction with the environment, uncertainty, and
learning.

In terms of applications, DP was originally developed in the 1950s and
1960s as part of the then emerging methodologies of operations research
and optimal control. These methodologies are now mature and provide
important tools and perspectives, as well as a rich variety of applications,
such as robotics, autonomous transportation, and aerospace, which can
benefit from the use of RL. Moreover, DP has been used in a broad range
of applications in industrial engineering, economics and finance, so these
applications can also benefit from the use of RL methods and perspectives.
At the same time, RL and machine learning have ushered opportunities for
the application of DP techniques in new domains, such as machine transla-
tion, image recognition, knowledge representation, database organization,

† A common description it is that “the machine learns sequentially how to

make decisions that maximize a reward signal, based on the feedback received
from the environment.”
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large language models, and automated planning, where they can have a
significant practical impact.

The Use of Mathematics in Optimization and Machine Learning

Let us now discuss some differences between the research cultures of opti-
mization and machine learning, as they pertain to the use of mathemat-
ics. In optimization, the emphasis is often on general purpose methods
that offer broad and mathematically rigorous performance guarantees, for
a wide variety of problems. In particular, it is broadly believed that a solid
mathematical foundation for a given optimization methodology enhances
its reliability and clarifies the boundaries of its applicability. Furthermore,
it is recognized that formulating practical problems and matching them
to the right algorithms is greatly enhanced by one’s understanding of the
mathematical structure of the underlying optimization methodology.

Machine learning research includes important lines of analysis that
have a strongly mathematical character, particularly relating to theoreti-
cal computer science, complexity theory, and statistical analysis. At the
same time, in machine learning there are eminently useful algorithmic struc-
tures, such as neural networks, large language models, and image generative
models, which are not well-understood mathematically and defy to a large
extent mathematical analysis.† This can add to a perception that focusing
on rigorous mathematics, as opposed to practical implementation, may be
a low payoff investment in many practical machine learning contexts.

Moreover, as we have mentioned earlier, the starting point in machine
learning is often a type of dataset or a specialized type of training prob-
lem (e.g., language translation or image recognition), so what is needed
is a method that works well on that dataset or type of problem, and not
necessarily on other datasets or problems. Thus specialized approximation
architectures, implementation techniques, and heuristics, which perform
well for the given problem and dataset type, may be perfectly acceptable
in a machine learning context, even if they do not provide rigorous and
generally applicable performance guarantees.

In conclusion, both optimization and machine learning use mathe-
matical models and rigorous analysis in important ways, and often overlap
in the techniques and tools that they use, as well as in the practical ap-
plications that they address. However, depending on the type of problem

† As an illustration, the paper by He et al., “Deep Residual Learning for

Image Recognition,” published in Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition, 2016, has been cited over 162,000 times as of May 2023,
and contains only two equations. The famous neural network architecture paper

by Vaswani et al., “Attention is all you Need,” published in NIPS, 2017, which

laid the foundation for GPT, has been cited over 73,000 times as of May 2023,
and contains only six equations.
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considered, there may be differences in the emphasis and priority placed
on mathematical analysis and generality versus practical effectiveness and
efficiency. This is particularly true in certain specialized contexts, and can
lead to some tension, as each field may not fully appreciate the other’s
perspective.

1.8 NOTES, SOURCES, AND EXERCISES

We will now summarize this first chapter and describe how it can be used
as a foundational platform for a few different courses. We will also provide
a selective overview of the DP and RL literature, and also provide a few
exercises that have been used in ASU classes.

Chapter Summary

In this chapter, we have aimed to provide an overview of the approximate
DP/RL landscape, which can serve as the foundation for a deeper in-class
development of other RL topics. In particular, we have described in varying
levels of depth the following:

(a) The algorithmic foundation of exact DP in all its major forms: de-
terministic and stochastic, discrete and continuous, finite and infinite
horizon.

(b) Approximation in value space with one-step and multistep lookahead,
the workhorse of RL, which underlies its major success stories, includ-
ing AlphaZero. We contrasted approximation in value space with
approximation in policy space, and discussed how the two may be
combined.

(c) The fundamental division between off-line training and on-line play in
the context of approximation in value space. We highlighted how their
synergy can be intuitively explained in terms of Newton’s method.

(d) The fundamental methods of policy iteration and rollout, the former
being primarily an off-line method, and the latter being primarily a
less ambitious on-line method. Both methods and their variants bear
close relation to Newton’s method and draw their effectiveness from
this relation.

(e) Some major models with a broad range of applications, such as dis-
crete optimization, POMDP, multiagent problems, adaptive control,
and model predictive control. We delineated their principal character-
istics and the major RL implementation issues within their contexts.

(f) The use of function approximation, which has been a recurring theme
in our presentation. We have hinted at several points some of the prin-
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cipal schemes for approximation, e.g., neural networks and feature-
based architectures.

One of the principal aims of this first chapter was to provide a foun-
dational platform for multiple RL courses that explore at a deeper level
various algorithmic methodologies, such as:

(1) Rollout and policy iteration.

(2) Neural networks and other approximation architectures for off-line
training.

(3) Aggregation, which can be used for cost function approximation in
the context of approximation in value space.

(4) A broader discussion of sequential decision making in contexts involv-
ing changing system parameters, sequential estimation, and simulta-
neous system identification and control.

(5) Stochastic algorithms, such as temporal difference methods and Q-
learning, which can be used for off-line policy evaluation in the context
of approximate policy iteration.

(6) Sampling methods to collect data for off-line training in the context
of cost and policy approximations.

(7) Statistical estimates and efficiency enhancements of various sampling
methods used in simulation-based schemes. This includes confidence
intervals and computational complexity estimates.

(8) On-line methods for specially structured contexts, including problems
of the multi-armed bandit type.

(9) Simulation-based algorithms for approximation in policy space, in-
cluding policy gradient and random search methods.

(10) A deeper exploration of control system design methodologies such as
model predictive control and adaptive control, and their applications
in robotics and automated transportation.

In our course we are focusing selectively on the methodologies (1)-(4).
In a different course, other choices from the above list may be made, by
builiding on the content of the current chapter.

Notes and Sources for Individual Sections

In the literature survey that follows, we will focus primarily on textbooks,
research monographs, and broad surveys, which supplement our discus-
sions, express related viewpoints, and collectively provide a guide to the lit-
erature. Inevitably our referencing reflects a cultural bias, and an overem-
phasis on sources that are familiar to the author and are written in a similar
style to the present notes (including the author’s own works). Thus we wish
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to apologize in advance for the many omissions of important research ref-
erences that are somewhat outside our own understanding and view of the
field.

Sections 1.1-1.4: Our discussion of exact DP in this chapter has been
brief since our focus in these notes will be on approximate DP and RL. The
author’s DP textbook [Ber17a] provides an extensive discussion of finite
horizon exact DP, and its applications to discrete and continuous spaces
problems, using a notation and style that is consistent with the one used
here. The books by Puterman [Put94] and by the author [Ber12] provide
detailed treatments of infinite horizon finite-state stochastic DP problems.
The book [Ber12] also covers continuous/infinite state and control spaces
problems, including the linear quadratic problems that we have discussed
for one-dimensional problems in this chapter. Continuous spaces problems
present special analytical and computational challenges, which are at the
forefront of research of the RL methodology.

Some of the more complex mathematical aspects of exact DP are
discussed in the monograph by Bertsekas and Shreve [BeS78], particularly
the probabilistic/measure-theoretic issues associated with stochastic op-
timal control, including partial state information problems. This mono-
graph provides an extensive treatment of these issues. The followup work
by Huizhen Yu and the author [YuB15] resolves the special measurabil-
ity issues that relate to policy iteration, and provides additional analysis
relating to value iteration. The second volume of the author’s DP book
[Ber12], Appendix A, provides an accessible summary introduction of the
measure-theoretic framework of the book [BeS78].† In the RL literature,
the mathematical difficulties around measurability are usually neglected
(as they are in the present notes), and this is fine because they do not play

† The rigorous mathematical theory of stochastic optimal control, including

the development of an appropriate measure-theoretic framework, dates to the
60s and 70s. It culminated in the monograph [BeS78], which provides the now

“standard” framework, based on the formalism of Borel spaces, lower semiana-

lytic functions, and universally measurable policies. This development involves
daunting mathematical complications, which stem, among others, from the fact

that when a Borel measurable function F (x, u), of the two variables x and u, is

minimized with respect to u, the resulting function G(x) = minu F (x, u) need
not be Borel measurable (it belongs to the broader class of lower semianalytic

functions; see [BeS78]). Moreover, even if the minimum is attained by several
functions/policies µ, i.e., G(x) = F

(

x,µ(x)
)

for all x, it is possible that none of

these µ is Borel measurable (however, there does exist a minimizing policy that

belongs to the broader class of universally measurable policies). Thus, starting
with a Borel measurability framework for cost functions and policies, we quickly

get outside that framework when executing DP algorithms, such as value and

policy iteration. The broader framework of universal measurability is required to
correct this deficiency, in the absence of additional (fairly strong) assumptions.
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an important role in applications. Moreover, measurability issues do not
arise for problems involving finite or countably infinite state and control
spaces. We note, however, that there are quite a few published works in
RL as well as exact DP, which purport to address measurability issues with
a mathematical narrative that is either confusing or plain incorrect.

The third edition of the author’s abstract DP monograph [Ber22b],
expands on the original 2013 first edition, and aims at a unified development
of the core theory and algorithms of total cost sequential decision problems.
It addresses simultaneously stochastic, minimax, game, risk-sensitive, and
other DP problems, through the use of abstract DP operators (or Bell-
man operators as we call them here). The idea is to gain insight through
abstraction. In particular, the structure of a DP model is encoded in its
abstract Bellman operator, which serves as the “mathematical signature”
of the model. Thus, characteristics of this operator (such as monotonicity
and contraction) largely determine the analytical results and computational
algorithms that can be applied to that model. Abstract DP ideas are also
useful for visualizations and interpretations of RL methods using the New-
ton method formalism that we have discussed somewhat briefly in these
notes in the context of linear quadratic problems.

Approximation in value space, rollout, and policy iteration are the
principal subjects of these notes.† These are very powerful and general
techniques: they can be applied to deterministic and stochastic problems,
finite and infinite horizon problems, discrete and continuous spaces prob-
lems, and mixtures thereof. Rollout is reliable, easy to implement, and can
be used in conjunction with on-line replanning.

As we have noted, rollout with a given base policy is simply the first
iteration of the policy iteration algorithm starting from the base policy.
Truncated rollout can be interpreted as an “optimistic” form of a single
policy iteration, whereby a policy is evaluated inexactly, by using a limited
number of value iterations; see the books [Ber20a], [Ber22a].‡

† The name “rollout” (also called “policy rollout”) was introduced by Tesauro

and Galperin [TeG96] in the context of rolling the dice in the game of backgam-
mon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling

out” many games starting from that position to the end of the game. To quote

from the paper [TeG96]: “In backgammon parlance, the expected value of a po-
sition is known as the “equity” of the position, and estimating the equity by

Monte-Carlo sampling is known as performing a “rollout.” This involves playing
the position out to completion many times with different random dice sequences,

using a fixed policy P to make move decisions for both sides.”

‡ Truncated rollout was also proposed in the context of backgammon in the
paper [TeG96]. To quote from this paper: “Using large multi-layer networks

to do full rollouts is not feasible for real-time move decisions, since the large

networks are at least a factor of 100 slower than the linear evaluators described
previously. We have therefore investigated an alternative Monte-Carlo algorithm,
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Policy iteration, which will be viewed here as the repeated use of
rollout, is more ambitious and challenging than rollout. It requires off-line
training, possibly in conjunction with the use of neural networks. Together
with its neural network and distributed implementations, it will be dis-
cussed in more detail later. Note that rollout does not require any off-line
training, once the base policy is available; this is its principal advantage
over policy iteration.

Section 1.5: There is a vast literature on linear quadratic problems. The
connection of policy iteration with Newton’s method within this context
and its quadratic convergence rate was first derived by Kleinman [Kle68]
for continuous-time linear quadratic problems (the corresponding discrete-
time result was given by Hewer [Hew71]). For followup work, which relates
to policy iteration with approximations, see Feitzinger, Hylla, and Sachs
[FHS09], and Hylla [Hyl11]. The author’s monograph [Ber22a] describes
research that connects policy iteration with Newton’s method, together
with convergence analysis of variants of Newton’s method applied to the
solution of nondifferentiable fixed point problems.

The general relation of approximation in value space with Newton’s
method, beyond policy iteration, and its connections with MPC and adap-
tive control was first presented in the author’s book [Ber20a], the papers
[Ber21b], [Ber22c], and in the book [Ber22a], which contains an extensive
discussion. This relation provides the starting point for an in-depth under-
standing of the synergy between the off-line training and the on-line play
components of the approximation in value space architecture.

Note that in approximation in value space, we are applying Newton’s
method to the solution of a system of equations (the Bellman equation).
This context has no connection with the “gradient descent” methods that
are popular for the solution of special types of optimization problems in RL,
arising for example in neural network training problems (see Chapter 3). In
particular, there are no gradient descent methods that can be used for the
solution of systems of equations such as the Bellman equation. There are,
however, “first order” deterministic algorithms such as the Gauss-Seidel
and Jacobi methods (and stochastic asynchronous extensions) that can

using so-called “truncated rollouts.” In this technique trials are not played out

to completion, but instead only a few steps in the simulation are taken, and
the neural net’s equity estimate of the final position reached is used instead of

the actual outcome. The truncated rollout algorithm requires much less CPU
time, due to two factors: First, there are potentially many fewer steps per trial.

Second, there is much less variance per trial, since only a few random steps are

taken and a real-valued estimate is recorded, rather than many random steps and
an integer final outcome. These two factors combine to give at least an order

of magnitude speed-up compared to full rollouts, while still giving a large error

reduction relative to the base player.” Analysis and computational experience
with truncated rollout since 1996 are consistent with the preceding assessment.
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be applied to the solution of systems of equations with special structure,
including Bellman equations. Such methods include various Q-learning
algorithms, which are discussed in the neuro-dynamic programming book
by Bertsekas and Tsitsiklis [BeT89], as well as the recent book by Meyn
[Mey22]. They are generally far slower than Newton’s method, and have
limited value in on-line play contexts.

Section 1.6: Many applications of DP are discussed in the 1st volume
of the author’s DP book [Ber17a]. This book also covers a broad vari-
ety of state augmentation and problem reformulation techniques, including
the mathematics of how problems with imperfect state information can be
transformed to perfect state information problems.

Multiagent problem research has a long history (Marschak [Mar55],
Radner [Rad62], Witsenhausen [Wit68], [Wit71a], [Wit71b]), and was re-
searched extensively in the 70s; see the review paper by Ho [Ho80] and
the references cited there. The names used for the field at that time were
team theory and decentralized control . For a sampling of subsequent works
in team theory and multiagent optimization, we refer to the papers by
Krainak, Speyer, and Marcus [KLM82a], [KLM82b], and de Waal and van
Schuppen [WaS00]. For more recent works, see Nayyar, Mahajan, and
Teneketzis [NMT13], Nayyar and Teneketzis [NaT19], Li et al. [LTZ19], Qu
and Li [QuL19], Gupta [Gup20], the book by Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], and the references quoted there. In addition to the
aforementioned works, surveys of multiagent sequential decision making
from an RL perspective were given by Busoniu, Babuska, and De Schutter
[BBD08], [BBD10b]. A different type of distributed computation and mul-
tiagent optimization, whereby each agent has a partial/local model of the
system within part of the state space and relies on aggregate information
from other agents to execute a DP computation is proposed in the author’s
DP book [Ber12], Section 6.5.4; see also Section 3.5.8 of the present notes.

We note that the term “multiagent” has been used with several differ-
ent meanings in the literature. For example, some authors place emphasis
on the case where the agents do not have common information when se-
lecting their decisions. This gives rise to sequential decision problems with
“nonclassical information patterns,” which can be very complex, partly be-
cause they cannot be addressed by exact DP. Other authors adopt as their
starting point a problem where the agents are “weakly” coupled through
the system equation, the cost function, or the constraints, and consider
methods whereby the weak coupling is exploited to address the problem
through (suboptimal) decoupled computations.

Agent-by-agent minimization in multiagent approximation in value
space and rollout was proposed in the author’s paper [Ber19c], which also
discusses extensions to infinite horizon policy iteration algorithms, and ex-
plores connections with the concept of person-by-person optimality from
team theory; see also the textbook [Ber20a], the papers [Ber19d], [Ber20b].
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A computational study where several of the multiagent algorithmic ideas
were tested and validated is the paper by Bhattacharya et al. [BKB20].
This paper considers a large-scale multi-robot routing and repair problem,
involving partial state information, and explores some of the attendant im-
plementation issues, including autonomous multiagent rollout, through the
use of policy neural networks and other precomputed signaling policies.

The subject of adaptive control has a long history and its litera-
ture is very extensive; see the books by Aström and Wittenmark [AsW94],
Aström and Hagglund [AsH95], [AsH06], Bodson [Bod20], Goodwin and
Sin [GoS84], Ioannou and Sun [IoS96], Jiang and Jiang [JiJ17], Krstic,
Kanellakopoulos, and Kokotovic [KKK95], Kumar and Varaiya [KuV86],
Liu, et al. [LWW17], Lavretsky and Wise [LaW13], Narendra and An-
naswamy [NaA12], Sastry and Bodson [SaB11], Slotine and Li [SlL91], and
Vrabie, Vamvoudakis, and Lewis [VVL13]. These books describe a vast
array of methods spanning 60 years, and ranging from adaptive and PID
model-free approaches, to simultaneous or sequential control and identifi-
cation (also known as the “dual control problem”), to time series models,
to extremum-seeking methods, to simulation-based RL techniques, etc.

The ideas of PID control have been applied widely to adaptive and
robust control contexts, and have a long history; see the books by Aström
and Hagglund [AsH95], [AsH06], which provide many references. According
to Wikipedia, “a formal control law for what we now call PID or three-term
control was first developed using theoretical analysis, by Russian American
engineer Nicolas Minorsky” in 1922 [Min22].

The research on problems involving unknown models and using data
for model identification prior to or simultaneously with control was rekin-
dled with the advent of the artificial intelligence side of RL and its focus
on the active exploration of the environment. Here there is emphasis on
“learning from interaction with the environment” [SuB18] through the use
of (possibly hidden) Markov decision models, machine learning, and neural
networks, in a wide array of methods that are under active development
at present. This is more or less the same as the classical problems of dual
and adaptive control that have been discussed since the 60s from a control
theory perspective.

The literature on the theory and applications of MPC is voluminous.
Some early widely cited papers are Clarke, Mohtadi, and Tuffs [CMT87a],
[CMT87b], and Keerthi and Gilbert [KeG88]. For surveys, which give
many of the early references, see Morari and Lee [MoL99], Mayne et al.
[MRR00], and Findeisen et al. [FIA03], and for a more recent review,
see Mayne [May14]. The connections between MPC and rollout were dis-
cussed in the author’s survey [Ber05a]. Textbooks on MPC include Ma-
ciejowski [Mac02], Goodwin, Seron, and De Dona [GSD06], Camacho and
Bordons [CaB07], Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad,
and Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17].
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Reinforcement Learning Sources

The first DP/RL books were written in the 1990s, setting the tone for sub-
sequent developments in the field. One in 1996 by Bertsekas and Tsitsiklis
[BeT96], which reflects a decision, control, and optimization viewpoint, and
another in 1998 by Sutton and Barto, which reflects an artificial intelligence
viewpoint (a 2nd edition, [SuB18], was published in 2018). We refer to the
former book and also to the author’s DP textbooks [Ber12], [Ber17a] for
a broader discussion of some of the topics of these notes, including algo-
rithmic convergence issues and additional DP models, such as those based
on average cost and semi-Markov problem optimization. Note that both
of these books deal with finite-state Markovian decision models and use a
transition probability notation, as they do not address continuous spaces
problems, which are also of major interest in these notes.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on function
approximation methods for continuous space systems and includes a dis-
cussion of random search methods, Szepesvari [Sze10], which is a short
monograph that selectively treats some of the major RL algorithms such
as temporal differences, armed bandit methods, and Q-learning, Powell
[Pow11], which emphasizes resource allocation and operations research ap-
plications, Powell and Ryzhov [PoR12], which focuses on specialized topics
in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical in-
formation patterns. The book by Meyn [Mey22] focuses on the connections
of RL and optimal control, similar to the present notes, but is more math-
ematically oriented, and treats stochastic problems and algorithms in far
more detail.

There are also several books that, while not exclusively focused on
DP and/or RL, touch upon several of the topics of the present notes. The
book by Borkar [Bor08] is an advanced monograph that addresses rigor-
ously many of the convergence issues of iterative stochastic algorithms in
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approximate DP, mainly using the so-called ODE approach. The book
by Meyn [Mey07] is broader in its coverage, but discusses some of the
popular approximate DP/RL algorithms. The book by Haykin [Hay08]
discusses approximate DP in the broader context of neural network-related
subjects. The book by Krishnamurthy [Kri16] focuses on partial state in-
formation problems, with a discussion of both exact DP, and approximate
DP/RL methods. The textbooks by Kouvaritakis and Cannon [KoC16],
Borrelli, Bemporad, and Morari [BBM17], and Rawlings, Mayne, and Diehl
[RMD17] collectively provide a comprehensive view of the MPC method-
ology. The book by Lattimore and Szepesvari [LaS20] is focused on mul-
tiarmed bandit methods. The book by Brandimarte [Bra21] is a tutorial
introduction to DP/RL that emphasizes operations research applications
and includes MATLAB codes. The book by Hardt and Recht [HaR21]
focuses on broader subjects of machine learning but covers selectively ap-
proximate DP and RL topics as well.

The present notes are similar in style, terminology, and notation to
the author’s recent RL textbooks [Ber19a], [Ber20a], [Ber22a], and the 3rd
edition of the abstract DP monograph [Ber22b], which collectively pro-
vide a fairly comprehensive account of the subject. In particular, the 2019
RL textbook includes a broader coverage of approximation in value space
methods, including certainty equivalent control and aggregation methods.
It also covers substantially policy gradient methods for approximation in
policy space, which we will not address here. The 2020 book focuses more
closely on rollout, policy iteration, and multiagent problems. The 2022
book focuses on the connection of approximation in value space with New-
ton’s method, relying on analysis first provided in the book [Ber20a] and
the paper [Ber22c]. The abstract DP monograph [Ber22b] (a 3rd edition of
the original 2013 1st edition) is an advanced treatment of exact DP, which
provides the mathematical framework of Bellman operators that are cen-
tral for some of the Newton method visualizations presented in the present
notes and in the books [Ber20a], [Ber22a].

In addition to textbooks, there are many surveys and short research
monographs relating to our subject, which are rapidly multiplying in num-
ber. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be cov-
ering in much detail in these notes: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
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Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Geffner and Bonet [GeB13] (which
deals with problems in search and automated planning), Schmidhuber
[Sch15], Arulkumaran et al. [ADB17], Li [Li17], Busoniu et al. [BDT18],
and Caterini and Chang [CaC18] (which deal with reinforcement learn-
ing schemes that are based on the use of deep neural networks), Recht
[Rec18a] (which focuses on continuous spaces optimal control), and the au-
thor’s [Ber05a] (which focuses on rollout algorithms and model predictive
control), [Ber11a] (which focuses on approximate policy iteration), [Ber18a]
(which focuses on aggregation methods), and [Ber20b] (which focuses on
multiagent problems).
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Figure 1.8.1 Solution of parts (a), (b), and (c) of Exercise 1.1. A 5-city traveling
salesman problem illustration of rollout with the nearest neighbor base heuristic.

E X E R C I S E S

1.1 (Computational Exercise - Traveling Salesman Problem)

Consider a modified version of the four-city traveling salesman problem of Ex-
ample 1.2.3, where there is a fifth city E. The intercity travel costs are shown in
Fig. 1.8.1, which also gives the solutions to parts (a), (b), and (c).

(a) Use exact DP with starting city A to verify that the optimal tour is AB-
DECA with cost 20.

(b) Verify that the nearest neighbor heuristic starting with city A generates
the tour ACDBEA with cost 48.

(c) Apply rollout with one-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic. Show that it generates the tour AECDBA
with cost 37.
Illustration of the algorithm : At city A, the nearest neighbor heuristic
generates the tour ACDBEA with cost 48, as per part (b). At city A, the
rollout algorithm considers the four options of moving to cities B, C, D,
E, or equivalently to states AB, AC, AD, AE, and it computes the nearest
neighbor-generated tours corresponding to each of these states. These tours
are ABCDEA with cost 49, ACDBEA with cost 48, ADCEBA with cost
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63, and AECDBA with cost 37. The tour AECDBA has the least cost, so
the rollout algorithm moves to city E or equivalently to state AE.
At AE, the rollout algorithm considers the three options of moving to

cities B, C, D, or equivalently to states AEB, AEC, AED, and it computes
the nearest neighbor-generated tours corresponding to each of these states.
These tours are AEBCDA with cost 42, AECDBA with cost 37, AEDCBA
with cost 63. The tour AECDBA has the least cost, so the rollout algorithm
moves to city C or equivalently to state AEC.
At AEC, the rollout algorithm considers the two options of moving to cities
B, D, and compares the nearest neighbor-generated tours corresponding to
each of these. These tours are AECBDA with cost 52 and AECDBA with
cost 37. The tour AECDBA has the least cost, so the rollout algorithm
moves to city D or equivalently to state AECD. Then the rollout algorithm
has only one option and generates the tour AECDBA with cost 37.

(d) Apply rollout with two-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic. This rollout algorithm operates as follows.
For k = 1, 2, 3, it starts with a k-city partial tour, it generates every pos-
sible two-city addition to this tour, uses the nearest neighbor heuristic to
complete the tour, and selects as next city to add to the k-city partial tour
the city that corresponds to the best tour thus obtained (only one city is
added to the current tour at each step of the algorithm, not two). Show
that this algorithm generates the optimal tour.

(e) Estimate roughly the complexity of the computations in parts (a), (b), (c),
and (d), assuming a generic N-city traveling salesman problem. Answer :
The exact DP algorithm requires O(NN ) computation, since there are

(N−1)+(N−1)(N−2)+ · · ·+(N−1)(N−2) · · · 2+(N−1)(N−2) · · · 2 ·1

arcs in the DP graph to consider, and this number can be estimated as
O(NN ). The nearest neighbor heuristic that starts at city A performs
O(N) comparisons at each of N stages, so it requires O(N2) computation.
The rollout algorithm at stage k runs the nearest neighbor heuristic N − k
times, so it must run the heuristic O(N2) times for a total computation
of O(N4). Thus the rollout algorithm’s complexity involves a low order
polynomial increase over the complexity of the base heuristic, something
that is generally true for practical discrete optimization problems. Note
that even though this may represent a substantial increase in computation
over the base heuristic, it is a potentially enormous improvement over the
complexity of the exact DP algorithm.

1.2 (Computational Exercise - A Stochastic Investment Problem)

This exercise deals with a computational comparison of the optimal policy, a
heuristic policy, and on-line approximation in value space using the heuristic
policy, in the context of the following problem.

An investor wants to sell a given amount of stock at any one of N time
periods. The initial price of the stock is an integer x0. The price xk, if it is
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positive and it is less than a given positive integer value x̄, it evolves according
to

xk+1 =

{

xk + 1 with probability p+,
xk with probability 1− p+ − p−,
xk − 1 with probability p−,

where p+ and p− have known values with

0 < p− ≤ p+, p+ + p− < 1.

If xk = 0, then xk+1 moves to 1 with probability p+, and stays unchanged at 0
with probability 1 − p+. If xk = x̄, then xk+1 moves to x̄ − 1 with probability
p−, and stays unchanged at x̄ with probability 1− p−.

At each period k = 0, . . . , N − 1 for which the stock has not yet been sold,
the investor (with knowledge of the current price xk), can either sell the stock
at the current price xk or postpone the sale for a future period. If the stock has
not been sold at any of the periods k = 0, . . . , N − 1, it must be sold at period
N at price xN . The investor wants to maximize the expected value of the sale.
For the following computations, use reasonable values of your choice for N , p+,
p−, x̄, and x0 (you should choose x0 between 0 and x̄). You are encouraged to
experiment with different sets of values. A set of values that you may try first is

N = 14, x0 = 3, x̄ = 7, p+ = p− = 0.25.

(a) Formulate the problem as a finite horizon DP problem by identifying the
state, control, and disturbance spaces, the system equation, the cost func-
tion, and the probability distribution of the disturbance. Write the cor-
responding exact DP algorithm, and use it to compute the optimal policy
and the optimal cost as a function of x0.
Solution: The optimal reward-to-go is generated by the following DP algo-
rithm:

J∗
N (xN) = xN , (1.88)

and for k = 0, . . . , N − 1, if xk = 0, then

J∗
k (0) = p+J∗

k+1(1) + (1− p+)J∗
k+1(0), (1.89)

if xk = x̄, then

J∗
k (x̄) = x̄, (1.90)

(since the price cannot go higher than x̄, once at x̄, but can go lower), and
if 0 < xk < x̄, then

J∗
k (xk) = max

{

xk, p
+J∗

k+1(xk+1)+(1−p+−p−)J∗
k+1(xk)+p−J∗

k+1(xk−1)
}

.
(1.91)

The optimal policy is to sell at xk = 1, . . . , x̄−1, if xk attains the maximum
in the above equation, and not to sell otherwise. When xk = 0, it is optimal
not to sell, while when xk = x̄, it is optimal to sell.
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Figure 1.8.2 Table of values of optimal reward-to-go, obtained by exact DP, and
corresponding optimal policy [cf. the algorithm (1.88)-(1.91). Only the states xk

that are reachable from x0 at time k are considered (this is the state space for
time k).

The values of J∗
k (xk) and the optimal policy are tabulated as shown in

Fig. 1.8.2. For this figure, all the calculations are done for the following
special case:

N = 10, x0 = 2, x̄ = 10, p+ = p− = 0.25.

These values are also used for parts (b) and (c). However, you are asked
to solve the problem for different values as noted earlier. Note that for the
problem to have an interesting solution, the problem data must be chosen
so that the problem’s policies are materially affected by the presence of the
upper and lower bounds on the price xk. As an example consider the case
where

N = 10, x0 = 20, x̄ = 40, p+ = p− = 0.25.

Then the bounds 0 ≤ xk and xk ≤ x̄ never become “active,” and it can be
verified that the optimal expected reward is J∗(x0) = x0, while all policies
are optimal and attain this optimal expected reward.

(b) Suppose the investor adopts a heuristic, referred to as base heuristic, whereby
he/she sells the stock if its price is greater or equal to βx0, where β is some
number with β > 1. Write an exact DP algorithm to compute the expected
value of the sale under this heuristic.
Solution: The reward-to-go for the base heuristic starting from state xk,
denoted J

xk
k (xk), can be generated by the following (exact) DP algorithm.
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Figure 1.8.3 Table of rewards-to-go for the base policy with β = 1.4, starting
from x0 [cf. the algorithm (1.92)-(1.95) for k = 0].

(Note here the use of superscript xk in the quantities J
xk
n (xn) computed

by the algorithm. The reason is that the computed values J
xk
n (xn) depend

on xk, which incidentally implies that base heuristic is not sequentially
consistent, as defined later in Section 2.3.2 of these notes.) The algorithm
is given by

J
xk
N (xN) = xN , (1.92)

and for n = k, . . . , N − 1, if 0 < xn < βxk, then

J
xk
n (xn) = p+J

xk
n+1(xn+1)+(1−p+−p−)J

xk
n+1(xn)+p−J

xk
n+1(xn−1), (1.93)

if xn = 0, then

J
xk
n (0) = p+J

xk
n+1(1) + (1− p+)J

xk
n+1(0), (1.94)

and if xn ≥ βxk, then
J
xk
n (xn) = xn. (1.95)

The values of J
xk
k (xk) computed by this algorithm are shown in Fig. 1.8.3,

together with the decisions applied by the base heuristic.
While the reward-to-go for the base heuristic starting from state xk is

very simple to compute for our problem, in order to apply the rollout
algorithm only the values J

xk+1
k+1 (xk+1), J

xk
k+1(xk), and J

xk−1
k+1 (xk−1) need

to be calculated for each state xk encountered during on-line operation.
Moreover, the base heuristic’s reward-to-go J

xk
k (xk) can also be computed

on-line by Monte Carlo simulation for the relevant states xk. This would
be the principal option in a more complicated problem where the exact DP
algorithm is too time-consuming.
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(c) Apply approximation in value space with one-step lookahead minimization
and with function approximation that is based on the heuristic of part (b).
In particular, use J̃N(xN) = xN , and for k = 1, . . . , N − 1, use J̃k(xk) that
is equal to the expected value of the sale when starting at xk and using
the heuristic that sells the stock when its price exceeds βxk. Use exact
DP as well as Monte Carlo simulation to compute/approximate on-line the
needed values J̃k(xk). Compare the expected values of sale price computed
with the optimal, heuristic, and approximation in value space methods.
Solution: The rollout policy π̃ = {µ̃0, . . . , µ̃N−1} is determined by the base
heuristic, where for every possible state xk, and stage k = 0, . . . , N −1, the
rollout decision µ̃k(xk) is

µ̃k(xk) = sell at xk,

if

p+J
xk+1
k+1 (xk + 1) + (1− p+ − p−)J

xk
k+1(xk) + p−J

xk−1
k+1 (xk − 1) ≤ xk,

and
µ̃k(xk) = don’t sell at xk,

otherwise. The sell or don’t sell decision of the rollout algorithm is made
on-line according to the preceding criterion, at each state xk encountered
during on-line operation.
Figure 1.8.4 shows the rollout policy, which is computed by the preceding

equations using the rewards-to-go of the base heuristic J
xk
k (xk), as given in

Fig. 1.8.3. Once the rollout policy is computed, the corresponding reward
function J̃k(xk) can be calculated similar to the case of the base heuris-
tic. Of course, during on-line operation, the rollout decision need only be
computed for the states xk encountered on-line.
The important observation when comparing Figs. 1.8.3 and 1.8.4 is that

the rewards-to-go of the rollout policy are greater or equal to the ones
for the base heuristic. In particular, starting from x0, the rollout policy
attains reward 2.269, and the base heuristic attains reward 2.268. The
optimal policy attains reward 2.4. The rollout policy reward is slightly
closer to the optimal than the base heuristic reward.

The rollout reward-to-go values shown in Fig. 1.8.4 are “exact,” and
correspond to the favorable case where the heuristic rewards needed at xk,
J
xk+1
k+1 (xk +1), J

xk
k+1(xk), and J

xk−1
k+1 (xk − 1), are computed exactly by DP

or by infinite-sample Monte Carlo simulation.
When finite-sample Monte Carlo simulation is used to approximate the

needed base heuristic rewards at state xk, i.e., J
xk+1
k+1 (xk+1), J

xk
k+1(xk), and

J
xk−1
k+1 (xk−1), the performance of the rollout algorithm will be degraded. In

particular, by using a computer program to implement rollout with Monte
Carlo simulation, it can be shown that when J

xk+1
k+1 (xk +1), J

xk
k+1(xk), and

J
xk−1
k+1 (xk−1) are approximated using a 20-sample Monte-Carlo simulation

per reward value, the rollout algorithm achieves reward 2.264 starting from
x0. This reward is evaluated by (almost exact) 400-sample Monte Carlo
simulation of the rollout algorithm.
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Figure 1.8.4 Table of values of reward-to-go and decisions applied by the rollout
policy that corresponds to the base heuristic with β = 1.4.

When J
xk+1
k+1 (xk + 1), J

xk
k+1(xk), and J

xk−1
k+1 (xk − 1) were approximated

using a 200-sample Monte-Carlo simulation per reward value, the rollout al-
gorithm achieves reward 2.273 [as evaluated by (almost exact) 400-sample
Monte Carlo simulation of the rollout algorithm]. Thus with 20-sample
simulation, the rollout algorithm performs worse than the base heuristic
starting from x0. With the more accurate 200-sample simulation, the roll-
out algorithm performs better than the base heuristic starting from x0, and
performs nearly as well as the optimal policy (but still somewhat worse than
in the case where exact values of the needed base heuristic rewards are used
(based on an “infinite” number Monte Carlo samples).
It is worth noting here that the heuristic is not a legitimate policy because

at any state xn is makes a decision that depends on the state xk where it
started. Thus the heuristic’s decision at xn depends not just on xn, but
also on the starting state xk. However, the rollout algorithm is always an
approximation in value space scheme with approximation reward J̃k(xk)
defined by the heuristic, and it provides a legitimate policy.

(d) Repeat part (c) but with two-step instead of one-step lookahead minimiza-
tion.
Answer : The implementation is very similar to the one-step lookahead
case. The main difference is that at state xk, the rollout algorithm needs
to calculate the base heuristic reward values J

xk+2
k+2 (xk +2), J

xk+1
k+2 (xk +1),

J
xk
k+2(xk), J

xk−1
k+2 (xk−1), and J

xk−2
k+2 (xk−2). Thus the on-line Monte Carlo

simulation work is accordingly increased. Generally the simulation work
per stage of the rollout algorithm is proportional to 2$ + 1, when $-stage
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lookahead minimization is used, since the number of leafs at the end of the
lookahead tree is 2$+ 1.

1.3 (Computational Exercise - Spiders and Flies)

Consider the spiders and flies problem of Example 1.6.4 with two differences:
the five flies stay still (rather than moving randomly), and there are only two
spiders, both of which start at the fourth square from the right at the top row
of the grid of Fig. 1.6.8. The base policy is to move each spider one square
towards its nearest fly, with distance measured by the Manhattan metric, and
with preference given to a horizontal direction over a vertical direction in case of
a tie. Apply the multiagent rollout algorithm of Section 1.6.5, and compare its
performance with the one of the ordinary rollout algorithm, and with the one of
the base policy. This problem is also discussed in Section 2.9.

1.4 (Computational Exercise - Linear Quadratic Problem)

In a more realistic version of the cruise control system of Example 1.3.1, the
system has the form

xk+1 = axk + buk + wk,

where the coefficient a satisfies 0 < a ≤ 1, and the disturbance wk has zero mean
and variance σ2. The cost function has the form

(xN − x̄N)2 +

N−1
∑

k=0

(

(xk − x̄k)
2 + ru2

k)
)

,

where x̄0, . . . , x̄N are given nonpositive target values (a velocity profile) that
serve to adjust the vehicle’s velocity, in order to maintain a safe distance from
the vehicle ahead, etc. In a practical setting, the velocity profile is recalculated
by using on-line radar measurements.

Design an experiment to compare the performance of a fixed linear policy π,
derived for a fixed nominal velocity profile, and the performance of the algorithm
that uses on-line replanning, whereby the optimal policy π∗ is recalculated each
time the velocity profile changes. Compare with the performance of the rollout
policy π̃ that uses π as the base policy and on-line replanning.

1.5 (Computational Exercise - Parking Problem)

In reference to Example 1.6.3, a driver aims to park at an inexpensive space on
the way to his destination. There are L parking spaces available and a garage at
the end. The driver can move in either direction. For example if he is in space
i he can either move to i − 1 with a cost t − i , or to i + 1 with a cost t + i, or
he can park at a cost c(i) (if the parking space i is free). The only exception is
when he arrives at the garage (indicated by index N) and he has to park there
at a cost C. Moreover, after the driver visits a parking space he remembers its
free/taken status and has an option to return to any parking space he has already
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visited. However, the driver must park within a given number of stages N , so
that the problem has a finite horizon. The initial probability of space i being
free is given, and the driver can only observe the free/taken status of a parking
only after he/she visits the space. Moreover, the free/taken status of a parking
visited so far does not change over time.

Write a program to calculate the optimal solution using exact dynamic
programming over a state space that is as small as possible. Try to experiment
with different problem data, and try to visualize the optimal cost/policy with
suitable graphical plots. Comment on run-time as you increase the number of
parking spots L.

1.6 (Newton’s Method for Solving the Riccati Equation)

The classical form of Newton’s method applied to a scalar equation of the form
H(K) = 0 takes the form

Kk+1 = Kk −
(

∂H(Kk)

∂K

)−1

H(Kk), (1.96)

where
∂H(Kk)

∂K
is the derivative of H , evaluated at the current iterate Kk. This

exercise shows algebraically (rather than graphically), within the context of linear
quadratic problems, that in approximation in value space with quadratic cost
approximation, the cost function of the corresponding one-step lookahead policy
is the result of a Newton step for solving the Riccati equation. To this end, we
will apply Newton’s method to the solution of the Riccati Eq. (1.40), which we
write in the form

H(K) = 0,

where

H(K) = K − a2rK
r + b2K

− q. (1.97)

(a) Show that the operation that generates KL starting from K is a Newton
iteration of the form (1.96). In other words, show that for all K that lead
to a stable one-step lookahead policy, we have

KL = K −
(

∂H(K)

∂K

)−1

H(K), (1.98)

where we denote by

KL =
q + rL2

1− (a+ bL)2
(1.99)

the quadratic cost coefficient of the one-step lookahead linear policy µ(x) =
Lx corresponding to the cost function approximation J(x) = Kx2:

L = − abK
r + b2K

. (1.100)
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Proof: Our approach for showing the Newton step formula (1.98) is to
express each term in this formula in terms of L, and then show that the
formula holds as an identity for all L. To this end, we first note from Eq.
(1.100) that K can be expressed in terms of L as

K = − rL
b(a+ bL)

. (1.101)

Furthermore, by using Eqs. (1.100) and (1.101), H(K) as given in Eq.
(1.97) can be expressed in terms of L as follows:

H(K) = − rL
b(a+ bL)

+
arL
b

− q. (1.102)

Moreover, by differentiating the function H of Eq. (1.97), we obtain after
a straightforward calculation

∂H(K)

∂K
= 1− a2r2

(r + b2K)2
= 1− (a+ bL)2, (1.103)

where the second equation follows from Eq. (1.100). Having expressed all
the terms in the Newton step formula (1.98) in terms of L through Eqs.
(1.99), (1.101), (1.102), and (1.103), we can write this formula in terms of
L only as

q + rL2

1− (a+ bL)2
= − rL

b(a+ bL)
− 1

1− (a+ bL)2

(

− rL
b(a+ bL)

+
arL
b

− q

)

,

or equivalently as

q + rL2 = −
rL

(

1− (a+ bL)2
)

b(a+ bL)
+

rL
b(a+ bL)

− arL
b

+ q.

A straightforward calculation now shows that this equation holds as an
identity for all L.

(b) What happens when K lies outside the region of stability?

(c) Show that in the case of $-step lookahead, the analog of the quadratic
convergence rate estimate has the form

|KL̃ −K∗| ≤ c
∣

∣F !−1(K̃)−K∗
∣

∣

2
,

where F !−1(K̃) is the result of the ($− 1)-fold application of the mapping
F to K̃. Thus a stronger bound for |KL̃ −K∗| is obtained.
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1.7 (Post-Decision States)

The purpose of this exercise is to demonstrate a type of DP simplification that
arises often (see [Ber12], Section 6.1.5 for further discussion). Consider the finite
horizon stochastic DP problem and assume that the system equation has a special
structure whereby from state xk after applying uk we move to an intermediate
“post-decision state”

yk = pk(xk, uk)

at cost gk(xk, uk). Then from yk we move at no cost to the new state xk+1

according to
xk+1 = hk(yk, wk) = hk

(

pk(xk, uk), wk

)

, (1.104)

where the distribution of the disturbance wk depends only on yk, and not on
prior disturbances, states, and controls. Denote by Jk(xk) the optimal cost-to-go
starting at time k from state xk, and by Vk(yk) the optimal cost-to-go starting
at time k from post-decision state yk.

(a) Use Eq. (1.104) to verify that a DP algorithm that generates only Jk is
given by

Jk(xk) = min
uk∈Uk(xk)

[

g(xk, uk) + Ewk

{

Jk+1

(

hk(pk(xk, uk), wk)
)

}

]

.

(b) Show that a DP algorithm that generates both Jk and Vk is given by

Jk(xk) = min
uk∈Uk(xk)

[

g(xk, uk) + Vk

(

pk(xk, uk)
)

]

,

Vk(yk) = Ewk

{

Jk+1

(

hk(yk, wk), wk

)

}

.

(c) Show that a DP algorithm that generates only Vk for all k is given by

Vk(yk) = Ewk

{

min
uk+1∈Uk+1(hk(yk,wk))

[

gk+1(hk(yk, wk), uk+1)

+ Vk+1(pk+1(hk(yk, wk), uk+1))
]

}

.
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In this chapter, we discuss various aspects of approximation in value space
and rollout algorithms, focusing primarily on the case where the state and
control spaces are finite. In Sections 2.1-2.6, we consider finite horizon de-
terministic problems, which in addition to arising often in practice, offer
some important advantages in the context of RL. In particular, a finite
horizon is well suited for the use of rollout, while the deterministic char-
acter of the problem eliminates the need for costly on-line Monte Carlo
simulation.

An interesting aspect of our methodology for discrete deterministic
problems is that it admits extensions that we have not discussed so far.
The extensions include multistep lookahead variants, as well as variants
that apply to constrained forms of DP, which involve constraints on the
entire system trajectory, and also allow the use of heuristic algorithms
that are more general than policies within the context of rollout. These
variants rely on the problem’s deterministic structure, and do not extend
to stochastic problems.

Another interesting aspect of finite state deterministic problems is
that they can serve as a framework for an important class of commonly en-
countered discrete optimization problems, including integer programming
and combinatorial optimization problems such as scheduling, assignment,
routing, etc. This brings to bear the methodology of approximation in
value space, rollout, adaptive control, and MPC, and provides effective
suboptimal solution methods for these problems.

In Sections 2.7-2.11, we consider various problems that involve stochas-
tic uncertainty. In Section 2.12, we consider minimax problems that involve
set membership uncertainty. The present chapter draws heavily on Chap-
ters 2 and 3 of the book [Ber20a], and Chapter 6 of the book [Ber22a].
These books may be consulted for more details and additional examples.

While our focus in this chapter will be on finite horizon problems, our
discussion applies to infinite horizon problems as well, because approxima-
tion in value space and rollout are essentially finite-stages algorithms, while
the nature of the original problem horizon (be it finite or infinite) affects
only the terminal cost function approximation. Thus in implementing ap-
proximating one-step or multistep approximation in value space, it makes
little difference whether the original problem has finite or infinite horizon.
At the same time, for conceptual purposes, we can argue that finite hori-
zon problems, even when they involve a nonstationary system and cost per
stage, can be transformed to infinite horizon problems, by introducing an
artificial cost-free termination state that the system moves into at the end
of the horizon; see Section 1.6.2. Through this transformation, the synergy
of off-line training and on-line play based on Newton’s method is brought
to bear, and the insights that we discussed in Chapter 1 in the context of
an infinite horizon apply and explain the good performance of our methods
in practice.
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Deterministic Transition xk+1 = fk(xk, uk)

Figure 2.0.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

2.1 DETERMINISTIC DISCRETE SPACES FINITE HORIZON
PROBLEMS

We recall from Chapter 1, Section 1.2, that in deterministic finite horizon
DP problems, the state is generated nonrandomly over N stages, through
a system equation of the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (2.1)

where k is the time index, and

xk is the state of the system, an element of some state space Xk,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk), a subset of a control space Uk, that depends on xk,

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1.

The state space Xk and control space Uk are arbitrary sets and may
depend on k. Similarly, the system function fk can be arbitrary and may
depend on k. The cost incurred at time k is denoted by gk(xk, uk), and the
function gk may depend on k. For a given initial state x0, the total cost of
a control sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN ) +
N−1∑

k=0

gk(xk, uk), (2.2)

where gN(xN ) is a terminal cost incurred at the end of the process. This is
a well-defined number, since the control sequence {u0, . . . , uN−1} together
with x0 determines exactly the state sequence {x1, . . . , xN} via the system
equation (2.1); see Figure 2.0.1. We want to minimize the cost (2.2) over
all sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby
obtaining the optimal value as a function of x0

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1).
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Notice an important difference from the stochastic case: we optimize
over sequences of controls {u0, . . . , uN−1}, rather than over policies that
consist of a sequence of functions π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk), and satisfies the control constraints
µk(xk) ∈ Uk(xk) for all xk. It is well-known that in the presence of stochas-
tic uncertainty, policies are more effective than control sequences, and can
result in improved cost. On the other hand for deterministic problems,
minimizing over control sequences yields the same optimal cost as over
policies, since the cost of any policy starting from a given state determines
with certainty the controls applied at that state and the future states, and
hence can also be achieved by the corresponding control sequence. This
point of view allows more general forms of rollout, which we will discuss in
this chapter: instead of using a policy for rollout, we will allow the use of
more general heuristics for choosing future controls.

The Exact DP Algorithm

We recall from Chapter 1, Section 1.2, the DP algorithm for finite horizon
deterministic problems. It constructs functions

J*
0 (x0), . . . , J*

N−1(xN−1), J*
N (xN ),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc. The value J*
k (xk) will be viewed as the optimal cost of the tail sub-

problem that starts at state xk at time k and ends at some state xN .

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ), for all xN , (2.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[
gk(xk, uk) + J*

k+1

(
fk(xk, uk)

)]
, for all xk.

(2.4)

Note that at stage k, the calculation in Eq. (2.4) must be done for
all states xk before proceeding to stage k − 1. The key fact about the DP
algorithm is that for every initial state x0, the number J*

0 (x0) obtained at
the last step, is equal to the optimal cost J*(x0). Indeed, a more general
fact was shown in Section 1.2, namely that for all k = 0, 1, . . . , N − 1, and
all states xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (2.5)
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where J(xk;uk, . . . , uN−1) is the cost generated by starting at xk and using
subsequent controls uk, . . . , uN−1:

J(xk;uk, . . . , uN−1) = gN(xN ) +
N−1∑

t=k

gt(xt, ut).

Thus, J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem

that starts at state xk and time k, and ends at time N . Based on this
interpretation of J∗

k (xk), we call it the optimal cost-to-go from state xk at
stage k, and refer to J∗

k as the optimal cost-to-go function or optimal cost
function at time k.

We have also discussed in Section 1.2 the construction of an opti-
mal control sequence. Once the functions J*

0 , . . . , J
*
N have been obtained,

we can use a forward algorithm to construct an optimal control sequence
{u∗

0, . . . , u
∗
N−1} and state trajectory {x∗

1, . . . , x
∗
N} for a given initial state

x0.

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗
N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J*

1

(
f0(x0, u0)

)]
,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗
k ∈ arg min

uk∈Uk(x
∗
k
)

[
gk(x∗

k, uk) + J*
k+1

(
fk(x∗

k, uk)
)]
, (2.6)

and
x∗
k+1 = fk(x∗

k, u
∗
k).

Note an interesting conceptual division of the optimal control se-
quence construction: there is off-line training to obtain J*

k by precom-
putation [cf. the DP Eqs. (2.3)-(2.4)], which is followed by on-line play to
obtain u∗

k [cf. Eq. (2.6)]. This is analogous to the two algorithmic processes
described in Section 1.1 in connection with computer chess and backgam-
mon.

Finite-State Deterministic Problems

For the first five sections of this chapter, we will consider the case where
the state and control spaces are discrete and consist of a finite number of
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Figure 2.1.1 Illustration of a deterministic finite-state DP problem. Nodes cor-
respond to states xk. Arcs correspond to state-control pairs (xk, uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. The
cost gk(xk, uk) of the transition is the length of this arc. An artificial terminal
node t is connected with an arc of cost gN (xN ) with each state xN . The problem
is equivalent to finding a shortest path from initial nodes of stage 0 to node t.

elements. As we have noted in Section 1.2, such problems can be described
with an acyclic graph specifying for each state xk the possible transitions
to next states xk+1. The nodes of the graph correspond to states xk and
the arcs of the graph correspond to state-control pairs (xk, uk). Each arc
with start node xk corresponds to a choice of a single control uk ∈ Uk(xk)
and has as end node the next state fk(xk, uk). The cost of an arc (xk, uk) is
defined as gk(xk, uk); see Fig. 2.1.1. To handle the final stage, an artificial
terminal node t is added. Each state xN at stage N is connected to the
terminal node t with an arc having cost gN (xN ). The control sequences
{u0, . . . , uN−1} correspond to paths originating at the initial state (a node
at stage 0) and terminating at one of the nodes corresponding to the final
stage N . With this description it can be seen that a deterministic finite-
state finite-horizon problem is equivalent to finding a minimum-length (or
shortest) path from the initial nodes of the graph (stage 0) to the terminal
node t, as we have discussed in Section 1.2.

Shortest path problems arise in a great variety of application domains.
While there are quite a few efficient polynomial algorithms for solving them,
some practical shortest path problems are extraordinarily difficult because
they involve an astronomically large number of nodes. For example deter-
ministic scheduling problems of the type discussed in Example 1.2.1 can
be formulated as shortest path problems, but with a number of nodes that
grows exponentially with the number of tasks. For such problems neither
exact DP nor any other shortest path algorithm can compute an exact
optimal solution in practice. In what follows, we will aim to show that
suboptimal solution methods, and rollout algorithms in particular, offer a
viable alternative.

Many types of search problems involving games and puzzles also ad-
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Length = 0 Dead-End Position Solution Starting

Starting Position ˆ
Root Node s

Length = 0 Dead-End Position Solution

Length = 0 Dead-End Position Solution

Artificial Terminal Node

Artificial Terminal Node

Artificial Terminal Node t

t Length = 1 t Length = 1

Figure 2.1.2 A finite horizon deterministic DP formulation of the four queens
problem. Symmetric positions resulting from placing a queen in one of the right-
most squares in the top row have been ignored. Squares containing a queen have
been darkened. All arcs have length zero except for those connecting dead-end
positions to the artificial terminal node.

mit in principle exact solution by DP, but have to be solved by suboptimal
methods in practice. The following is a characteristic example.

Example 2.1.1 (The Four Queens Problem)

Four queens must be placed on a 4 × 4 portion of a chessboard so that no
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queen can attack another. In other words, the placement must be such that
every row, column, or diagonal of the 4×4 board contains at most one queen.
Equivalently, we can view the problem as a sequence of problems; first, placing
a queen in one of the first two squares in the top row, then placing another
queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first
two squares of the top row, since the other two squares lead to symmetric
positions; this is an example of a situation where we have a choice between
several possible state spaces, but we select the one that is smallest.)

We can associate positions with nodes of an acyclic graph where the
root node s corresponds to the position with no queens and the terminal
nodes correspond to the positions where no additional queens can be placed
without some queen attacking another. Let us connect each terminal position
with an artificial terminal node t by means of an arc. Let us also assign to
all arcs cost zero except for the artificial arcs connecting terminal positions
with less than four queens with the artificial node t. These latter arcs are
assigned a cost of 1 (see Fig. 2.1.2) to express the fact that they correspond
to dead-end positions that cannot lead to a solution. Then, the four queens
problem reduces to finding a minimal cost path from node s to node t, with
an optimal sequence of queen placements corresponding to cost 0.

Note that once the states/nodes of the graph are enumerated, the prob-
lem is essentially solved. In this 4 × 4 problem the states are few and can
be easily enumerated. However, we can think of similar problems with much
larger state spaces. For example consider the problem of placing N queens
on an N × N board without any queen attacking another. Even for moder-
ate values of N , the state space for this problem can be extremely large (for
N = 8 the number of possible placements with exactly one queen in each
row is 88 = 16, 777, 216). It can be shown that there exist solutions to the
N queens problem for all N ≥ 4 (for N = 2 and N = 3, clearly there is no
solution). Moreover effective (non-DP) search algorithms have been devised
for its solution up to very large values of N .

The preceding example illustrates some of the difficulties of applying
exact DP to discrete/combinatorial problems with the type of formulation
that we have described. The state space typically becomes very large,
particularly as k increases. In the preceding example, to start a backward
DP algorithm, we need to consider all the possible terminal positions, which
are too many when N is large. There is an alternative exact DP algorithm
for deterministic problems, which proceeds forwards from the initial state.
It is simply the backward DP algorithm applied to an equivalent shortest
path problem, derived form one of Fig. 2.1.1 by reversing the directions of
all the arcs, and exchanging the roles of the origin and the destination. It
will be discussed in Section 2.4; see also [Ber17a], Chapter 2. Still, however,
this forward DP algorithm cannot overcome the difficulty with a very large
state space.
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General Discrete Optimization Problems

Discrete deterministic optimization problems, including challenging combi-
natorial problems, can be typically formulated as DP problems by breaking
down each feasible solution into a sequence of decisions/controls, similar
to the preceding four queens example, the scheduling Example 1.2.1, and
the traveling salesman Examples 1.2.2 and 1.2.3. This formulation often
leads to an intractable exact DP computation because of an exponential
explosion of the number of states as time progresses. However, a reformu-
lation to a discrete optimal control problem brings to bear approximate
DP methods, such as rollout and others, to be discussed shortly, which can
deal with the exponentially increasing size of the state space.

Let us now extend the ideas of the examples just noted to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function.
We assume that each solution u has N components; i.e., it has the

form u = (u0, . . . , uN−1), where N is a positive integer. We can then
view the problem as a sequential decision problem, where the components
u0, . . . , uN−1 are selected one-at-a-time. A k-tuple (u0, . . . , uk−1) consist-
ing of the first k components of a solution is called a k-solution. We
associate k-solutions with the kth stage of the finite horizon discrete opti-
mal control problem shown in Fig. 2.1.3. In particular, for k = 1, . . . , N ,
we view as the states of the kth stage all the k-tuples (u0, . . . , uk−1). For
stage k = 0, . . . , N − 1, we view uk as the control. The initial state is an
artificial state denoted s. From this state, by applying u0, we may move
to any “state” (u0), with u0 belonging to the set

U0 =
{
ũ0 | there exists a solution of the form (ũ0, ũ1, . . . , ũN−1) ∈ U

}
.

(2.7)
Thus U0 is the set of choices of u0 that are consistent with feasibility.

More generally, from a state (u0, . . . , uk−1), we may move to any state
of the form (u0, . . . , uk−1, uk), upon choosing a control uk that belongs to
the set

Uk(u0, . . . , uk−1) =
{
uk | for some uk+1, . . . , uN−1 we have

(u0, . . . , uk−1, uk, uk+1, . . . , uN−1) ∈ U
}
.

(2.8)

These are the choices of uk that are consistent with the preceding choices
u0, . . . , uk−1, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u0, . . . , uN−1), and the terminal cost is
G(u); see Fig. 2.1.3. All other transitions in this DP problem formulation
have cost 0.
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Figure 2.1.3 Formulation of a discrete optimization problem as a DP problem
with N stages. There is a cost G(u) only at the terminal stage on the arc con-
necting an N-solution u = (u0, . . . , uN−1) upon reaching the terminal state. Note
that there is only one incoming arc at each node.

Let J*
k (u0, . . . , uk−1) denote the optimal cost starting from the k-

solution (u0, . . . , uk−1), i.e., the optimal cost of the problem over solutions
whose first k components are constrained to be equal to u0, . . . , uk−1. The
DP algorithm is described by the equation

J*
k (u0, . . . , uk−1) = min

uk∈Uk(u0,...,uk−1)
J*
k+1(u0, . . . , uk−1, uk),

with the terminal condition

J*
N (u0, . . . , uN−1) = G(u0, . . . , uN−1).

This algorithm executes backwards in time: starting with the known func-
tion J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing J*
0 .

An optimal solution (u∗
0, . . . , u

∗
N−1) is then constructed by going forward

through the algorithm

u∗
k ∈ arg min

uk∈Uk(u
∗
0 ,...,u

∗
k−1

)
J*
k+1(u

∗
0, . . . , u

∗
k−1, uk), k = 0, . . . , N−1, (2.9)

where U0 is given by Eq. (2.7), and Uk is given by Eq. (2.8): first compute
u∗
0, then u∗

1, and so on up to u∗
N−1; cf. Eq. (2.6).

Of course here the number of states typically grows exponentially
with N , but we can use the DP minimization (2.9) as a starting point for
approximation methods. For example we may try to use approximation in
value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(2.9). One possibility is to use as

J̃k+1(u∗
0, . . . , u

∗
k−1, uk),



156 Approximation in Value Space - Rollout Algorithms Chap. 2

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
0, . . . , u

∗
k−1, uk. This is the rollout algorithm, which turns out to be a very

simple and effective approach for approximate combinatorial optimization.
Let us finally note that while we have used a general cost function G

and constraint set U in our discrete optimization model of this section, in
many problems G and/or U may have a special (e.g., additive) structure,
which is consistent with a sequential decision making process and may be
computationally exploited. The traveling salesman Example 1.2.2 is a case
in point, where G consists of the sum of N components (the intercity travel
costs), one per stage.

Constraint Programming

An interesting special case of the general discrete optimization problem
minu∈U G(u) is the feasibility problem, whereby G(u) ≡ 0, so the problem
reduces to finding a value of u that satisfies the constraint u ∈ U . Typically,
in this case the constraint set U has some structure, such as being the
intersection of a finite number of constraint sets U1, . . . , Um,

U = ∩m
i=1Ui,

where each set Ui couples some of the variables u0, . . . , uN−1. This type
of feasibility problem is also known as a constraint programming problem.
The four queens problem (Example 2.1.1) provides an illustration.

Constraint programming problems can of course be formulated as DP
problems using our earlier formulation (cf. Fig. 2.1.3). They can also be
transformed into equivalent unconstrained (or less constrained) problems
by using problem-dependent penalty functions that eliminate constraints
while quantifying the level of constraint violation. As an illustration, the
problem of finding a feasible solution of the system of constraints

hk(uk, uk+1) ≤ 0, k = 0, . . . , N − 1,

uk ∈ Uk, k = 0, . . . , N − 1,

can be transformed into the equivalent DP problem of minimizing

N∑

k=1

max
{
0, hk(xk, uk)

}
,

subject to the system equation xk+1 = uk, and the control constraints
uk ∈ Uk, k = 0, . . . , N − 1. Other penalty functions can also be used,
such as a quadratic; see the author’s nonlinear programming text [Ber16].
This approach is convenient, but it offers no guarantee that it can find
a complete feasible solution (u0, . . . , uN−1), even if one exists. It simply
aims to minimize (suboptimally) a measure of the total constraint violation.
However, in the process it may be able to find a complete feasible solution.
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2.2 APPROXIMATION IN VALUE SPACE

The forward optimal control sequence construction of Eq. (2.6) is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortunately,
in practice this is often prohibitively time-consuming. However, a similar
forward algorithmic process can be used if the optimal cost-to-go functions
J*
k are replaced by some approximations J̃k. This is the idea of approxi-

mation in value space that we discussed in Section 1.2.3. It constructs a
suboptimal solution {ũ0, . . . , ũN−1} in place of the optimal {u∗

0, . . . , u
∗
N−1},

by using J̃k in place of J*
k in the DP procedure (2.6).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[
g0(x0, u0) + J̃1

(
f0(x0, u0)

)]
,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[
gk(x̃k, uk) + J̃k+1

(
fk(x̃k, uk)

)]
, (2.10)

and
x̃k+1 = fk(x̃k, ũk).

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(
fk(xk, uk)

)
,

which is minimized in approximation in value space [cf. Eq. (2.10)] is known
as the (approximate)Q-factor of (xk, uk). Note that the computation of the
suboptimal control (2.10) can be done through the Q-factor minimization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

This suggests the possibility of using approximate off-line trained Q-factors
in place of cost functions in approximation in value space schemes. How-
ever, contrary to the cost approximation scheme (2.10) and its multistep
counterparts, the performance may be degraded through the errors in the
off-line training of the Q-factors (depending on how the training is done).
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Multistep Lookahead

The approximation in value space algorithm (2.10) involves a one-step
lookahead minimization, since it solves a one-stage DP problem for each
k. We may also consider !-step lookahead , which involves the solution of
an !-step deterministic DP problem, where ! is an integer, 1 < ! < N − k,
with a terminal cost function approximation J̃k+!.

As we have noted in Chapter 1, multistep lookahead typically provides
better performance over one-step lookahead in approximation in value space
schemes. For example in AlphaZero chess, long multistep lookahead is
critical for good on-line performance. On the negative side, the solution of
the multistep lookahead optimization problem is more time consuming than
its one-step lookahead counterpart. However, the deterministic character
of the lookahead minimization problem and the fact that it is solved for
the single initial state xk at each time k helps to limit the growth of the
lookahead tree and to keep the computation manageable.

2.3 ROLLOUT ALGORITHMS FOR DISCRETE OPTIMIZATION

The construction of suitable approximate cost-to-go functions J̃k+1 for ap-
proximation in value space can be done in many different ways, including
some of the principal RL methods. A method of particular interest for our
course is rollout , whereby the approximate values J̃k+1(xk+1) in Eq. (2.10)
are obtained when needed by running for each uk ∈ Uk(xk) a heuristic
control scheme, called base heuristic, for a suitably large number of steps,
starting from xk+1 = fk(xk, uk).

The base heuristic can be any method, which starting from a state
xk+1 generates a sequence of controls uk+1, . . . , uN−1, the corresponding
sequence of states xk+2, . . . , xN , and the cost of the heuristic starting from
xk+1, which we will generically denote by Hk+1(xk+1) in this chapter:

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN ).

This value of Hk+1(xk+1) is the one used as the approximate cost-to-
go J̃k+1(xk+1) in the corresponding approximation in value space scheme
(2.10).

In this section, we will develop in more detail the theory of rollout with
one-step lookahead minimization for deterministic problems, including the
important issue of cost improvement. We will also illustrate several variants
of the method, and we will consider questions of efficient implementation.
We will then discuss examples of discrete optimization applications.

Let us consider a deterministic DP problem with a finite number of
controls and a given initial state (so the number of states that can be
reached from the initial state is also finite). We first focus on the pure
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Figure 2.3.1 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base
heuristic generates a Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)
,

and the rollout algorithm selects the control µ̃k(xk) with minimal Q-factor.

form of rollout that uses one-step lookahead without truncation, and hence
no terminal cost approximation. Given a state xk at time k, this algorithm
considers the tail subproblems that start at every possible next state xk+1,
and solves them suboptimally with the base heuristic.

Thus when at xk, rollout generates on-line the next states xk+1 that
correspond to all uk ∈ Uk(xk), and uses the base heuristic to compute the
sequence of states {xk+1, . . . , xN} and controls {uk+1, . . . , uN−1} such that

xt+1 = ft(xt, ut), t = k + 1, . . . , N − 1,

and the corresponding cost

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN ).

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk) +Hk+1(xk+1).

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (2.11)

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)
; (2.12)
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see Fig. 2.3.1. The rollout algorithm thus defines a suboptimal policy
π̃ = {µ̃0, . . . , µ̃N−1}, referred to as the rollout policy, where for each xk

and k, µ̃k(xk) is the control produced by the Q-factor minimization (2.11).
Note that the rollout algorithm requires running the base heuristic

for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to N , the algorithm requires computation equal to a small
multiple of N times the computation time for a single application of the
base heuristic. Similarly, if n is bounded by a polynomial in N , the ratio of
the rollout algorithm computation time to the base heuristic computation
time is a polynomial in N .

In Section 1.2 we considered an example of rollout involving the trav-
eling salesman problem and the nearest neighbor heuristic (cf. Examples
1.2.2 and 1.2.3). Let us consider another example, which involves a classical
discrete optimization problem.

Example 2.3.1 (Multi-Vehicle Routing)

Consider m vehicles that move along the arcs of a given graph. Some of the
nodes of the graph include a task to be performed by the vehicles. Each
task will be performed only once, immediately after some vehicle reaches the
corresponding node for the first time. We assume a horizon that is large
enough to allow every task to be performed. The problem is to find a route
for each vehicle so that the tasks are collectively performed by the vehicles in
a minimum number of moves. To express this objective, we assume that for
each move by a vehicle there is a cost of one unit. These costs are summed
up to the point where all the tasks have been performed.

For a large number m of vehicles and a complicated graph, this is a
nontrivial combinatorial problem. It can be approached by DP, like any dis-
crete deterministic optimization problem, as we have discussed. In particular,
we can view as state at a given stage the m-tuple of current positions of the
vehicles together with the list of pending tasks. Unfortunately, however, the
number of these states can be enormous (it increases exponentially with the
number of tasks and the number of vehicles), so an exact DP solution is
intractable.

This motivates an optimization in value space approach based on roll-
out. For this we need an easily implementable base heuristic that will solve
suboptimally the problem starting from any state xk+1, and will provide the
cost approximation J̃k+1(xk+1) in Eq. (2.10). One possibility is based on
the vehicles choosing their actions selfishly and without coordination, along
shortest paths to their nearest pending task.

To illustrate, consider the two-vehicle problem of Fig. 2.3.2. The base
heuristic is to move each vehicle one step at a time towards its nearest pending
task, until all tasks have been performed.

The rollout algorithm will work as follows. At a given state xk [involving
for example vehicle positions at the node pair (1, 2) and tasks at nodes 7 and
9, as in Fig. 2.3.2], we consider all possible joint vehicle moves (the controls uk

at the state) resulting in the node pairs (3,5), (4,5), (3,4), (4,4), corresponding
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Capacity=1 Optimal Solution

Capacity=1 Optimal Solution

Move each vehicle one step at a time towards its nearest pending task,

Move each vehicle one step at a time towards its nearest pending task,

until all tasks are performed

)Base heuristic

Figure 2.3.2 An instance of the vehicle routing problem of Example 2.3.1.
The two vehicles aim to collectively perform the two tasks, at nodes 7 and 9,
as fast as possible, by each moving to a neighboring node at each step. The
optimal routes are shown.

to the next states xk+1 [thus, as an example (3,5) corresponds to vehicle 1
moving from 1 to 3, and vehicle 2 moving from 2 to 5]. We then run the
base heuristic starting from each of these node pairs, and accumulate the
incurred costs up to the time when both tasks are completed. For example
starting from the vehicle positions/next state (3,5), the heuristic will produce
the following sequence of moves:

• Vehicles 1 and 2 move from (3,5) to (6,2).

• Vehicles 1 and 2 move from (6,2) to (9,4), and the task at 9 is performed.

• Vehicles 1 and 2 move from (9,4) to (12,7), and the task at 7 is per-
formed.

The two tasks are thus performed in a total of 6 vehicles moves once the move
to (3,5) has been made.

The process of running the heuristic is repeated from the other three
vehicle position pairs/next states (4,5), (3,4) (4,4), and the heuristic cost
(number of moves) is recorded. We then choose the next state that cor-
responds to minimum cost. In our case the joint move to state xk+1 that
involves the pair (3, 4) produces the sequence

• Vehicles 1 and 2 move from (3,4) to (6,7), and the task at 7 is performed.

• Vehicles 1 and 2 move from (6,7) to (9,4), and the task at 9 is performed.

and performs the two tasks in a total of 6 vehicle moves. It can be verified that
it yields minimum first stage cost plus heuristic cost from the next state, as
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Continue Terminate Instruction Accept Root

Figure 2.3.3 Binary tree for the breakthrough problem. Each arc is either free
or is blocked (crossed out in the figure). The problem is to find a path from the
root to one of the leaves, which is free (such as the one shown with thick lines).

per Eq. (2.10). Thus, the rollout algorithm will choose to move the vehicles to
state (3,4) from state (1,2). At that state the rollout process will be repeated,
i.e., consider the possible next joint moves to the node pairs (6,7), (6,2), (6,1),
(1,7), (1,2), (1,1), perform a heuristic calculation from each of them, compare,
etc.

It can be verified that the rollout algorithm starting from the state (1,2)
shown in Fig. 2.3.2 will attain the optimal cost (a total of 6 vehicle moves).
It will perform much better than the heuristic, which starting from state
(1,2), will move the two vehicles together to state (4,4), then to (7,7), then
to (10,10), then to (12,12), and finally to (9,9), (a total of 10 vehicle moves).
This is an instance of the cost improvement property of the rollout algorithm:
it performs better than its base heuristic under appropriate conditions to be
discussed next.

Let us finally note that the computation required by in rollout algorithm
increases exponentially with the numberm of vehicles, since the number of m-
tuples of moves at each stage increases exponentially with m. This is the type
of problem where multiagent rollout can attain great computational savings;
cf. Section 1.6.5, and the subsequent Section 2.9.

Here is an example of a search problem, whose exact solution com-
plexity grows exponentially with the problem size, but can be addressed
with a greedy heuristic as well as with the corresponding rollout algorithm.

Example 2.3.2 (The Breakthrough Problem)

Consider a binary tree with N stages as shown in Fig. 2.3.3. Stage k of the
tree has 2k nodes, with the node of stage 0 called root and the nodes of stage
N called leaves. There are two types of tree arcs: free and blocked . A free
(or blocked) arc can (cannot, respectively) be traversed in the direction from
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the root to the leaves. The objective is to break through the graph with a
sequence of free arcs (a free path) starting from the root, and ending at one
of the leaves. (A variant of this problem is to introduce a positive cost c > 0
for traversing a blocked arc, and 0 cost for traversing a free arc.)

One may use DP to discover a free path (if one exists) by starting from
the last stage and by proceeding backwards to the root node. The kth step of
the algorithm determines for each node of stage N − k whether there is a free
path from that node to some leaf node, by using the results of the preceding
step. The amount of calculation at the kth step is O(2N−k). Adding the
computations for the N stages, we see that the total amount of calculation
is O(N2N ), so it increases exponentially with the number of stages. For this
reason it is interesting to consider heuristics requiring computation that is
linear or polynomial in N , but may sometimes fail to determine a free path,
even when a free path exists.

Thus, one may suboptimally use a greedy algorithm, which starts at
the root node, selects a free outgoing arc (if one is available), and tries to
construct a free path by adding successively nodes to the path. At the current
node, if one of the outgoing arcs is free and the other is blocked, the greedy
algorithm selects the free arc. Otherwise, it selects one of the two outgoing
arcs according to some fixed rule that depends only on the current node (and
not on the status of other arcs). Clearly, the greedy algorithm may fail to
find a free path even if such a path exists, as can be seen from Fig. 2.3.3.
On the other hand the amount of computation associated with the greedy
algorithm is O(N), which is much faster than the O(N2N ) computation of
the DP algorithm. Thus we may view the greedy algorithm as a fast heuristic,
which is suboptimal in the sense that there are problem instances where it
fails while the DP algorithm succeeds.

One may also consider a rollout algorithm that uses the greedy algo-
rithm as the base heuristic. There is an analysis that compares the probability
of finding a breakthrough solution with the greedy and with the rollout algo-
rithm for random instances of binary trees (each arc is independently free or
blocked with given probability p). This analysis is given in Section 6.4 of the
book [Ber17a], and shows that asymptotically, the rollout algorithm requires
O(N) times more computation, but has an O(N) times larger probability of
finding a free path than the greedy algorithm.

This tradeoff is qualitatively typical: the rollout algorithm achieves a
substantial performance improvement over the base heuristic at the expense of
extra computation that is equal to the computation time of the base heuristic
times a factor that is a low order polynomial of the problem size.

2.3.1 Cost Improvement with Rollout - Sequential Consistency,
Sequential Improvement

The definition of the rollout algorithm leaves open the choice of the base
heuristic. There are several types of suboptimal solution methods that can
be used as base heuristics, such as greedy algorithms, local search, genetic
algorithms, and others.
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Intuitively, we expect that the rollout policy’s performance is no worse
than the one of the base heuristic: since rollout optimizes over the first
control before applying the heuristic, it makes sense to conjecture that it
performs better than applying the heuristic without the first control opti-
mization. However, some special conditions must hold in order to guarantee
this cost improvement property. We provide two such conditions, sequen-
tial consistency and sequential improvement , introduced in the paper by
Bertsekas, Tsitsiklis, and Wu [BTW97], and we later show how to modify
the algorithm to deal with the case where these conditions are not met.

Definition 2.3.1: We say that the base heuristic is sequentially con-
sistent if it has the property that when it generates the sequence

{xk, uk, xk+1, uk+1, . . . , xN}

starting from state xk, it also generates the sequence

{xk+1, uk+1, . . . , xN}

starting from state xk+1.

In other words, the base heuristic is sequentially consistent if it “stays
the course”: when the starting state xk is moved forward to the next state
xk+1 of its state trajectory, the heuristic will not deviate from the remainder
of the trajectory.

As an example, the reader may verify that the nearest neighbor
heuristic described in the traveling salesman Example 1.2.3 and the heuris-
tics used in the multivehicle routing Example 2.3.1 are sequentially consis-
tent. Similar examples include the use of various types of greedy/myopic
heuristics (Section 6.4 of the book [Ber17a] provides additional examples).†
Generally most heuristics used in practice satisfy the sequential consistency
condition at “most” states xk. However, some heuristics of interest may
violate this condition at some states.

A sequentially consistent base heuristic can be recognized by the fact
that it will apply the same control uk at a state xk, no matter what position
xk occupies in a trajectory generated by the base heuristic. Thus a base

† A subtle but important point relates to how one breaks ties while imple-

menting greedy base heuristics. For sequential consistency, one must break ties

in a consistent way at various states, i.e., using a fixed rule at each state en-
countered by the base heuristic. In particular, randomization among multiple

controls, which are ranked as equal by the greedy optimization of the heuris-

tic, violates sequential consistency, and can lead to serious degradation of the
corresponding rollout algorithm’s performance.
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heuristic is sequentially consistent if and only if it defines a legitimate DP
policy. This is the policy that moves from xk to the state xk+1 that lies on
the state trajectory {xk, xk+1, . . . , xN} that the base heuristic generates.
Similarly the policy moves from xn to the state xn+1 for n = k+1, . . . , N−1.

We will now show that the rollout algorithm obtained with a se-
quentially consistent base heuristic has a fundamental cost improvement
property: it yields no worse cost than the base heuristic. The amount of
cost improvement cannot be easily quantified, but is determined by the
performance of the Newton step associated with the rollout policy, so it
can be very substantial; cf. the discussion of Chapter 1.

Proposition 2.3.1: (Cost Improvement Under Sequential Con-
sistency) Consider the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} obtained
with a sequentially consistent base heuristic, and let Jk,π̃(xk) denote
the cost obtained with π̃ starting from xk at time k. Then we have

Jk,π̃(xk) ≤ Hk(xk), for all xk and k, (2.13)

where Hk(xk) denotes the cost of the base heuristic starting from xk.

Proof: We prove this inequality by induction. Clearly it holds for k = N ,
since

JN,π̃ = HN = gN .

Assume that it holds for index k+1. For any state xk, let uk be the control
applied by the base heuristic at xk. Then we have

Jk,π̃(xk) = gk
(
xk, µ̃k(xk)

)
+ Jk+1,π̃

(
fk
(
xk, µ̃k(xk)

))

≤ gk
(
xk, µ̃k(xk)

)
+Hk+1

(
fk
(
xk, µ̃k(xk)

))

= min
uk∈Uk(xk)

[
gk(xk, uk) +Hk+1

(
fk(xk, uk)

)]

≤ gk
(
xk, uk

)
+Hk+1

(
fk(xk, uk)

)

= Hk(xk),

(2.14)

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The third equality is the DP equation for the policy that corresponds
to the base heuristic (this is the step where we need sequential con-
sistency).
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This completes the proof of the cost improvement property (2.13). Q.E.D.

Sequential Improvement

We will next show that the rollout policy has no worse performance than its
base heuristic under a condition that is weaker than sequential consistency.
Let us recall that the rollout algorithm π̃ = {µ̃0, . . . , µ̃N−1} is defined by
the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk),

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)
,

[cf. Eq. (2.12)], and Hk+1

(
fk(xk, uk)

)
denotes the cost of the trajectory of

the base heuristic starting from state fk(xk, uk).

Definition 2.3.2: We say that the base heuristic is sequentially im-
proving if for all xk and k, we have

min
uk∈Uk(xk)

Q̃k(xk, uk) ≤ Hk(xk). (2.15)

In words, the sequential improvement property (2.15) states that

Minimal heuristic Q-factor at xk ≤ Heuristic cost at xk.

Note that when the heuristic is sequentially consistent it is also sequentially
improving. This follows from the preceding relation, since for a sequentially
consistent heuristic, the heuristic cost at xk is equal to the Q-factor of the
control uk that the heuristic applies at xk,

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)
,

which is greater or equal to the minimal Q-factor at xk. This implies Eq.
(2.15). A sequentially improving heuristic yields policy improvement as the
next proposition shows.
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Proposition 2.3.2: (Cost Improvement Under Sequential Im-
provement) Consider the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} ob-
tained with a sequentially improving base heuristic, and let Jk,π̃(xk)
denote the cost obtained with π̃ starting from xk at time k. Then

Jk,π̃(xk) ≤ Hk(xk), for all xk and k,

where Hk(xk) denotes the cost of the base heuristic starting from xk.

Proof: Follows from the calculation of Eq. (2.14), by replacing the last
two steps (which rely on sequential consistency) with Eq. (2.15). Q.E.D.

Thus the rollout algorithm obtained with a sequentially improving
base heuristic, will improve or at least will perform no worse than the base
heuristic, from every starting state xk. In fact the algorithm has a mono-
tonic improvement property, whereby it discovers a sequence of improved
trajectories . In particular, let us denote the trajectory generated by the
base heuristic starting from x0 by

T0 = (x0, u0, . . . , xN−1, uN−1, xN ),

and the final trajectory generated by the rollout algorithm starting from
x0 by

TN = (x0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃N ).

Consider also the intermediate trajectories generated by the rollout algo-
rithm given by

Tk = (x0, ũ0, x̃1, ũ1, . . . , x̃k, uk, . . . , xN−1, uN−1, xN ), k = 1, . . . , N − 1,

where
(x̃k, uk, . . . , xN−1, uN−1, xN ),

is the trajectory generated by the base heuristic starting from x̃k. Then,
by using the sequential improvement condition, it can be proved (see Fig.
2.3.4) that

Cost of T0 ≥ · · · ≥ Cost of Tk ≥ Cost of Tk+1 ≥ · · · ≥ Cost of TN . (2.16)

Empirically, it has been observed that the cost improvement obtained
by rollout with a sequentially improving heuristic is typically considerable
and often dramatic. In particular, many case studies, dating to the middle
1990s, indicate consistently good performance of rollout; see the last section
of this chapter for a bibliography. The DP textbook [Ber17a] provides some
detailed worked-out examples (Chapter 6, Examples 6.4.2, 6.4.5, 6.4.6, and
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Figure 2.3.4 Proof of the monotonicity property (2.16). At x̃k, the kth state
generated by the rollout algorithm, we compare the “current” trajectory Tk whose
cost is the sum of the cost of the current partial trajectory (x0, ũ0, x̃1, ũ1, . . . , x̃k)
and the cost Hk(x̃k) of the base heuristic starting from x̃k, and the trajec-
tory Tk+1 whose cost is the sum of the cost of the partial rollout trajectory
(x0, ũ0, x̃1, ũ1, . . . , x̃k), and the Q-factor Q̃k(x̃k, ũk) of the base heuristic starting
from (x̃k , ũk). The sequential improvement condition guarantees that

Hk(x̃k) ≥ Q̃k(x̃k, ũk),

which implies that
Cost of Tk ≥ Cost of Tk+1.

If strict inequality holds, the rollout algorithm will switch from Tk and follow
Tk+1; cf. the traveling salesman Example 1.2.3.

Exercises 6.11, 6.14, 6.15, 6.16). The price for the performance improve-
ment is extra computation that is typically equal to the computation time
of the base heuristic times a factor that is a low order polynomial of N .
It is generally hard to quantify the amount of performance improvement,
but the computational results obtained from the case studies are consistent
with the Newton step interpretations that we discussed in Chapter 1.

The books [Ber19a] (Section 2.5.1) and [Ber20a] (Section 3.1) show
that the sequential improvement condition is satisfied in the context of
MPC, and is the underlying reason for the stability properties of the MPC
scheme. On the other hand the base heuristic underlying the classical
form of the MPC scheme is not sequentially consistent (see the preceding
references).

Generally, the sequential improvement condition may not hold for a
given base heuristic. This is not surprising since any heuristic (no matter
how inconsistent or silly) is in principle admissible to use as base heuristic.
Here is an example:

Example 2.3.3 (Sequential Improvement Violation)

Consider the 2-stage problem shown in Fig. 2.3.5, which involves two states
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Figure 2.3.5 A 2-stage problem with states x∗
1, x̃1 at stage 1, and states

x∗
2, x̃2 at stage 2. The controls and corresponding transitions are as shown

in the figure. The rollout choice at the initial state x0 is strictly suboptimal,
while the base heuristic choice is optimal. The reason is that the base heuristic
is not sequentially improving and makes the suboptimal choice u1 at x∗

1, but
makes the different (optimal) choice u∗

1 when run from x0.

at each of stages 1 and 2, and the controls shown. Suppose that the unique
optimal trajectory is (x0, u

∗
0, x

∗
1, u

∗
1, x

∗
2), and that the base heuristic produces

this optimal trajectory starting at x0. The rollout algorithm chooses a control
at x0 as follows: it runs the base heuristic to construct a trajectory starting
from x∗

1 and x̃1, with corresponding costs H1(x
∗
1) and H1(x̃1). If

g0(x0, u
∗
0) +H1(x

∗
1) > g0(x0, ũ0) +H1(x̃1), (2.17)

the rollout algorithm rejects the optimal control u∗
0 in favor of the alternative

control ũ0. The inequality above will occur if the base heuristic chooses ū1 at
x∗
1 (there is nothing to prevent this from happening, since the base heuristic

is arbitrary), and moreover the cost g1(x
∗
1, ū1) + g2(x̃2), which is equal to

H1(x
∗
1) is high enough.
Let us also verify that if the inequality (2.17) holds then the heuristic

is not sequentially improving at x0, i.e., that

H0(x0) < min
{
g0(x0, u

∗
0) +H1(x

∗
1), g0(x0, ũ0) +H1(x̃1)

}
.

Indeed, this is true because H0(x0) is the optimal cost

H0(x0) = g0(x0, u
∗
0) + g1(x

∗
1, u

∗
1) + g2(x

∗
2),

and must be smaller than both

g0(x0, u
∗
0) +H1(x

∗
1),

which is the cost of the trajectory (x0, u
∗
0, x

∗
1, u1, x̃2), and

g0(x0, ũ0) +H1(x̃1),

which is the cost of the trajectory (x0, ũ0, x̃1, ũ1, x̃2).
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The preceding example and the monotonicity property (2.16) suggest
a simple enhancement to the rollout algorithm, which detects when the
sequential improvement condition is violated and takes corrective measures.
In this algorithmic variant, called fortified rollout , we maintain the best
trajectory obtained so far, and keep following that trajectory up to the
point where we discover another trajectory that has improved cost.

2.3.2 The Fortified Rollout Algorithm

In this section we describe a rollout variant that implicitly enforces the
sequential improvement property. This variant, called the fortified rollout
algorithm, starts at x0, and generates step-by-step a sequence of states
{x0, x1, . . . , xN} and corresponding sequence of controls. Upon reaching
state xk we have the trajectory

P k = {x0, u0, . . . , uk−1, xk}

that has been constructed by rollout, called permanent trajectory, and we
also store a tentative best trajectory

T k = {x0, u0, . . . , uk−1, xk, uk, xk+1, uk+1, . . . , uN−1, xN}

with corresponding cost

C(T k) =
k−1∑

t=0

gt(xt, ut) + gk(xk, uk) +
N−1∑

t=k+1

gt(xt, ut) + gN(xN ).

The tentative best trajectory T k is the best end-to-end trajectory computed
up to stage k of the algorithm. Initially, T 0 is the trajectory generated by
the base heuristic starting at the initial state x0. The idea now is to discard
the suggestion of the rollout algorithm at every state xk where it produces
a trajectory that is inferior to T k, and use T k instead (see Fig. 2.3.6).

In particular, upon reaching state xk, we run the rollout algorithm
as earlier, i.e., for every uk ∈ Uk(xk) and next state xk+1 = fk(xk, uk), we
run the base heuristic from xk+1, and find the control ũk that gives the
best trajectory, denoted

T̃k = {x0, u0, . . . , uk−1, xk, ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}

with corresponding cost

C(T̃k) =
k−1∑

t=0

gt(xt, ut) + gk(xk, ũk) +
N−1∑

t=k+1

gt(x̃t, ũt) + gN (x̃N ).

Whereas the ordinary rollout algorithm would choose control ũk and move
to x̃k+1, the fortified algorithm compares C(T k) and C(T̃k), and depending



Sec. 2.3 Rollout Algorithms for Discrete Optimization 171

x0 ) . . .

-Factors Current State x

Current State xk

k ũk
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Figure 2.3.6 Schematic illustration of fortified rollout. After k steps, we have
constructed the permanent trajectory

P k = {x0, u0, . . . , uk−1, xk},

and the tentative best trajectory

T k = {x0, u0, . . . , uk−1, xk, uk, xk+1, uk+1, . . . , uN−1, xN},

the best end-to-end trajectory computed so far. We now run the rollout algorithm
at xk, i.e., we find the control ũk that minimizes over uk the sum of gk(xk , uk)
plus the heuristic cost from the state xk+1 = fk(xk , uk), and the corresponding
trajectory

T̃k = {x0, u0, . . . , uk−1, xk, ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}.

If the cost of the end-to-end trajectory T̃k is lower than the cost of T k, we add
(ũk, x̃k+1) to the permanent trajectory and set the tentative best trajectory to
T k+1 = T̃k. Otherwise we add (uk, xk+1) to the permanent trajectory and keep
the tentative best trajectory unchanged: T k+1 = T k.

on which of the two is smaller, chooses uk or ũk and moves to xk+1 or to
x̃k+1, respectively. In particular, if

C(T k) ≤ C(T̃k),

the algorithm sets the next state and corresponding tentative best trajec-
tory to

xk+1 = xk+1, T k+1 = T k,

and if
C(T k) > C(T̃k),

it sets the next state and corresponding tentative best trajectory to

xk+1 = x̃k+1, T k+1 = T̃k.
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In other words the fortified rollout at xk follows the current tenta-
tive best trajectory T k unless a lower cost trajectory T̃k is discovered by
running the base heuristic from all possible next states xk+1.† It follows
that at every state the tentative best trajectory has no larger cost than
the initial tentative best trajectory, which is the one produced by the base
heuristic starting from x0. Moreover, it can be seen that if the base heuris-
tic is sequentially improving, the rollout algorithm and its fortified version
coincide. Experimental evidence suggests that it is often important to use
the fortified version if the base heuristic is not known to be sequentially
improving. Fortunately, the fortified version involves hardly any additional
computational cost.

As expected, when the base heuristic generates an optimal trajectory,
the fortified rollout algorithm will also generate the same trajectory. This
is illustrated by the following example.

Example 2.3.4

Let us consider the application of the fortified rollout algorithm to the problem
of Example 2.3.3 and see how it addresses the issue of cost improvement.
The fortified rollout algorithm stores as initial tentative best trajectory the
optimal trajectory (x0, u

∗
0, x

∗
1, u

∗
1, x

∗
2) generated by the base heuristic at x0.

Then, starting at x0, it runs the heuristic from x∗
1 and x̃1, and (despite the

fact that the ordinary rollout algorithm prefers going to x̃1 rather than x∗
1) it

discards the control ũ0 in favor of u∗
0, which is dictated by the tentative best

trajectory. It then sets the tentative best trajectory to (x0, u∗
0, x

∗
1, u

∗
1, x

∗
2).

We finally note that the fortified rollout algorithm can be used in
a different setting to restore and maintain the cost improvement prop-
erty. Suppose in particular that the rollout minimization at each step is
performed with approximations. For example the control uk may have
multiple independently constrained components, i.e.,

uk = (u1
k, . . . , u

m
k ), Uk(xk) = U1

k (xk)× · · ·× Um
k (xk).

Then, to take advantage of distributed computation, it may be attractive
to decompose the optimization over uk in the rollout algorithm,

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[
gk(xk, uk) +Hk+1

(
fk(xk, uk)

)]
,

into an (approximate) parallel optimization over the components ui
k (or

subgroups of these components). However, as a result of approximate opti-
mization over uk, the cost improvement property may be degraded, even if

† The base heuristic may also be run from a subset of the possible next states

xk+1, as in the case where a simplified version of rollout is used; cf. Section 2.3.4.
Then fortified rollout will still guarantee a cost improvement property.
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the sequential improvement assumption holds. In this case by maintaining
the tentative best trajectory, starting with the one produced by the base
heuristic at the initial condition, we can ensure that the fortified rollout al-
gorithm, even with approximate minimization, will not produce an inferior
solution to the one of the base heuristic.

2.3.3 Using Multiple Base Heuristics - Parallel Rollout

In many problems, several promising heuristics may be available. It is then
possible to use all of these heuristics in the rollout framework. The idea is
to construct a superheuristic, which selects the best out of the trajectories
produced by the entire collection of heuristics. The superheuristic can then
be used as the base heuristic for a rollout algorithm.†

In particular, let us assume that we have m heuristics, and that the
!th of these, given a state xk+1, produces a trajectory

T̃ !
k+1 = {xk+1, ũ!

k+1, xk+2, . . . , ũ!
N−1, x̃

!
N},

and corresponding cost C(T̃ !
k+1). The superheuristic then produces at xk+1

the trajectory T̃ !
k+1 for which C(T̃ !

k+1) is minimum. The rollout algorithm
selects at state xk the control uk that minimizes the minimal Q-factor:

ũk ∈ arg min
uk∈Uk(xk)

min
!=1,...,m

Q̃!
k(xk, uk),

where
Q̃!

k(xk, uk) = gk(xk, uk) + C(T̃ !
k+1)

is the cost of the trajectory (xk, uk, T̃ !
k+1). Note that the Q-factors of the

different heuristics can be computed independently and in parallel. In view
of this fact, the rollout scheme just described is sometimes referred to as
parallel rollout.

An interesting property, which can be readily verified by using the
definitions, is that if all the heuristics are sequentially improving, the same
is true for the superheuristic, something that is also suggested by Fig. 2.3.4.
Indeed, let us write the sequential improvement condition (2.15) for each
of the base heuristics

min
uk∈Uk(xk)

Q̃!
k(xk, uk) ≤ H!

k(xk), ! = 1, . . . ,m,

† A related practically interesting possibility is to introduce a partition of the

state space into subsets, and a collection of multiple heuristics that are specially
tailored to the subsets. We may then select the appropriate heuristic to use on

each subset of the partition. In fact one may use a collection of multiple heuristics

tailored to each subset of the state space partition, and at each state, select out
of all the heuristics that apply, the one that yields minimum cost.
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where Q̃!
k(xk, uk) and H!

k(xk) are Q-factors and heuristic costs that corre-
spond to the !th heuristic. Then by taking minimum over !, we have

min
!=1,...,m

min
uk∈Uk(xk)

Q̃!
k(xk, uk) ≤ min

!=1,...,m
H!

k(xk),

for all xk and k. By interchanging the order of the minimizations of the
left side, we then obtain

min
uk∈Uk(xk)

min
!=1,...,m

Q̃!
k(xk, uk)

︸ ︷︷ ︸
Superheuristic Q-factor

≤ min
!=1,...,m

H!
k(xk)

︸ ︷︷ ︸
Superheuristic cost

,

which is precisely the sequential improvement condition (2.15) for the su-
perheuristic.

2.3.4 Simplified Rollout Algorithms

We will now consider a rollout variant, called simplified rollout , which is
motivated by problems where the control constraint set Uk(xk) is either
infinite or finite but very large. Then the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (2.18)

[cf. Eqs. (2.11) and (2.12)], may be unwieldy, since the number of Q-factors

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)

is accordingly infinite or large.
To remedy this situation, we may replace Uk(xk) with a smaller finite

subset Uk(xk):
Uk(xk) ⊂ Uk(xk).

The rollout control µ̃k(xk) in this variant is one that attains the minimum
of Q̃k(xk, uk) over uk ∈ Uk(xk):

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (2.19)

An example is when Uk(xk) results from discretization of an infinite set
Uk(xk). Another possibility is when by using some preliminary approxi-
mate optimization, we can identify a subset Uk(xk) of promising controls
by using some heuristic method, and to save computation, we restrict at-
tention to this subset. A related possibility is to generate Uk(xk) by some
random search method that explores intelligently the set Uk(xk) with the
aim to minimize Q̃k(xk, uk) [cf. Eq. (2.18)].
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It turns out that the proof of the cost improvement property of Prop.
2.3.2,

Jk,π̃(xk) ≤ Hk(xk), for all xk and k,

goes through if the following modified sequential improvement property
holds:

min
uk∈Uk(xk)

Q̃k(xk, uk) ≤ Hk(xk). (2.20)

This can be seen by verifying that Eq. (2.20) is sufficient to guarantee that
the monotone improvement Eq. (2.16) is satisfied. The condition (2.20)
is very simple to satisfy if the base heuristic is sequentially consistent, in
which case the control uk selected by the base heuristic satisfies

Q̃k(xk, uk) = Hk(xk).

In particular, for the property (2.20) to hold, it is sufficient that Uk(xk)
contains the base heuristic choice uk.

The idea of replacing the minimization (2.18) by the simpler mini-
mization (2.19) can be extended. In particular, by working through the
preceding argument, it can be seen that any policy

π̃ = {µ̃0, . . . , µ̃N−1}

such that µ̃k(xk) satisfies the condition

Q̃k

(
xk, µ̃k(xk)

)
≤ Hk(xk),

for all xk and k, guarantees the modified sequential improvement property
(2.20), and hence also the cost improvement property. A prominent exam-
ple of such an algorithm arises in the multiagent case where u hasm compo-
nents, u = (u1, . . . , um), and the minimization over U1

k (xk)×· · ·×Um
k (xk) is

replaced by a sequence of single component minimizations, one-component-
at-a-time; cf. Section 1.6.5.

2.3.5 Truncated Rollout with Terminal Cost Approximation

An important variation of rollout algorithms is truncated rollout with ter-
minal cost approximation. Here the rollout trajectories are obtained by
running the base policy from the leaf nodes of the lookahead tree, but they
are truncated after a given number of steps, while a terminal cost approxi-
mation is added to the heuristic cost to compensate for the resulting error.
This is important for problems with a large number of stages, and it is also
essential for infinite horizon problems where the rollout trajectories have
infinite length.

One possibility that works well for many problems is to simply set
the terminal cost approximation to zero. Alternatively, the terminal cost
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function approximation may be obtained by using some sophisticated off-
line training process that may involve an approximation architecture such
as a neural network or by using some heuristic calculation based on a
simplified version of the problem. This form of truncated rollout may also
be viewed as an intermediate approach between standard rollout where
there is no truncation and cost function approximation, and approximation
in value space without any rollout.

2.3.6 Model-Free Rollout

We will now consider a rollout algorithm for discrete deterministic op-
timization for the case where we do not know the cost function and the
constraints of the problem. Instead we have access to a base heuristic, and
also a human or software “expert” who can rank any two feasible solutions
without assigning numerical values to them.

We consider the general discrete optimization problem of selecting
a control sequence u = (u0, . . . , uN−1) to minimize a function G(u). For
simplicity we assume that each component uk is constrained to lie in a
given constraint set Uk, but extensions to more general constraint sets are
possible. We assume the following:

(a) A base heuristic with the following property is available: Given any
k < N − 1, and a partial solution (u0, . . . , uk), it generates, for every
ũk+1 ∈ Uk+1, a complete feasible solution by concatenating the given
partial solution (u0, . . . , uk) with a sequence (ũk+1, . . . , ũN−1). This
complete feasible solution is denoted

Sk(u0, . . . , uk, ũk+1) = (u0, . . . , uk, ũk+1, . . . , ũN−1).

The base heuristic is also used to start the algorithm from an artificial
empty solution, by generating all components ũ0 ∈ U0 and a complete
feasible solution (ũ0, . . . , ũN−1), starting from each ũ0 ∈ U0.

(b) An “expert” is available that can compare any two feasible solutions
u and u, in the sense that he/she can determine whether

G(u) > G(u), or G(u) ≤ G(u).

It can be seen that deterministic rollout can be applied to this prob-
lem, even though the cost function G is unknown. The reason is that the
rollout algorithm uses the cost function only as a means of ranking com-
plete solutions in terms of their cost. Hence, if the ranking of any two
solutions can be revealed by the expert, this is all that is needed.† In fact,

† Note that for this to be true, it is important that the problem is deter-
ministic, and that the expert ranks solutions using some underlying (though

unknown) cost function. In particular, the expert’s rankings should have a tran-

sitivity property: if u is ranked better than u′ and u′ is ranked better than u′′,
then u is ranked better than u′′.
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the constraint sets U0, . . . , UN−1 need not be known either, as long as they
can be generated by the base heuristic. Thus, the rollout algorithm can be
described as follows (see Fig. 2.3.7):

We start with an artificial empty solution, and at the typical step,
given the partial solution (u0, . . . , uk), k < N−1, we use the base heuristic
to generate all possible one-step-extended solutions

(u0, . . . , uk, ũk+1), ũk+1 ∈ Uk+1,

and the set of complete solutions

Sk(u0, . . . , uk, ũk+1), ũk+1 ∈ Uk+1.

We then use the expert to rank this set of complete solutions. Finally,
we select the component uk+1 that is ranked best by the expert, extend
the partial solution (u0, . . . , uk) by adding uk+1, and repeat with the new
partial solution (u1, . . . , uk, uk+1).

Except for the (mathematically inconsequential) use of an expert
rather than a cost function, the preceding rollout algorithm can be viewed
as a special case of the one given earlier. As a result several of the roll-
out variants that we have discussed so far (rollout with multiple heuristics,
simplified rollout, and fortified rollout) can also be easily adapted.

Example 2.3.5 (RNA Folding)

In a classical problem from computational biology, we are given a sequence
of nucleotides, represented by circles in Fig. 2.3.8, and we want to “fold”
the sequence in an “interesting” way (introduce pairings of nucleotides that
result in an “interesting” structure). There are some constraints on which
pairings are possible, but we will not go into the details of this (some types
of constraints may require the use of the constrained rollout framework of
Section 2.5). A common constraint is that the pairings should not “cross,”
i.e., given a pairing (i1, i2) there should be no pairing (i3, i4) where either
i3 < i1 and i1 < i4 < i2, or i1 < i3 < i2 and i2 < i4. This type of problem
has a long history of solution by DP, starting with the paper by Zuker and
Stiegler [ZuS81]. There are several formulations, where the aim is to optimize
some criterion, e.g., the number of pairings, or the “energy” of the folding.
However, biologists do not agree on a suitable criterion, and have developed
software to generate “reasonable” foldings, based on semi-heuristic reasoning.
We will develop a rollout approach that makes use of such software without
discussing their underlying principles.

We formulate the folding problem as a discrete optimization problem
involving a pairing decision at each nucleotide in the sequence with at most
three choices (open a pairing, close a pairing, do nothing); see Fig. 2.3.8. To
apply rollout, we need a base heuristic, which given a partial folding, gen-
erates a complete folding (this is the partial folding software shown in Fig.
2.3.8). Two complete foldings can be compared by some other software, called
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Figure 2.3.7 Schematic illustration of model-free rollout with an expert for min-
imizing G(u) subject to

u ∈ U0 × · · ·× UN−1.

We assume that we do not know G and/or U0, . . . , UN−1. Instead we have a base
heuristic, which given a partial solution (u0, . . . , uk), outputs all next controls
ũk+1 ∈ Uk+1, and generates from each a complete solution

Sk(u0, . . . , uk, ũk+1) = (u0, . . . , uk, ũk+1, . . . , ũN−1).

Also, we have a human or software “expert” that can rank any two complete
solutions without assigning numerical values to them. The control that is selected
from Uk+1 by the rollout algorithm is the one whose corresponding complete
solution is ranked best by the expert.

the expert software. An interesting aspect of this problem is that there is no
explicit cost function here (it is internal to the expert software). Thus by
trying different partial folding and expert software, we may obtain multiple
solutions, which may be used for further screening and/or experimental eval-
uation. For a recent implementation and variations, see Liu et al. [LPS21].

One more aspect of the problem that is worth noting is that there are at
most three choices for control at each state, while the problem is deterministic.
As a result, the problem is a good candidate for the use of multistep lookahead.
In particular, with !-step lookahead, the number of Q-factors to be computed
at each state increases from 3 (or less) to 3! (or less).

Learning to Imitate the Expert

To implement model-free rollout, we need both a base heuristic and an
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Figure 2.3.8 Schematic illustration of rollout for the RNA folding problem. The
current state is the partial folding depicted on the left side. There are at most
three choices for control at each state.

expert. None of these may be readily available, particularly the expert,
which involves a hidden cost function that is implicitly used to rank com-
plete solutions. Within this context, it is worth considering the case where
an expert is not available but can be emulated by training with the use
of data. In particular, suppose that we are given a set of control sequence
pairs (us, us), s = 1, . . . , q, with

G(us) > G(us), s = 1, . . . , q, (2.21)

which we can use for training. Such a set may be obtained in a variety
of ways, including querying the expert. We may then train a parametric
approximation architecture such as a neural network to produce a function
G̃(u, r), where r is a parameter vector, and use this function in place of the
unknown G(u) to implement the preceding rollout algorithm.

A method, known as comparison training, has been suggested for
this purpose, and has been used in a variety of game contexts, including
backgammon and chess by Tesauro [Tes89b], [Tes01]. Briefly, given the
training set of pairs (us, us), s = 1, . . . , q, which satisfy Eq. (2.21), we
generate for each (us, us), two solution-cost pairs

(us, 1), (us,−1), s = 1, . . . , q.

A parametric architecture G̃(·, r), involving a parameter vector r, such as
a neural network, is then trained by some form of regression with these
data to produce an approximation G̃(·, r̄) to be used in place of G(·) in a
rollout scheme. We refer to Chapter 3 and to the aforementioned papers
by Tesauro for implementation details of the regression procedure. See also
Section 3.4 on parametric approximation in policy space through the use
of classification methods.
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Learning the Base Policy’s Q-Factors

In another type of imitation approach, we view the base policy decisions as
being selected by a process the mechanics of which are not observed except
through its generated cost samples at the various stages. In particular,
the stage costs starting from any given partial solution (u0, . . . , uk) are
added to form samples of the base policy’s Q-factorsQk(u0, . . . , uk). In this
way we can obtain Q-factor samples starting from many partial solutions
(u0, . . . , uk). Moreover, a single complete solution (u0, . . . , uN−1) generated
by the base policy provides multiple Q-factor samples, one for each of the
partial solutions (u0, . . . , uk).

We can then use the sample (partial solution, cost) pairs in conjunc-
tion with a training method (see Chapter 3) in order to construct paramet-
ric approximations

Q̃k(u0, . . . , uk, rk), k = 1, . . . , N,

to the true Q-factors Qk(u0, . . . , uk), where rk is the parameter vector.
Once the training has been completed and the Q-factors Q̃k(u0, . . . , uk, rk)
have been obtained for all k, we can construct complete solutions step-
by-step, by selecting the next component ũk+1, given the partial solution
(u0, . . . , uk), through the minimization

ũk+1 ∈ arg min
uk+1∈Uk+1

Q̃k+1(ũ0, . . . , ũk, uk+1, rk+1).

Note that even though we are “learning” the base policy, our aim is
not to imitate it, but rather to generate a rollout policy. The latter policy
will make better decisions than the base policy, thanks to the cost improve-
ment property of rollout. This points to an important issue of exploration:
we must ensure that the training set of sample (partial solution, cost) pairs
is broadly representative, in the sense that it is not unduly biased towards
sample pairs that are generated by the base policy.

2.4 ROLLOUT AND APPROXIMATION IN VALUE SPACE WITH
MULTISTEP LOOKAHEAD

We will now consider approximation in value space with multistep looka-
head minimization, possibly also involving some form of rollout. Figure
2.4.1 describes the case of pure (nontruncated) form of rollout with two-
step lookahead for deterministic problems. In particular, suppose that after
k steps we have reached state xk. We then consider the set of all possible
two-step-ahead states xk+2, we run the base heuristic starting from each
of them, and compute the two-stage cost to get from xk to xk+2, plus the
cost of the base heuristic from xk+2. We select the state, say x̃k+2, that
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Figure 2.4.1 Illustration of multistep rollout with ! = 2 for deterministic prob-
lems. We run the base heuristic from each leaf xk+! at the end of the lookahead
graph. We then construct an optimal solution for the lookahead minimization
problem, where the heuristic cost is used as terminal cost approximation. We
thus obtain an optimal !-step control sequence through the lookahead graph, use
the first control in the sequence as the rollout control, discard the remaining con-
trols, move to the next state, and repeat. Note that the multistep lookahead
minimization may involve approximations aimed at simplifying the associated
computations.

is associated with minimum cost, compute the controls ũk and ũk+1 that
lead from xk to x̃k+2, choose ũk as the next control and xk+1 = fk(xk, ũk)
as the next state, and discard ũk+1.

The extension of the algorithm to lookahead of more than two steps
is straightforward: instead of the two-step-ahead states xk+2, we run the
base heuristic starting from all the possible !-step ahead states xk+!, etc.
For cases where the !-step lookahead minimization is very time consuming,
we may consider variants involving approximations aimed at simplifying
the associated computations.

An important variation is truncated rollout with terminal cost ap-
proximation. Here the rollout trajectories are obtained by running the
base heuristic from the leaf nodes of the lookahead graph, and they are
truncated after a given number of steps, while a terminal cost approxima-
tion is added to the heuristic cost to compensate for the resulting error;
see Fig. 2.4.2. One possibility that works well for many problems, partic-
ularly when the combined lookahead for minimization and base heuristic
simulation is long, is to simply set the terminal cost approximation to zero.
Alternatively, the terminal cost function approximation can be obtained
by problem approximation or by using some sophisticated off-line training
process that may involve an approximation architecture such as a neural
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Selective Depth Lookahead Tree

States xk+1

proximation

States xk+2

Truncated Rollout Terminal Cost Approximation
Truncated Rollout Terminal Cost ApproximationTruncated Rollout Terminal Cost Approximation J̃

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

Current State xk
. . .x0

-Factors Current State x

Figure 2.4.2 Illustration of truncated rollout with two-step lookahead and a
terminal cost approximation J̃ . The base heuristic is used for a limited number
of steps and the terminal cost is added to compensate for the remaining steps.

network. Generally, the terminal cost approximation is especially impor-
tant if a large portion of the total cost is incurred upon termination (this
is true for example in games).

Note that the preceding algorithmic scheme can be viewed as multi-
step approximation in value space, and it can be interpreted as a Newton
step, with suitable starting point that is determined by the truncated roll-
out with the base heuristic, and the terminal cost approximation. This
interpretation is possible once the discrete optimal control problem is re-
formulated to an equivalent infinite horizon SSP problem; cf. the discussion
of Sections 1.6.2 and 2.1. Thus the algorithm inherits the fast convergence
property of the Newton step, which we have discussed in the context of
infinite horizon problems in Section 1.5; see also the book [Ber22a].

The architecture of Fig. 2.4.2 contains as a special case the general
multistep approximation in value space scheme, where there is no rollout
at all; i.e., the leaves of the multistep lookahead tree are evaluated with the
function J̃ . Figure 2.4.3 illustrates this special case, where for notational
simplicity we have denoted the current state by x0. The illustration involves
an acyclic graph with a single root (the current state) and ! layers, with
the nth layer consisting of the states xn that are reachable from x0 with a
feasible sequence of n controls. In particular, there is an arc for every state
x1 of the 1st layer that can be reached from x0 with a feasible control, and
similarly an arc for every pair of states (xn, xn+1), of layers n and n + 1,



Sec. 2.4 Rollout and Approximation in Value Space with Multistep Lookahead183

0 Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer !

Terminal Cost Approximation State 1 State 2 2-State/2-Control Ex-

Layer n x

+ 1 (may be the cost of a heuristic)

Shortest Path

Shortest Path Move Chosen
(Current State)x0

: Feature-based parametric architecture State J̃(x!)

) x!

x
∗

1

x
∗

2

x
∗

n

x
∗

!

Figure 2.4.3 Illustration of the general !-step approximation in value space
scheme with a terminal cost approximation J̃ where x0 denotes the current state.
It involves an acyclic graph of ! layers, with layer n, n = 1, . . . , !, consisting of all
the states xn that can be reached from x0 with a sequence of n feasible controls.
In !-step approximation in value space, we obtain a trajectory

{x0, x
∗
1, . . . , x

∗
!}

that minimizes the shortest distance from x0 to x! plus J̃(x!). We then use the
control that corresponds to the first move x0 → x∗

1.

respectively, for which xn+1 can be reached from xn with a feasible control.
The cost of each of these arcs is the stage cost of the corresponding state-
control pair, minimized over all possible controls that correspond to the
same pair (xn, xn+1). Mathematically, the cost of the arc (xn, xn+1) is

ĝn(xn, xn+1) = min
{un∈Un(xn) | xn+1=fn(xn,un)}

gn(xn, un). (2.22)

For the states x! of the last layer there is also a given terminal cost approx-
imation J̃(x!), possibly obtained through off-line training and/or rollout
with a base policy. It can be thought of as the cost of an artificial arc
connecting x! to an artificial termination state.

Once we have computed all the shortest distances D(x!) from x0 to
all states x! of the last layer !, we obtain the !-step lookahead control to
be applied at the current state x0, by minimizing over x! the sum

D(x!) + J̃(x!).
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If x∗
! is the state that attains the minimum, we generate the corresponding

trajectory (x0, x∗
1, . . . , x

∗
! ), and then use the control that corresponds to

the first move x0 → x∗
1; see Fig. 2.4.3. Note that the shortest path prob-

lems from x0 to all states xn of all the layers n = 1, . . . , ! can be solved
simultaneously by backward DP (start from layer ! and go back towards
x0).

Long Lookahead for Deterministic Problems

The architecture of Figs. 2.4.2 and 2.4.3 is similar to the one we discussed
in Section 1.1 for AlphaZero and related programs. However, because it is
adapted to deterministic problems, it is much simpler to implement and to
use. In particular, the truncated rollout portion does not involve expensive
Monte Carlo simulation, while the multistep lookahead minimization por-
tion involves a deterministic shortest path problem, which is much easier
to solve that its stochastic counterpart. These favorable characteristics can
be exploited to facilitate implementations that involve very long lookahead.

Generally speaking, longer lookahead is desirable because it typically
results in improved performance. We will adopt this as a working hypoth-
esis. It is typically true in practice, although it cannot be established
analytically in the absence of additional assumptions.† On the other hand,
the on-line computational cost of multistep lookahead increases, often ex-
ponentially, with the length of lookahead. We conclude that we should aim
to use a lookahead that is as long as is allowed by the on-line computational
budget (the amount of time that is available for calculating a control to
apply at the current state).

Long Lookahead by Using Truncated Rollout

Our preceding discussion leads to the question of how to economize in
computation in order to effectively increase the length of the multistep
lookahead within a given on-line computational budget. One way to do
this, which we have already discussed, is the use of truncated rollout that
explores forward through a deterministic base policy at far less computa-
tional cost than lookahead minimization of equal length. As an example,
let us consider the possibility of starting with a terminal cost function J̃ ,
possibly generated by off-line training, and use as base policy for rollout

† Indeed, there are examples where as the size ! of the lookahead becomes

longer, the performance of the multistep lookahead policy deteriorates (see [Ber17a],

Section 6.1.2, or [Ber19a], Section 2.2.1). However, these examples are isolated
and artificial. They are not representative of practical experience.
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the one-step lookahead policy µ̃, defined by J̃ using the equation†

µ̃(x) ∈ arg min
u∈U(x)

[
g(x, u) + J̃

(
f(x, u)

)]
. (2.23)

Let us assume that the principal computation in the minimization of
Eq. (2.23) is the calculation of J̃

(
f(x, u)

)
, and compare two possibilities:

(a) Using !-step lookahead minimization with J̃ as the terminal cost ap-
promimation without any rollout ; cf. Fig. 2.4.3.

(b) Using one-step lookahead minimization, with (! − 1)-step truncated
rollout and J̃ as the terminal cost approximation.

Note that scheme (b) is the one used by the TD-Gammon program of
Tesauto and Galperin [TeG96], out of necessity, because multistep looka-
head is very expensive in backgammon, due to the rapid growth of the
lookahead graph as ! increases (cf. the discussion of Section 1.1).

Suppose that the control set U(x) has m elements for every x. Then
the !-step lookahead minimization scheme (a) requires the calculation of
as many as m! values of J̃ , because the number of leaves of the m-step
lookahead graph are as many asm!. Let us now calculate the corresponding
number of calculations of the value of J̃ for scheme (b).

The first lookahead stage starting from the current state xk requires
m calculations corresponding to the m controls in U(xk), and yields cor-
responding states xk+1, which are as many as m. For each of these states
xk+1, we must calculate a sequence of !− 1 controls using the base policy
(2.23) for stages (k + 1) to (k + !). Each of these ! − 1 controls requires
m calculations of the value of J̃ . Thus, for the ! − 1 stages of truncated
rollout, there are m ·(!−1) calculations of the value of J̃ per state xk+1, for
a total of as many as m2 ·(!−1) calculations. Adding the m calculations at
state xk, we conslude that scheme (b) requires a total of as many as m2 · !
calculations of the value of J̃ .

In conclusion, both schemes (a) and (b) above look forward for !
stages, but their associated total computation grows exponentially and
linearly with !, respectively. Thus, for a given computational budget, short
lookahead minimization with long truncated rollout, can increase the total
amount of lookahead and improve the performance of approximation in
value space schemes. This is particularly so since based on the Newton step
interpretations of approximation in value space of Section 1.5, truncated
rollout with a reasonably good (e.g., stable) base policy often works about
as well as long lookahead minimization. Extensive computational practice,
starting with the rollout/TD-Gammon scheme of [TeG96], is consistent
with this assessment.

† For simplicity, we use stationary system notation, ommiting the time sub-
scripts of U , g, and f .
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Figure 2.4.4 Illustration of the forward DP algorithm for computing the shortest
distances from the current state x0 to all the states xn of the layers n = 1, . . . , !.
The shortest distance Dn+1(xn+1) to a state xn+1 of layer n is obtained by
minimizing over all predecessor states xn the sum

ĝn(xn, xn+1) +Dn(xn).

In the following two sections, we will explore two alternative ways to
speed up the lookahead minimization calculation, thereby allowing a larger
number ! of computational stages for a given on-line computational budget.
These are based on iterative deepening of the shortest path computation,
and pruning of the lookahead minimization graph.

2.4.1 Iterative Deepening Using Forward Dynamic Programming

As noted earlier, the shortest path problems from x0 to x! in Fig. 2.4.3 can
be solved simultaneously by the familiar backward DP that starts from
layer ! and goes towards x0. An important alternative for solving these
problems is the forward DP algorithm. This is the same as the backwards
DP algorithm with the direction of the arcs reversed (start from x0 and go
towards layer !). In particular, the shortest distances Dn+1(xn+1) to layer
n + 1 states are obtained from the shortest distances Dn(xn) to layer n
states through the equation

Dn+1(xn+1) = min
xn

[
ĝn(xn, xn+1) +Dn(xn)

]
,
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Figure 2.4.5 Illustration of iterative deepening with pruning within the context
of forward DP.

which is also illustrated in Fig. 2.4.4. Here ĝn(xn, xn+1) is the cost (or
length) of the arc (xn, xn+1); cf. Eq. (2.22).

In particular, the solution of the !-step lookahead problem is obtained
from the shortest path to the state x∗

! of layer ! that minimizes D!(x!) +
J̃(x!). The idea of iterative deepening is to progressively solve the n-step
lookahead problem first for n = 1, then for n = 2, and so on, until our
on-line computational budget is exhausted . In addition to fitting perfectly
the mechanism of the forward DP algorithm, this scheme has the character
of an “anytime” algorithm; i.e., it returns a feasible solution to a lookahead
minimization of some depth, even if it is interrupted because the limit of our
computational budget has been reached. In practice this is an important
advantage, well known from chess programming, which allows us to keep
on aiming for longer lookahead minimization, within the limit imposed by
our computational budget constraint.

Iterative Deepening Combined with Pruning

A principal difficulty in approximation in value space with !-step lookahead
stems from the rapid expansion of the lookahead graph as ! increases. One
way to mitigate this difficulty is to “prune” the lookahead minimization
graph, i.e., to delete some of its arcs in order to expedite the shortest path
computations from the current state to the states of subsequent layers; see
Fig. 2.4.5. One possibility is to combine pruning with iterative deepening
by eliminating from the computation states x̂n of layer n such that the
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x0 Layer 1 Layer 2 Layer(Current State)

Figure 2.4.6 Illustration of the !-step lookahead minimization problem and its
suboptimal solution with the IMR algorithm. The algorithm maintains a con-
nected acyclic subgraph S as shown. At each iteration it expands S by selecting
a leaf node of S and by adding its neighbor nodes to S (if not already in S). The
leaf node, denoted x∗, is the one that minimizes over all leaf nodes x of S the
sum of the shortest distance D(x) from x0 to x and a “heuristic cost” H(x).

n-step lookahead cost
Dn(x̂n) + J̃(x̂n)

is “far from the minimum” over xn. This in turn prunes automatically
some of the states of the next layer n+1. The rationale is that such states
are “unlikely’ to be part of the shortest path that we aim to compute.
Note that this type of pruning is progressive, i.e., we prune states in layer
n before pruning states in layer n+ 1.

2.4.2 Incremental Multistep Rollout

We will now consider a more flexible form of the rollout scheme, which
we call incremental multistep rollout (IMR). It applies a base heuristic
and a forward DP computation to a sequence of subgraphs of a multistep
lookahead graph, with the size of the subgraphs expanding iteratively. In
particular, in incremental rollout a connected subgraph of multiple paths is
iteratively extended starting from the current state going towards the end
of the lookahead horizon, instead of extending a single path as in rollout.
This is similar to what is done in Monte Carlo Tree Search (MCTS, to be
discussed later), which is also designed to solve approximately general mul-
tistep lookahead minimization problems (including stochastic ones), and
involves iterative expansion of an acyclic lookahead graph to new nodes,
as well as backtracking to previously encountered nodes. However, incre-
mental rollout seems to be more appropriate than MCTS for deterministic
problems, where there are no random variables in the problem’s model and
therefore Monte Carlo simulation does not make sense.
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The IMR algorithm starts with and maintains a connected acyclic
subgraph S of the given multistep lookahead graph G, which contains x0.
At each iteration it expands S by selecting a leaf node of S and by adding
its neighbor nodes to S (if not already in S); see Fig. 2.4.6. The leaf node,
denoted x∗, is the one that minimizes (over all leaf nodes x of S) the sum

D(x) +H(x),

where

D(x) is the shortest distance from x0 to the leaf node x using only
arcs that belong to S. This can be computed by forward DP.

H(x) is a “heuristic cost” corresponding to x. This is defined as the
sum of three terms:

(a) The cost of the base heuristic starting from node x and ending
at one of the states x! in the last layer !.

(b) The terminal cost approximation J̃(x!), where x! is the state
obtained via the base heuristic as in (a) above.

(c) An additional penalty P (x) that depends on the layer to which
x belongs. As an example, we will assume here that

P (x) = δ · (the layer index of x),

where δ is a positive parameter. Thus P (x) adds a cost of δ for
each extra arc to reach x from x0, and penalizes nodes x that lie
in more distant layers from the root x0. It thus encourages the
algorithm to “backtrack” and select nodes x∗ that lie in layers
closer to x0.

The role of the parameter δ is noteworthy and affects significantly the
nature of the algorithm. When δ = 0, the initial graph S consists of the
single state x0, and the base heuristic is sequentially improving, it can be
seen that IMR performs exactly like the rollout algorithm for solving the
!-step lookahead minimization problem. On the other hand when δ is large
enough, the algorithm operates like the forward DP algorithm. The reason
is that a very large value of δ forces the algorithm to expand all nodes of
a given layer before proceeding to the next layer.

Generally, as δ increases, the algorithm tends to backtrack more often,
and to generate more paths through the graph, thereby visiting more nodes
and increasing the number of applications of the base heuristic. Thus δ
may be viewed as an exploration parameter ; when δ is large the algorithm
tends to explore more paths thereby improving the quality of the multistep
lookahead minimization, at the expense of greater computational effort.
In the absence of additional problem-specific information, favorable values
of δ should be obtained through experimentation. One may also consider
alternative and more adaptive schemes; for example with a δ that depends
on x0, and is adjusted in the course of the computation.
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2.5 CONSTRAINED FORMS OF ROLLOUT ALGORITHMS

In this section we will discuss constrained deterministic DP problems, in-
cluding challenging combinatorial optimization and integer programming
problems. We introduce a rollout algorithm, which relies on a base heuristic
and applies to problems with general trajectory constraints. Under suitable
assumptions, we will show that if the base heuristic produces a feasible so-
lution, the rollout algorithm has a cost improvement property: it produces
a feasible solution, whose cost is no worse than the base heuristic’s cost.

Before going into formal descriptions of the constrained DP problem
formulation and the corresponding algorithms, it is worth to revisit the
broad outline of the rollout algorithm for deterministic DP:

(a) It constructs a sequence {T0, T1, . . . , TN} of complete system trajec-
tories with monotonically nonincreasing cost (assuming a sequential
improvement condition).

(b) The initial trajectory T0 is the one generated by the base heuristic
starting from x0, and the final trajectory TN is the one generated by
the rollout algorithm.

(c) For each k, the trajectories Tk, Tk+1, . . . , TN share the same initial
portion (x0, ũ0, . . . , ũk−1, x̃k).

(d) For each k, the base heuristic is used to generate a number of can-
didate trajectories, all of which share the initial portion with Tk, up
to state x̃k. These candidate trajectories correspond to the controls
uk ∈ Uk(xk). (In the case of fortified rollout, these trajectories include
the current “tentative best” trajectory.)

(e) For each k, the next trajectory Tk+1 is the candidate trajectory that
is best in terms of total cost.

In our constrained DP formulation, to be described shortly, we intro-
duce a trajectory constraint T ∈ C, where C is some subset of admissible
trajectories. A consequence of this is that some of the candidate trajec-
tories in (d) above, may be infeasible. Our modification to deal with this
situation is simple: we discard all the candidate trajectories that violate the
constraint, and we choose Tk+1 to be the best of the remaining candidate
trajectories, the ones that are feasible.

Of course, for this modification to be viable, we have to guarantee
that at least one of the candidate trajectories will satisfy the constraint for
every k. For this we will rely on a sequential improvement condition that we
will introduce shortly. For the case where this condition does not hold, we
will introduce a fortified version of the algorithm, which requires only that
the base heuristic generates a feasible trajectory T0 starting from the initial
condition x0. Thus to apply reliably the constrained rollout algorithm, we
only need to know a single feasible solution, i.e., a trajectory T0 that starts
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at x0 and satisfies the constraint T0 ∈ C.

Constrained Problem Formulation

We assume that the state xk takes values in some (possibly infinite) set and
the control uk takes values in some finite set. The finiteness of the control
space is only needed for implementation purposes of the rollout algorithms
to be described shortly. The algorithm can be defined without the finiteness
condition, and makes sense, provided the implementation issues associated
with infinite control spaces can be dealt with. A sequence of the form

T = (x0, u0, x1, u1, . . . , uN−1, xN ), (2.24)

where
xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (2.25)

is referred to as a complete trajectory. Our problem is stated succinctly as

min
T∈C

G(T ), (2.26)

where G is some cost function and C is the constraint set.
Note that G need not have the additive form

G(T ) = gN (xN ) +
N−1∑

k=0

gk(xk, uk), (2.27)

which we have assumed so far. Thus, except for the finiteness of the control
space, which is needed for implementation of rollout, this is a very general
optimization problem. In fact, later we will simplify the problem further
by eliminating the state transition structure of Eq. (2.25).†

Trajectory constraints can arise in a number of ways. A relatively
simple example is the standard problem formulation for deterministic DP:
an additive cost of the form (2.27), where the controls satisfy the time-
uncoupled constraints uk ∈ Uk(xk) [so here C is the set of trajectories that
are generated by the system equation with controls satisfying uk ∈ Uk(xk)].
In a more complicated constrained DP problem, there may be constraints
that couple the controls of different stages such as

gmN (xN ) +
N−1∑

k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M, (2.28)

† Actually, similar to our discussion on model-free rollout in Section 2.3.6,

it is not essential that we know the explicit form of the cost function G and

the constraint set C. For our constrained rollout algorithms, it is sufficient to
have access to a human or software expert that can determine whether a given

trajectory T is feasible, i.e., satisfies the constraint T ∈ C, and also to be able to

compare any two feasible trajectories T1 and T2, based on some internal process
that is unknown to us, without assigning numerical values to them.
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Figure 2.5.1 An example of a constrained traveling salesman problem; cf. Ex-
ample 2.5.1. We want to find a minimum cost tour that has safety cost less or
equal to 10. The safety costs of the six possible tours are given in the table on
the right. The (unconstrained) minimum cost tour, ABDCA, does not satisfy the
safety constraint. The optimal constrained tour is ABCDA.

where gmk and bm are given functions and scalars, respectively. Examples
of this type include multiobjective or Pareto optimization problems, where
there are multiple cost functions of interest, and all but one of the cost
functions are treated through constraints (see e.g., [Ber17a], Ch. 2). Ex-
amples where difficult trajectory constraints arise also include situations
where the control contains some discrete components, which once chosen
must remain fixed for multiple time periods.

Here is a discrete optimization example involving the traveling sales-
man problem.

Example 2.5.1 (A Constrained Form of the Traveling
Salesman Problem)

Let us consider a constrained version of the traveling salesman problem of
Example 1.2.2. We want to find a minimum travel cost tour that additionally
satisfies a safety constraint that the “safety cost” of the tour should be less
than a certain threshold; see Fig. 2.5.1. This constraint need not have the
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additive structure of Eq. (2.28). We are simply given a safety cost for each
tour (see the table at the bottom right), which is calculated in a way that is
of no further concern to us. In this example, for a tour to be admissible, its
safety cost must be less than or equal to 10. Note that the (unconstrained)
minimum cost tour, ABDCA, does not satisfy the safety constraint.

Using a Base Heuristic for Constrained Rollout

We will now describe formally the constrained rollout algorithm. We as-
sume the availability of a base heuristic, which for any given partial tra-
jectory

yk = (x0, u0, x1, . . . , uk−1, xk),

can produce a (complementary) partial trajectory

R(yk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

that starts at xk and satisfies the system equation

xt+1 = ft(xt, ut), t = k, . . . , N − 1.

Thus, given yk and any control uk, we can use the base heuristic to obtain
a complete trajectory as follows:

(a) Generate the next state xk+1 = fk(xk, uk).

(b) Extend yk to obtain the partial trajectory

yk+1 =
(
yk, uk, fk(xk, uk)

)
.

(c) Run the base heuristic from yk+1 to obtain the partial trajectory
R(yk+1).

(d) Join the two partial trajectories yk+1 and R(yk+1) to obtain the com-
plete trajectory

(
yk, uk, R(yk+1)

)
, which is denoted by Tk(yk, uk):

Tk(yk, uk) =
(
yk, uk, R(yk+1)

)
. (2.29)

This process is illustrated in Fig. 2.5.2. Note that the partial trajectory
R(yk+1) produced by the base heuristic depends on the entire partial tra-
jectory yk+1, not just the state xk+1.

A complete trajectory Tk(yk, uk) of the form (2.29) is generally fea-
sible for only the subset Ûk(yk) of controls uk that maintain feasibility:

Ûk(yk) =
{
uk | Tk(yk, uk) ∈ C

}
. (2.30)

Our rollout algorithm starts from a given initial state ỹ0 = x̃0, and gener-
ates successive partial trajectories ỹ1, . . . , ỹN , of the form

ỹk+1 =
(
ỹk, ũk, fk(x̃k, ũk)

)
, k = 0, . . . , N − 1, (2.31)
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Figure 2.5.2 The trajectory generation mechanism of the rollout algorithm. At
stage k, and given the current partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

which starts at x̃0 and ends at x̃k, we consider all possible next states xk+1 =
fk(x̃k, uk), run the base heuristic starting at yk+1 = (ỹk , uk, xk+1), and form the
complete trajectory Tk(ỹk , uk). Then the rollout algorithm:

(a) Finds ũk, the control that minimizes the cost G
(
Tk(ỹk , uk)

)
over all uk for

which the complete trajectory Tk(ỹk, uk) is feasible.

(b) Extends ỹk by
(
ũk, fk(x̃k, ũk)

)
to form ỹk+1.

where x̃k is the last state component of ỹk, and ũk is a control that min-
imizes the heuristic cost G

(
Tk(ỹk, uk)

)
over all uk for which Tk(ỹk, uk) is

feasible. Thus at stage k, the algorithm forms the set Uk(ỹk) [cf. Eq. (2.30)]
and selects from Uk(ỹk) a control ũk that minimizes the cost of the complete
trajectory Tk(ỹk, uk):

ũk ∈ arg min
uk∈Uk(ỹk)

G
(
Tk(ỹk, uk)

)
; (2.32)

see Fig. 2.5.2. The objective is to produce a feasible final complete trajec-
tory ỹN , which has a cost G(ỹN ) that is no larger than the cost of R(ỹ0)
produced by the base heuristic starting from ỹ0, i.e.,

G(ỹN ) ≤ G
(
R(ỹ0)

)
.

Note that Tk(ỹk, uk) is not guaranteed to be feasible for any given
uk (i.e., may not belong to C), but we will assume that the constraint set
Uk(ỹk) of problem (2.32) is nonempty, so that our rollout algorithm is well-
defined. We will later modify our algorithm so that it is well-defined under
the weaker assumption that just the complete trajectory generated by the
base heuristic starting from the initial state ỹ0 is feasible, i.e., R(ỹ0) ∈ C.
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Constrained Rollout Algorithm

The algorithm starts at stage 0 and sequentially proceeds to the last
stage. At the typical stage k, it has constructed a partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k) (2.33)

that starts at the given initial state ỹ0 = x̃0, and is such that

x̃t+1 = ft(x̃t, ũt), t = 0, 1, . . . , k − 1.

The algorithm then forms the set of controls

Uk(ỹk) =
{
uk | Tk(ỹk, uk) ∈ C

}

that is consistent with feasibility [cf. Eq. (2.30)], and chooses a control
ũk ∈ Uk(ỹk) according to the minimization

ũk ∈ arg min
uk∈Uk(ỹk)

G
(
Tk(ỹk, uk)

)
, (2.34)

[cf. Eq. (2.32)], where

Tk(ỹk, uk) =
(
ỹk, uk, R

(
ỹk, uk, fk(x̃k, uk)

))
;

[cf. Eq. (2.29)]. Finally, the algorithm sets

x̃k+1 = fk(x̃k, ũk), ỹk+1 = (ỹk, ũk, x̃k+1),

[cf. Eq. (2.31)], thus obtaining the partial trajectory ỹk+1 to start the
next stage.

It can be seen that our constrained rollout algorithm is not much
more complicated or computationally demanding than its unconstrained
version where the constraint T ∈ C is not present (as long as checking
feasibility of a complete trajectory T is not computationally demanding).
Note, however, that our algorithm makes essential use of the deterministic
character of the problem, and does not admit a straightforward extension
to stochastic problems, since checking feasibility of a complete trajectory
is typically difficult in the context of these problems.

The rollout algorithm just described is illustrated in Fig. 2.5.3 for our
earlier traveling salesman Example 2.5.1. Here we want to find a minimum
travel cost tour that additionally satisfies a safety constraint, namely that
the “safety cost” of the tour should be less than a certain threshold. Note
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Figure 2.5.3 The constrained traveling salesman problem; cf. Example 2.5.1,
and its rollout solution using the base heuristic shown, which completes a partial
tour as follows:

At A it yields ACDBA.
At AB it yields ABCDA.
At AC it yields ACBDA.
At AD it yields ADCBA.

This base heuristic is not assumed to have any special structure. It is just capable
of completing every partial tour without regard to any additional considerations.
Thus for example the heuristic generates at A the complete tour ACDBA, and it
switches to the tour ACBDA once the salesman moves to AC.

At city A, the rollout algorithm:

(a) Considers the partial tours AB, AC, and AD.

(b) Uses the base heuristic to obtain the corresponding complete tours ABCDA,
ACBDA, and ADCBA.

(c) Discards ADCBA as being infeasible.

(d) Compares the other two tours, ABCDA and ACBDA, finds ABCDA to
have smaller cost, and selects the partial tour AB.

(e) At AB, it considers the partial tours ABC and ABD.

(f) It uses the base heuristic to obtain the corresponding complete tours ABCDA
and ABDCA, and discards ABDCA as being infeasible.

(g) It finally selects the complete tour ABCDA.
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that the minimum cost tour, ABDCA, in this example does not satisfy
the safety constraint. Moreover, the tour ABCDA obtained by the rollout
algorithm has barely smaller cost than the tour ACDBA generated by the
base heuristic starting from A. In fact if the travel cost D→A were larger,
say 25, the tour produced by constrained rollout would be more costly than
the one produced by the base heuristic starting from A. This points to the
need for a constrained version of the notion of sequential improvement and
for a fortified variant of the algorithm, which we discuss next.

Sequential Consistency, Sequential Improvement, and the Cost
Improvement Property

We will now introduce sequential consistency and sequential improvement
conditions guaranteeing that the control set Uk(ỹk) in the minimization
(2.34) is nonempty, and that the costs of the complete trajectories Tk(ỹk, ũk)
are improving with each k in the sense that

G
(
Tk+1(ỹk+1, ũk+1)

)
≤ G

(
Tk(ỹk, ũk)

)
, k = 0, 1, . . . , N − 1,

while at the first step of the algorithm we have

G
(
T0(ỹ0, ũ0)

)
≤ G

(
R(ỹ0)

)
.

It will then follow that the cost improvement property

G(ỹN ) ≤ G
(
R(ỹ0)

)

holds.

Definition 2.5.1: We say that the base heuristic is sequentially con-
sistent if whenever it generates a partial trajectory

(xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

starting from a partial trajectory yk, it also generates the partial tra-
jectory

(xk+1, uk+1, xk+2, uk+2, . . . , uN−1, xN ),

starting from the partial trajectory yk+1 =
(
yk, uk, xk+1

)
.

As we have noted in the context of unconstrained rollout, greedy
heuristics tend to be sequentially consistent. Also any policy [a sequence
of feedback control functions µk(yk), k = 0, 1, . . . , N−1] for the DP problem
of minimizing the terminal cost G(yN ) subject to the system equation

yk+1 =
(
yk, uk, fk(xk, uk)

)
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and the feasibility constraint yN ∈ C can be seen to be sequentially consis-
tent. For an example where sequential consistency is violated, consider the
base heuristic of the traveling salesman Example 2.5.1. From Fig. 2.5.3, it
can be seen that the base heuristic at A generates ACDBA, but from AC
it generates ACBDA, thus violating sequential consistency.

For a given partial trajectory yk, let us denote by yk∪R(yk) the com-
plete trajectory obtained by joining yk with the partial trajectory generated
by the base heuristic starting from yk. Thus if

yk = (x0, u0, . . . , uk−1, xk)

and
R(yk) = (xk, uk, . . . , uN−1, xN ),

we have

yk ∪R(yk) = (x0, u0, . . . , uk−1, xk, uk, . . . , uN−1, xN ).

Definition 2.5.2: We say that the base heuristic is sequentially im-
proving if for every k = 0, 1, . . . , N − 1 and partial trajectory yk for
which yk ∪R(yk) ∈ C, the set Ûk(yk) is nonempty, and we have

G
(
yk ∪R(yk)

)
≥ min

uk∈Ûk(yk)
G
(
Tk(yk, uk)

)
. (2.35)

Note that for a base heuristic that is not sequentially consistent, the
condition yk ∪R(yk) ∈ C does not imply that the set Ûk(yk) is nonempty.
The reason is that starting from the next state

yk+1 =
(
yk, uk, fk(xk, uk)

)
,

the base heuristic may generate a different trajectory than from yk, even if
it applies uk at yk. Thus we need to include nonemptiness of Ûk(yk) as a
requirement in the preceding definition of sequential improvement (in the
fortified version of the algorithm to be discussed shortly, this requirement
will be removed).

On the other hand, if the base heuristic is sequentially consistent, it is
also sequentially improving. The reason is that for a sequentially consistent
heuristic, yk ∪R(yk) is equal to one of the trajectories contained in the set

{
Tk(yk, uk) | uk ∈ Ûk(yk)

}
.

Our main result is contained in the following proposition.
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Proposition 2.5.1: (Cost Improvement for Constrained Roll-
out) Assume that the base heuristic is sequentially improving and
generates a feasible complete trajectory starting from the initial state
ỹ0 = x̃0, i.e., R(ỹ0) ∈ C. Then for each k, the set Uk(ỹk) is nonempty,
and we have

G
(
R(ỹ0)

)
≥ G

(
T0(ỹ0, ũ0)

)

≥ G
(
T1(ỹ1, ũ1)

)

≥ · · ·

≥ G
(
TN−1(ỹN−1, ũN−1)

)

= G(ỹN ),

where
Tk(ỹk, ũk) =

(
ỹk, ũk, R(ỹk+1)

)
;

cf. Eq. (2.29). In particular, the final trajectory ỹN generated by the
constrained rollout algorithm is feasible and has no larger cost than
the trajectory R(ỹ0) generated by the base heuristic starting from the
initial state.

Proof: Consider R(ỹ0), the complete trajectory generated by the base
heuristic starting from ỹ0. Since ỹ0 ∪ R(ỹ0) = R(ỹ0) ∈ C by assumption,
it follows from the sequential improvement definition, that the set U0(ỹ0)
is nonempty and we have

G
(
R(ỹ0)

)
≥ G

(
T0(ỹ0, ũ0)

)
,

[cf. Eq. (2.35)], while T0(ỹ0, ũ0) ∈ C.
The preceding argument can be repeated for the next stage, by replac-

ing ỹ0 with ỹ1, and R(ỹ0) with T0(ỹ0, ũ0). Since ỹ1∪R(ỹ1) = T0(ỹ0, ũ0) ∈ C,
from the sequential improvement definition, the set U1(ỹ1) is nonempty and
we have

G
(
T0(ỹ0, ũ0)

)
= G

(
ỹ1 ∪R(ỹ1)

)
≥ G

(
T1(ỹ1, ũ1)

)
,

[cf. Eq. (2.35)], while T1(ỹ1, ũ1) ∈ C. Similarly, the argument can be
successively repeated for every k, to verify that Uk(ỹk) is nonempty and
that G

(
Tk(ỹk, ũk)

)
≥ G

(
Tk+1(ỹk+1, ũk+1)

)
for all k. Q.E.D.

Proposition 2.5.1 establishes the fundamental cost improvement prop-
erty for constrained rollout under the sequential improvement condition.
On the other hand we may construct examples where the sequential im-
provement condition (2.35) is violated and the cost of the solution pro-
duced by rollout is larger than the cost of the solution produced by the
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base heuristic starting from the initial state (cf. the unconstrained rollout
Example 2.3.3).

In the case of the traveling salesman Example 2.5.1, it can be verified
that the base heuristic specified in Fig. 2.5.3 is sequentially improving.
However, if the travel cost D→A were larger, say 25, then it can be verified
that the definition of sequential improvement would be violated at A, and
the tour produced by constrained rollout would be more costly than the
one produced by the base heuristic starting from A.

The Fortified Rollout Algorithm and Other Variations

We will now discuss some variations and extensions of the constrained
rollout algorithm. Let us first consider the case where the sequential im-
provement assumption is not satisfied. Then it may happen that given the
current partial trajectory ỹk, the set of controls Uk(ỹk) that corresponds to
feasible trajectories Tk(ỹk, uk) [cf. Eq. (2.30)] is empty, in which case the
rollout algorithm cannot extend the partial trajectory ỹk further. To by-
pass this difficulty, we introduce a fortified constrained rollout algorithm,
patterned after the fortified algorithm given earlier. For validity of this
algorithm, we require that the base heuristic generates a feasible complete
trajectory R(ỹ0) starting from the initial state ỹ0.

The fortified constrained rollout algorithm, in addition to the current
partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

maintains a complete trajectory T̂k, called tentative best trajectory, which
is feasible (i.e., T̂k ∈ C) and agrees with ỹk up to state x̃k, i.e., T̂k has the
form

T̂k = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k, uk, xk+1, . . . , uN−1, xN ), (2.36)

for some uk, xk+1, . . . , uN−1, xN such that

xk+1 = fk(x̃k, uk), xt+1 = ft(xt, ut), t = k + 1, . . . , N − 1.

Initially, T̂0 is the complete trajectory R(ỹ0), generated by the base heuris-
tic starting from ỹ0, which is assumed to be feasible. At stage k, the
algorithm forms the subset Ûk(ỹk) of controls uk ∈ Uk(ỹk) such that the
corresponding Tk(ỹk, uk) is not only feasible, but also has cost that is no
larger than the one of the current tentative best trajectory:

Ûk(ỹk) =
{
uk ∈ Uk(ỹk) | G

(
Tk(ỹk, uk)

)
≤ G(T̂k)

}
.

There are two cases to consider at state k:
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(1) The set Ûk(ỹk) is nonempty. Then the algorithm forms the partial
trajectory ỹk+1 = (ỹk, ũk, x̃k+1), where

ũk ∈ arg min
uk∈Ûk(ỹk)

G
(
Tk(ỹk, uk)

)
, x̃k+1 = fk(x̃k, ũk),

and sets Tk(ỹk, ũk) as the new tentative best trajectory, i.e.,

T̂k+1 = Tk(ỹk, ũk).

(2) The set Ûk(ỹk) is empty. Then, the algorithm forms the partial tra-
jectory ỹk+1 =

(
ỹk, ũk, x̃k+1), where

ũk = uk, x̃k+1 = xk+1,

and uk, xk+1 are the control and state subsequent to x̃k in the current
tentative best trajectory T̂k [cf. Eq. (2.36)], and leaves T̂k unchanged,
i.e.,

T̂k+1 = T̂k.

It can be seen that the fortified constrained rollout algorithm will
follow the initial complete trajectory T̂0, the one generated by the base
heuristic starting from ỹ0, up to a stage k where it will discover a new
feasible complete trajectory with smaller cost to replace T̂0 as the tentative
best trajectory. Similarly, the new tentative best trajectory T̂k may be
subsequently replaced by another feasible trajectory with smaller cost, etc.

Note that if the base heuristic is sequentially improving, and the
fortified rollout algorithm will generate the same complete trajectory as
the (nonfortified) rollout algorithm given earlier, with the tentative best
trajectory T̂k+1 being equal to the complete trajectory Tk(ỹk, ũk) for all
k. The reason is that if the base heuristic is sequentially improving, the
controls ũk generated by the nonfortified algorithm belong to the set Ûk(ỹk)
[by Prop. 2.5.1, case (1) above will hold].

However, it can be verified that even when the base heuristic is not
sequentially improving, the fortified rollout algorithm will generate a com-
plete trajectory that is feasible and has cost that is no worse than the cost
of the complete trajectory generated by the base heuristic starting from ỹ0.
This is because each tentative best trajectory has a cost that is no worse
than the one of its predecessor, and the initial tentative best trajectory is
just the trajectory generated by the base heuristic starting from the initial
condition ỹ0.

Tree-Based Constrained Rollout Algorithms

It is possible to improve the performance of the rollout algorithm at the
expense of maintaining more than one partial trajectory. In particular,
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instead of the partial trajectory ỹk of Eq. (2.33), we can maintain a tree of
partial trajectories that is rooted at ỹ0. These trajectories need not have
equal length, i.e., they need not involve the same number of stages. At
each step of the algorithm, we select a single partial trajectory from this
tree, and execute the rollout algorithm’s step as if this partial trajectory
were the only one. Let this partial trajectory have k stages and denote it
by ỹk. Then we extend ỹk similar to our earlier rollout algorithm, with
possibly multiple feasible trajectories. There is also a fortified version of
this algorithm where a tentative best trajectory is maintained, which is the
minimum cost complete trajectory generated thus far.

The aim of the tree-based algorithm is to obtain improved perfor-
mance, essentially because it can go back and extend partial trajectories
that were generated and temporarily abandoned at previous stages. The
net result is a more flexible algorithm that is capable of examining more
alternative trajectories. Note also that there is considerable freedom to
select the number of partial trajectories maintained in the tree.

We finally mention a drawback of the tree-based algorithm: it is
suitable for off-line computation, but it cannot be applied in an on-line
context, where the rollout control selection is made after the current state
becomes known as the system evolves in real-time .

2.5.1 Constrained Rollout for Discrete Optimization and Integer
Programming

As noted in Section 2.1, general discrete optimization problems may be
formulated as DP problems, which in turn can be addressed with rollout.
The following is an example of a classical problem that involves both dis-
crete and continuous variables. It can also be viewed as an instance of a
0-1 integer programming problem, and in fact this is the way it is usually
addressed in the literature; see e.g., the book [DrH01]. The author’s rollout
book [Ber20a] contains additional examples.

Example 2.5.2 (Facility Location)

We are given a candidate set of N locations, and we want to place in some of
these locations a “facility” that will serve the needs of a total of M “clients.”
Each client i = 1, . . . ,M has a demand di for services that may be satisfied
at a location k = 0, . . . , N − 1 at a cost aik per unit. If a facility is placed at
location k, it has capacity to serve demand up to a known level ck.

We introduce a 0-1 integer variable uk to indicate with uk = 1 that a
facility is placed at location k at a cost bk and with uk = 0 that a facility is
not placed at location k. Thus if yik denotes the amount of demand of client
i to be served at facility k, the constraints are

N−1∑

k=0

yik = di, i = 1, . . . ,M, (2.37)
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∑

and can satisfy the demand and other constraints

∑ ∑

and can satisfy the demandH(u0, . . . , uN−1): Set of feasible demand allocations, i.e.
): Set of yik ≥ 0 such that

0 such that
∑

k
yik = di for all i,

i,
∑

i
yik ≤ ukck for all k

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

(e.g., public policy constraints)

Safety Costs of Complete Tours ABCDA where

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA Cost Function:

Figure 2.5.4 Schematic illustration of the facility location problem; cf. Ex-
ample 2.5.2. Clients are matched to facilities, and the locations of the facilities
are subject to optimization.

M∑

i=1

yik ≤ ckuk, k = 0, . . . , N − 1, (2.38)

together with

yik ≥ 0, uk ∈ {0, 1}, i = 1, . . . ,M, k = 0, . . . , N − 1. (2.39)

We wish to minimize the cost

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk (2.40)

subject to the preceding constraints; see Fig. 2.5.4. The essence of the problem
is to place enough facilities at favorable locations to satisfy the clients’ demand
at minimum cost. This can be a very difficult mixed integer programming
problem.

On the other hand, when all the variables uk are fixed at some 0 or
1 values, the problem belongs to the class of linear transportation problems
(see e.g., [Ber98]), and can be solved by fast polynomial algorithms. Thus
the essential difficulty of the problem is how to select the integer variables
uk, k = 0, . . . , N − 1. This can be viewed as a discrete optimization problem
of the type shown in Fig. 2.1.3. In terms of the notation of this figure, the
control components are u0, . . . , uN−1, where uk can take the values 0 or 1.

To address the problem suboptimally by rollout, we must define a base
heuristic at a “state” (u0, . . . , uk), where uj = 1 or uj = 0 specifies that a
facility is or is not placed at location j, respectively. A suitable base heuristic
at that state is to place a facility at all of the remaining locations (i.e., uj = 1
for j = k+1, . . . , N−1), and its cost is obtained by solving the corresponding
linear transportation problem of minimizing the cost (2.40) subject to the
constraints (2.37)-(2.39), with the variables uj , j = 0, . . . , k, fixed at the
previously chosen values, and the variables uj , j = k + 1, . . . , N , fixed at 1.



204 Approximation in Value Space - Rollout Algorithms Chap. 2

To illustrate, at the initial state where no placement decision has been
made, we set u0 = 1 (a facility is placed at location 0) or u0 = 0 (a facility
is not placed at location 0), we solve the two corresponding transportation
problems, and we fix u0, depending on which of the two resulting costs is
smallest. Having fixed the status of location 0, we repeat with location 1:
set the variable u1 to 1 and to 0, solve the corresponding two transportation
problems, and fix u1, depending on which of the two resulting costs is smallest,
etc.

It is easily seen that if the initial base heuristic choice (placing a facility
at every candidate location) is feasible, i.e.,

M∑

i=1

di ≤
N−1∑

k=0

ck,

the rollout algorithm will yield a feasible solution with cost that is no larger
than the cost corresponding to the initial application of the base heuristic. In
fact it can be verified that the base heuristic here is sequentially consistent,
so it is not necessary to use the fortified version of the algorithm. Regarding
computational costs, the number of transportation problems to be solved is
at first count 2N , but it can be reduced to N + 1 by exploiting the fact that
one of the two transportation problems at each stage after the first has been
solved at an earlier stage.

It is worth noting, for readers that are familiar with the integer pro-
gramming method of branch-and-bound, that the graph of Fig. 2.1.3 corre-
sponds to the branch-and-bound tree for the problem, so the rollout algorithm
amounts to a quick (and imperfect) method to traverse the branch-and-bound
tree. This observation may be useful if we wish to use integer programming
techniques to add improvements to the rollout algorithm.

We finally note that the rollout algorithm requires the solution of many
linear transportation problems, which are defined by fairly similar data. It is
thus important to use an algorithm that is capable of using effectively the final
solution of one transportation problem as a starting point for the solution of
the next. The auction algorithm for transportation problems (Bertsekas and
Castañon [BeC89]) is particularly well-suited for this purpose.

Example 2.5.3 (Constrained Shortest Paths and Directed
Spanning Trees)

Let us consider a spanning tree-type problem involving a directed graph with
nodes 0, 1, . . . , N . At each node k ∈ {0, . . . , N − 1} there is a set of outgoing
arcs uk ∈ Uk. Node N is special: it is viewed as a “root” node and has
no outgoing arc. We are interested in collections of arcs involving a single
outgoing arc per node,

u = (u0, . . . , uN−1)

with uk ∈ Uk, k = 0, . . . , N − 1. We require that these arcs do not form
a cycle, so that u specifies a directed spanning tree that is rooted at node
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Figure 2.5.5 Schematic illustration of a constrained shortest path problem
with root node N = 6. Given the current feasible spanning tree solution
(indicated with solid line arcs), the rollout algorithm, considers a node k (in
the figure k = 0) and the spanning tree arcs {ui | i != k} that are outgoing
from the nodes i != k. It then considers the spanning trees that correspond to
the outgoing arcs uk from k that do not close a cycle with the set {ui | i != k}
and are feasible [in the figure, these are the arcs indicated with broken lines,
plus the arc (0,4)], and selects the arc that forms a spanning tree solution of
minimum cost.

N . Note that for every node k, such a spanning tree specifies a unique path
that starts at k, lies on the spanning tree, and ends at node N . We wish to
find u that minimizes a given cost function G(u) subject to certain additional
constraints, which we do not specify further. The set of all constraints on
u (including the constraint that the arcs form a directed spanning tree) is
denoted abstractly as u ∈ U , so the problem comes within our constrained
optimization framework of this section.

Note that this problem contains as a special case the classical shortest
path problem, where we have a length for every arc and the objective is
to find a tree of shortest paths to node N from all the nodes 0, . . . , N − 1.
Here U is just the constraint that the set of arcs u = (u0, . . . , uN−1) form
a directed spanning tree that is rooted at node N , and G(u) is the sum of
the lengths of all the paths specified by u, summed over all the start nodes
k = 0, . . . , N − 1. Other shortest path-type problems, involving constraints,
are included as special cases. For example, there may be a constraint that
all the paths to N that are specified by the spanning tree corresponding to u
contain a number of arcs that does not exceed a given upper bound.

Suppose that we have an initial solution/directed spanning tree

ū = (ū0, . . . , ūN−1),

which is feasible (note here that finding such an initial solution may be a chal-
lenge). Let us apply the constrained rollout algorithm with a base heuristic
that operates as follows: given a partial trajectory

yk = (u0, . . . , uk−1),
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i.e., a sequence of k arcs, each outgoing from one of the nodes 0, . . . , k − 1, it
generates the complete trajectory/directed spanning tree

(u0, . . . , uk−1, ūk, . . . , ūN−1).

Thus the rollout algorithm, given a partial trajectory

ỹk = (ũ0, . . . , ũk−1),

considers the set Ûk(ỹk) of all outgoing arcs uk from node k, such that the
complete trajectory

(ỹk, uk, ūk+1, . . . , ūN−1)

is feasible. It then selects the arc uk ∈ Ûk(ỹk) that minimizes the cost

G(ỹk, uk, ūk+1, . . . , ūN−1);

see Fig. 2.5.5. It can be seen by induction, starting from ū, that the set of arcs
Ûk(ỹk) is nonempty, and that the algorithm generates a sequence of feasible
solutions/directed spanning trees, each with cost no worse than the preceding
one.

Note that throughout the rollout process, a rooted spanning tree is
maintained, and at each stage k, a single arc ūk that is outgoing from node
k is replaced by the outgoing arc ũk. Thus two successive rooted spanning
trees generated by the algorithm, differ by at most a single arc.

An interesting aspect of this rollout algorithm is that it can be applied
multiple times with the final solution of one rollout application used to specify
the base heuristic of the next rollout application. Moreover, a different order
of nodes may be used in each rollout application. This can be viewed as a form
of policy iteration, of the type that we have discussed. The algorithm will
eventually terminate, in the sense that it can make no further progress. More
irregular/heuristic orders of node selections are also possible; for example
some nodes may be selected multiple times before others will be selected for
the first time. However, there is no guarantee that the final solution thus
obtained will be optimal.

2.6 SMALL STAGE COSTS AND LONG HORIZON -
CONTINUOUS-TIME ROLLOUT

Let us consider the deterministic one-step approximation in value space
scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[
gk(xk, uk) + J̃k+1

(
fk(xk, uk)

)]
. (2.41)

In the context of rollout, J̃k+1

(
fk(xk, uk)

)
is either the cost of the trajectory

generated by the base heuristic starting from the next state fk(xk, uk), or
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some approximation that may involve truncation and terminal cost function
approximation, as in the truncated rollout scheme of Section 2.3.5.

There is a special difficulty within this context, which is often en-
countered in practice. It arises when the cost per stage gk(xk, uk) is either
0 or is small relative to the cost-to-go approximation J̃k+1

(
fk(xk, uk)

)
.

Then there is a potential pitfall to contend with: the cost approximation
errors that are inherent in the term J̃k+1

(
fk(xk, uk)

)
may overwhelm the

first stage cost term gk(xk, uk), with unpredictable consequences for the
quality of the one-step-lookahead policy π̃ = {µ̃0, . . . , µ̃N−1}. We will dis-
cuss this difficulty by first considering a discrete-time problem arising from
discretization of a continuous-time optimal control problem.

Continuous-Time Optimal Control and Approximation in Value
Space

Consider a problem that involves a vector differential equation of the form

ẋ(t) = h
(
x(t), u(t), t

)
, 0 ≤ t ≤ T, (2.42)

where x(t) ∈ #n is the state vector at time t, ẋ(t) ∈ #n is the vector of
first order time derivatives of the state at time t, u(t) ∈ U ⊂ #m is the
control vector at time t, where U is the control constraint set, and T is a
given terminal time. Starting from a given initial state x(0), we want to
find a feasible control trajectory

{
u(t) | t ∈ [0, T ]

}
, which together with its

corresponding state trajectory
{
x(t) | t ∈ [0, T ]

}
, minimizes a cost function

of the form

G
(
x(T )

)
+

∫ T

0
g
(
x(t), u(t), t

)
dt, (2.43)

where g represents cost per unit time, and G is a terminal cost function.
This is a classical problem with a long history.

Let us consider a simple conversion of the preceding continuous-time
problem to a discrete-time problem, while treading lightly over some of the
associated mathematical fine points. We introduce a small discretization
increment δ > 0, such that T = δN where N is a large integer, and we
replace the differential equation (2.42) by

xk+1 = xk + δ · hk(xk, uk), k = 0, . . . , N − 1.

Here the function hk is given by

hk(xk, uk) = h
(
x(kδ), u(kδ), kδ

)
,

where we view {xk | k = 0, . . . , N − 1} and {uk | k = 0, . . . , N − 1} as state
and control trajectories, respectively, which approximate the corresponding
continuous-time trajectories:

xk ≈ x(kδ), uk ≈ u(kδ).
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We also replace the cost function (2.43) by

gN(xN ) +
N−1∑

k=0

δ · gk(xk, uk),

where

gN(xN ) = G
(
x(Nδ)

)
, gk(xk, uk) = g

(
x(kδ), u(kδ), kδ

)
.

Thus the approximation in value space scheme with time discretiza-
tion takes the form

µ̃k(xk) ∈ arg min
uk∈U

[
δ · gk(xk, uk) + J̃k+1

(
xk + δ · hk(xk, uk)

)]
; (2.44)

where J̃k+1 is the function that approximates the cost-to-go starting from
a state at time k+1. We note here that the ratio of the terms δ ·gk(xk, uk)
and J̃k+1

(
xk+δ ·hk(xk, uk)

)
is likely to tend to 0 as δ → 0, since J̃k+1

(
xk+

δ ·hk(xk, uk)
)
ordinarily stays roughly constant at a nonzero level as δ → 0.

This suggests that the one-step lookahead minimization may be degraded
substantially by discretization, and other errors, including rollout trunca-
tion and terminal cost approximation. Note that a similar sensitivity to
errors may occur in other discrete-time models that involve frequent se-
lection of decisions, with cost per stage that is very small relative to the
cumulative cost over many stages and/or the terminal cost.

To deal with this difficulty, we subtract the constant J̃k(xk) in the
one-step-lookahead minimization (2.44), and write

µ̃k(xk) ∈ arg min
uk∈U

[
δ · gk(xk, uk) +

(
J̃k+1

(
xk + δ · hk(xk, uk)

)
− J̃k(xk)

)]
;

(2.45)
since J̃k(xk) does not depend on uk, the results of the minimization are
not affected. Assuming J̃k is differentiable with respect to its argument,
we can write

J̃k+1

(
xk + δ · hk(xk, uk)

)
− J̃k(xk) ≈ δ ·∇xJ̃k(xk)′hk(xk, uk),

where ∇xJ̃k denotes the gradient of Jk (a column vector), and prime de-
notes transposition. By dividing with δ, and taking informally the limit as
δ → 0, we can write the one-step lookahead minimization (2.45) as

µ̃(t) ∈ arg min
u(t)∈U

[
g
(
x(t), u(t), t

)
+∇xJ̃t

(
x(t)

)′
h
(
x(t), u(t), t

)]
, (2.46)

where J̃t(x) is the continuous-time cost function approximation and∇xJ̃t(x)
is its gradient with respect to x. This is the correct analog of the approxi-
mation in value space scheme (2.41) for continuous-time problems.
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Rollout for Continuous-Time Optimal Control

In view of the value approximation scheme of Eq. (2.46), it is natural to
speculate that the continuous-time analog of rollout with a base policy of
the form

π =
{
µt

(
x(t)

)
| 0 ≤ t ≤ T

}
, (2.47)

where µt

(
x(t)

)
∈ U for all x(t) and t, has the form

µ̃t

(
x(t)

)
∈ arg min

u(t)∈U

[
g
(
x(t), u(t), t

)
+∇xJπ,t

(
x(t)

)′
h
(
x(t), u(t), t

)]
.

(2.48)
Here Jπ,t

(
x(t)

)
is the cost of the base policy π starting from state x(t) at

time t, and satisfies the terminal condition

Jπ,T
(
x(T )

)
= G

(
x(T )

)
.

Computationally, the inner product in the right-hand side of the above
minimization can be approximated using the finite difference formula

∇xJπ,t
(
x(t)

)′
h
(
x(t), u(t), t

)
≈

Jπ,t
(
x(t) + δ · h

(
x(t), u(t), t

))
− Jπ,t

(
x(t)

)

δ
,

which can be calculated by running the base policy π starting from x(t)
and from x(t) + δ · h

(
x(t), u(t), t

)
. (This finite differencing operation may

involve tricky computational issues, but we will not get into this.)
An important question is how to select the base policy π. A choice

that is often sensible and convenient is to choose π to be a “short-sighted”
policy, which takes into account the “short term” cost from the current
state (say for a very small horizon starting from the current time t), but
ignores the remaining cost. An extreme case is the myopic policy, given by

µt

(
x(t)

)
∈ argmin

u∈U
g
(
x(t), u(t), t

)
.

This policy is the continuous-time analog of the greedy policy that we dis-
cussed in the context of discrete-time problems, and the traveling salesman
Example 1.2.3 in particular.

The following example illustrates the rollout algorithm (2.48) with
a problem that has a special property: the base policy cost Jπ,t

(
x(t)

)
is

independent of x(t) (it depends only on t), so that

∇xJπ,t
(
x(t)

)
≡ 0.

In this case, in view of Eq. (2.46), the rollout policy is myopic. It turns out
that the optimal policy in this example is also myopic, so that the rollout
policy is optimal, even though the base policy is very poor.
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ẋ(t) = u(t)

dt Given Point Given Line

Given Point Given Line

α t Tt T

x(t)

Point (0, 0) 0) Optimal Solution
0) Optimal Trajectory

Length =

∫ T

0

√

1 +
(

u(t)
)2

dt

Figure 2.6.1 Problem of finding a curve of minimum length from a given
point to a given line, and its formulation as a calculus of variations problem.

Example 2.6.1 (A Calculus of Variations Problem)

This is a simple example from the classical context of calculus of variations
(see [Ber17a], Example 7.1.3). The problem is to find a minimum length
curve that starts at a given point and ends at a given line. Without loss of
generality, let (0, 0) be the given point, and let the given line be the vertical
line that passes through (T, 0), as shown in Fig. 2.6.1.

Let
(
t, x(t)

)
be the points of the curve, where 0 ≤ t ≤ T . The portion

of the curve joining the points
(
t, x(t)

)
and

(
t+ dt, x(t+ dt)

)
can be approx-

imated, for small dt, by the hypotenuse of a right triangle with sides dt and
ẋ(t)dt. Thus the length of this portion is

√
(dt)2 +

(
ẋ(t)

)2
(dt)2,

which is equal to √
1 +

(
ẋ(t)

)2
dt.

The length of the entire curve is the integral over [0, T ] of this expression, so
the problem is to

minimize

∫ T

0

√
1 +

(
ẋ(t)

)2
dt

subject to x(0) = 0.

To reformulate the problem as a continuous-time optimal control problem,
we introduce a control u and the system equation

ẋ(t) = u(t), x(0) = 0.

Our problem then takes the form

minimize

∫ T

0

√
1 +

(
u(t)

)2
dt.
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This is a problem that fits our continuous-time optimal control framework,
with

h
(
x(t), u(t), t

)
= u(t), g

(
x(t), u(t), t

)
=

√
1 +

(
u(t)

)2
, G

(
x(T )

)
= 0.

Consider now a base policy π whereby the control depends only on t
and not on x. Such a policy has the form

µt

(
x(t)

)
= β(t), for all x(t),

where β(t) is some scalar function. For example, β(t) may be constant, β(t) ≡
β̄ for some scalar β̄, which yields a straight line trajectory that starts at (0, 0)
and makes an angle φ with the horizontal with tan(φ) = β̄. The cost function
of the base policy is

Jπ,t

(
x(t)

)
=

∫ T

t

√
1 + β(τ )2 dτ,

which is independent of x(t), so that ∇xJπ,t

(
x(t)

)
≡ 0. Thus, from the

minimization of Eq. (2.48), we have

µ̃t

(
x(t)

)
∈ arg min

u(t)∈"

√
1 +

(
u(t)

)2
,

and the rollout policy is
µ̃t

(
x(t)

)
≡ 0.

This is the optimal policy: it corresponds to the horizontal straight line that
starts at (0, 0) and ends at (T, 0).

Rollout with General Base Heuristics - Sequential Improvement

An extension of the rollout algorithm (2.48) is to use a more general base
heuristic whose cost function Ht

(
x(t)

)
can be evaluated by simulation.

This rollout algorithm has the form

µ̃(t) ∈ arg min
u(t)∈U

[
g
(
x(t), u(t), t

)
+∇xHt

(
x(t)

)′
h
(
x(t), u(t), t

)]
.

Here the policy cost function Jπ,t is replaced by a more general differen-
tiable function Ht, obtainable through a base heuristic, which may lack the
sequential consistency property that is inherent in policies.

We will now show a cost improvement property of the rollout algo-
rithm based on the natural condition

HT

(
x̃(T )

)
= G

(
x̃(T )

)
, (2.49)
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and the assumption

min
u(t)∈U

[
g
(
x(t), u(t), t

)
+∇tHt

(
x(t)

)
+∇xHt

(
x(t)

)′
h
(
x(t), u(t), t

)]
≤ 0,

(2.50)
for all

(
x(t), t

)
, where ∇xHt denotes gradient with respect to x, and ∇tHt

denotes gradient with respect to t. This assumption is the continuous-time
analog of the sequential improvement condition of Definition 2.3.2 [cf. Eq.
(2.15)]. Under this assumption, we will show that

Jπ̃,0
(
x(0)

)
≤ H0

(
x(0)

)
, (2.51)

i.e., the cost of the rollout policy starting from the initial state x(0) is no
worse than the base heuristic cost starting from the same initial state.

Indeed, let
{
x̃(t) | t ∈ [0, T ]

}
and

{
ũ(t) | t ∈ [0, T ]

}
be the state

and control trajectories generated by the rollout policy starting from x(0).
Then the sequential improvement condition (2.50) yields

g
(
x̃(t), ũ(t), t

)
+∇tHt

(
x̃(t)

)
+∇xHt

(
x̃(t)

)′
h
(
x̃(t), ũ(t), t

)
≤ 0

for all t, and by integration over [0, T ], we obtain

∫ T

0
g
(
x̃(t), ũ(t), t

)
dt+

∫ T

0

(
∇tHt

(
x̃(t)

)
+∇xHt

(
x̃(t)

)′
h
(
x̃(t), ũ(t), t

))
dt ≤ 0.

(2.52)
The second integral above can be written as

∫ T

0

(
∇tHt

(
x̃(t)

)
+∇xHt

(
x̃(t)

)′
h
(
x̃(t), ũ(t), t

))
dt

=

∫ T

0

(
∇tHt

(
x̃(t)

)
+∇xHt

(
x̃(t)

)′ dx̃(t)
dt

)
dt,

and its integrand is the total differential with respect to time: d
dt

(
Ht

(
x̃(t)

))
.

Thus we obtain from Eq. (2.52)

∫ T

0
g
(
x̃(t),ũ(t), t

)
dt+

∫ T

0

d

dt

(
Ht

(
x̃(t)

))
dt

=

∫ T

0
g
(
x̃(t), ũ(t), t

)
dt+HT

(
x̃(T )

)
−H0

(
x̃(0)

)
≤ 0.

(2.53)

Since HT

(
x̃(T )

)
= G

(
x̃(T )

)
[cf. Eq. (2.49)] and x̃(0) = x(0), from Eq.

(2.53) [which is a direct consequence of the sequential improvement condi-
tion (2.50)], it follows that

Jπ̃,0
(
x(0)

)
=

∫ T

0
g
(
x̃(t), ũ(t), t

)
dt+G

(
x̃(T )

)
≤ H0

(
x(0)

)
,
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thus proving the cost improvement property (2.51).
Note that the sequential improvement condition (2.50) is satisfied if

Ht is the cost function Jπ,t corresponding to a base policy π. The reason is
that for any policy π =

{
µt(x(t)) | 0 ≤ t ≤ T

}
[cf. Eq. (2.47)], the analog

of the DP algorithm (under the requisite mathematical conditions) takes
the form

0 = g
(
x(t), µt(x(t)), t

)
+∇tJπ,t

(
x(t)

)
+∇xJπ,t

(
x(t)

)′
h
(
x(t), µt(x(t)), t

)
.

(2.54)
In continuous-time optimal control theory, this is known as the Hamilton-
Jacobi-Bellman equation. It is a partial differential equation, which may be
viewed as the continuous-time analog of the DP algorithm for a single pol-
icy; there is also a Hamilton-Jacobi-Bellman equation for the optimal cost
function J∗

t

(
x(t)

)
(see optimal control textbook accounts, such as [Ber17a],

Section 7.2, and the references cited there). As illustration, the reader may
verify that the cost function of the base policy used in the calculus of vari-
ations problem of Example 2.6.1 satisfies this equation. It can be seen
from the Hamilton-Jacobi-Bellman Eq. (2.54) that when Ht = Jπ,t, the se-
quential improvement condition (2.50) and the cost improvement property
(2.51) hold.

Approximating Cost Function Differences

Let us finally note that the preceding analysis suggests that when dealing
with a discrete-time problem with a long horizon N , a system equation
xk+1 = fk(xk, uk), and a small cost per stage gk(xk, uk) relative to the
optimal cost-to-go function J∗

k+1

(
fk(xk, uk)

)
, it is worth considering an

alternative implementation of the approximation in value space scheme. In
particular, we should consider approximating the cost differences

D∗
k(xk, uk) = J∗

k+1

(
fk(xk, uk)

)
− J∗

k (xk)

instead of approximating the optimal cost-to-go functions J∗
k+1

(
fk(xk, uk)

)
.

The one-step-lookahead minimization (2.41) should then be replaced by

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[
gk(xk, uk) + D̃k(xk, uk)

]
,

where D̃k is the approximation to D∗
k.

Note also that while for continuous-time problems, the idea of ap-
proximating the gradient of the optimal cost function is essential and comes
out naturally from the analysis, for discrete-time problems, approximating
cost-to-go differences rather than cost functions is optional and should be
considered in the context of a given problem. Methods along this line in-
clude advantage updating, cost shaping, biased aggregation, and the use of
baselines, for which we refer to the books [BeT96], [Ber19a], and [Ber20a].
A special method to explicitly approximate cost function differences is dif-
ferential training, which was proposed in the author’s paper [Ber97b], and
was also discussed in Section 4.3.4 of the book [Ber20a].
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The Case of Zero Cost per Stage

The most extreme case of small stage costs arises when the cost per stage is
zero for all states, while a nonzero cost may be incurred only at termination.
This type of cost structure occurs, among others, in games such as chess and
backgammon. It also occurs in several other contexts, including constraint
programming problems (Section 2.1), where there is not even a terminal
cost, just constraints to be satisfied.

Under these circumstances, the idea of approximating cost-to-go dif-
ferences that we have just discussed may not be effective, and applying
approximation in value space may involve serious challenges. An advisable
remedy is to resort to longer lookahead, either through multistep lookahead
minimization, or through some form of truncated rollout, as it is done in
the AlphaZero and TD-Gammon programs. In addition, an artificial ter-
minal cost function approximation should be introduced, possibly obtained
through off-line training as in the AlphaZero and TD-Gammon programs.
Another possibility is to obtain a terminal cost function by using some
form of problem approximation (solving a simpler problem, in place of the
original). Aggregation, discussed in Section 3.5, is one of the possbilities
along this line.

2.7 STOCHASTIC ROLLOUT AND MONTE CARLO TREE
SEARCH

We will now discuss the extension of the rollout algorithm to stochastic DP
problems with a finite number of control and disturbances at every stage.
We will restrict ourselves to the case where the base heuristic is a policy
π = {µ0, . . . , µN−1}. The rollout policy applies at state xk the control
µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
.

Equivalently, the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} is obtained by mini-
mization over the Q-factors Qk,π(xk, uk) of the base policy:

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Qk,π(xk, uk),

where

Qk,π(xk, uk) = E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
.

We first establish that the cost improvement property that we showed
for deterministic problems under the sequential consistency condition car-
ries through for stochastic problems. In particular, let us denote by Jk,π(xk)
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the cost corresponding to starting the base policy at state xk, and by
Jk,π̃(xk) the cost corresponding to starting the rollout algorithm at state
xk. We claim that

Jk,π̃(xk) ≤ Jk,π(xk), for all xk and k. (2.55)

We prove this inequality by induction similar to the deterministic case
[cf. Eq. (2.14)]. Clearly it holds for k = N , since

JN,π̃ = JN,π = gN .

Assuming that it holds for index k + 1, we have for all xk,

Jk,π̃(xk) = E

{
gk
(
xk, µ̃k(xk), wk

)
+ Jk+1,π̃

(
fk
(
xk, µ̃k(xk), wk

))}

≤ E

{
gk
(
xk, µ̃k(xk), wk

)
+ Jk+1,π

(
fk
(
xk, µ̃k(xk), wk

))}

= min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}

≤ E

{
gk
(
xk, µk(xk), wk

)
+ Jk+1,π

(
fk
(
xk, µk(xk), wk

))}

= Jk,π(xk),

(2.56)

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The final equality is the DP equation for the base policy π.

The induction proof of the cost improvement property is thus complete.
The preceding cost improvement argument assumes that the cost

functions Jk+1,π of the base policy are calculated exactly. In practice,
truncated rollout with terminal cost function approximation and limited
simulation may be used to approximate Jk+1,π . In this case the cost func-
tion of the rollout policy can still be viewed as the result of a Newton step
in the context of an approximation in value space scheme. Moreover, the
cost improvement property can still be proved under some conditions that
we will not discuss in these notes; see the books [Ber12], [Ber19a], and
[Ber20a].

Some Rollout Examples

Similar to deterministic problems, it has been observed empirically that
for stochastic problems the rollout policy not only does not deteriorate
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the performance of the base policy, but also typically produces substantial
cost improvement, thanks to its underlying Newton step; see also the case
studies referenced at the end of the chapter. To emphasize this point, we
provide here an example of an nontrivial optimal stopping problem where
the rollout policy is actually optimal, despite the fact that the base policy
is rather naive. Such behavior is of course special and nontypical, but
highlights the nature of the cost improvement property of rollout.

Example 2.7.1 (Optimal Stopping and Rollout Optimality)

Optimal stopping problems are characterized by the availability, at each state,
of a control that stops the evolution of the system. We will consider a problem
with two control choices: at each stage we observe the current state of the
system and decide whether to continue or to stop the process. We formulate
this as an N-stage problem where stopping is mandatory at or before stage
N .

Consider a stationary version of the problem (state and disturbance
spaces, disturbance distribution, control constraint set, and cost per stage are
the same for all times). At each state xk and at time k, if we stop, the system
moves to a termination state at a cost C(xk) and subsequently remains there
at no cost. If we do not stop, the system moves to state xk+1 = f(xk, wk)
at cost g(xk, wk). The terminal cost, assuming stopping has not occurred by
the last stage, is C(xN). An example is a problem of optimal exercise of a
financial option where x is the asset’s price, C(x) = x, and g(x,w) ≡ 0.

The DP algorithm (for states other than the termination state) is given
by

J∗
N (xN) = C(xN), (2.57)

J∗
k (xk) = min

[
C(xk), E

{
g(xk, wk) + J∗

k+1

(
f(xk, wk)

)}]
, (2.58)

and it is optimal to stop at time k for states x in the set

Sk =
{
x
∣∣∣ C(x) ≤ E

{
g(x,w) + J∗

k+1

(
f(x,w)

)}}
.

Consider now the rather primitive base policy π, whereby we stop at
every state x. Thus we have for all xk and k,

Jk,π(xk) = C(xk).

The rollout policy is stationary and can be computed on-line relatively easily,
since Jk,π is available in closed form. In particular, the rollout policy is to
stop at xk if

C(xk) ≤ E
{
g(xk, wk) +C

(
f(xk, wk)

)}
,

i.e., if xk is in the set SN−1, and otherwise to continue.
The rollout policy also has an intuitive interpretation: it stops at the

states for which it is better to stop rather than continue for one more stage
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and then stop. A policy of this type turns out to be optimal in several
types of stopping applications. Let us provide a condition that guarantees its
optimality.

We have from the DP Eqs. (2.57)-(2.58),

J∗
N−1(x) ≤ J∗

N (x), for all x,

and using this fact in the DP equation (2.58), we obtain inductively

J∗
k (x) ≤ J∗

k+1(x), for all x and k.

Using this fact and the definition of Sk we see that

S0 ⊂ · · · ⊂ Sk ⊂ Sk+1 ⊂ · · · ⊂ SN−1. (2.59)

We will now consider a condition guaranteeing that all the stopping sets
Sk are equal. Suppose that the set SN−1 is absorbing in the sense that if a
state belongs to SN−1 and we decide to continue, the next state will also be
in SN−1:

f(x,w) ∈ SN−1, for all x ∈ SN−1, w. (2.60)

We will show that equality holds in Eq. (2.59) and for all k we have

Sk = SN−1 =
{
x ∈ S

∣∣∣ C(x) ≤ E
{
g(x,w) + C

(
f(x,w)

)}}
.

Indeed, by the definition of SN−1, we have

J∗
N−1(x) = C(x), for all x ∈ SN−1,

and using Eq. (2.60) we obtain for x ∈ SN−1

E
{
g(x,w) + J∗

N−1

(
f(x,w)

)}
= E

{
g(x,w) + C

(
f(x,w)

)}
≥ C(x).

Therefore, stopping is optimal for all xN−2 ∈ SN−1 or equivalently SN−1 ⊂
SN−2. This together with Eq. (2.59) implies SN−2 = SN−1. Proceeding
similarly, we obtain Sk = SN−1 for all k. Thus the optimal policy is to stop
if and only if the state is within the set SN−1, which is precisely the set of
states where the rollout policy stops.

In conclusion, if condition (2.60) holds (the one-step stopping set SN−1

is absorbing), the rollout policy is optimal. Moreover, the preceding analysis
[cf. Eq. (2.59)] can be used to show that even if the one-step stopping set SN−1

is not absorbing, the rollout policy stops and is optimal within the set of states
x ∈ ∩kSk, and correctly continues within the set of states x /∈ SN−1. Contrary
to the optimal policy, it also stops within the subset of states x ∈ SN−1 that
are not in ∩kSk. Thus, even in the absence of condition (2.60), the rollout
policy is quite sensible even though the base policy is not.

We next discuss a special case of the preceding example. Again the
one-step lookahead/rollout policy is optimal, despite the fact that the base
policy is poor. Related examples can be found in Chapter 3 of the DP
textbook [Ber17a].
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Example 2.7.2 (The Rational Burglar)

A burglar may at any night k choose to retire with his accumulated earnings
xk or enter a house and bring home a random amount wk. However, in
the latter case he gets caught with probability p, and then he is forced to
terminate his activities and forfeit all of his earnings thus far. The amounts
wk are independent, identically distributed with mean w. The problem is to
find a policy that maximizes the burglar’s expected earnings over N nights.

We can formulate this problem as a stopping problem with two actions
(retire or continue) and a state space consisting of the real line, the retirement
state, and a special state corresponding to the burglar getting caught. The
DP algorithm is given by

J∗
N (xN) = xN ,

J∗
k (xk) = max

[
xk, (1− p)E

{
J∗
k+1(xk + wk)

}]
.

The one-step stopping set is

SN−1 =
{
x | x ≥ (1− p)(x+w)

}
=

{
x
∣∣∣ x ≥ (1− p)w

p

}
,

(more accurately this set together with the special state corresponding to the
burglar’s arrest). Since this set is absorbing in the sense of Eq. (2.60), we
see that the one-step lookahead/rollout policy by which the burglar retires
when his earnings reach or exceed (1− p)w/p is optimal. Note that the base
policy of the burglar is the “timid” policy of always retiring, regardless of his
accumulated earnings, which is far from optimal.

2.7.1 Simplified Rollout and Policy Iteration

The cost improvement property (2.55) also holds for the simplified version
of the rollout algorithm (cf. Section 2.3.4) where the rollout policy is defined
by

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Qk,π(xk, uk), (2.61)

for a subset Uk(xk) ⊂ Uk(xk) that contains the base policy control µk(xk).
The proof is obtained by replacing the last inequality in the argument of
Eq. (2.56),

min
uk∈Uk(xk)

Qk,π(xk, uk) ≤ Qk,π

(
xk, µk(xk)

)
,

with the inequality

min
uk∈Uk(xk)

Qk,π(xk, uk) ≤ Qk,π

(
xk, µk(xk)

)
.
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The simplified rollout algorithm (2.61) may be implemented in a number
of ways, including control constraint discretization/approximation, a ran-
dom search algorithm, or a one-agent-at-a-time minimization process, as
in multiagent rollout.

The simplified rollout idea can also be used within the infinite horizon
policy iteration (PI) context. In particular, instead of the minimization

µ̃(x) ∈ arg min
u∈U(x)

Ew

{
g(x, u, w) + αJµ

(
f(x, u, w)

)}
, for all x, (2.62)

in the policy improvement operation, it is sufficient for cost improvement
to generate a new policy µ̃ that satisfies for all x,

Ew

{
g
(
x, µ̃(x), w

)
+αJµ

(
f(x, µ̃(x), w)

)}
≤ Ew

{
g(x, u, w)+αJµ

(
f(x, u, w)

)}
.

This cost improvement property is the critical argument for proving con-
vergence of the PI algorithm and its variations to the optimal cost function
and policy; see the corresponding proofs in the books [Ber17a] and [Ber19a].

2.7.2 Certainty Equivalence Approximations

As in the case of deterministic DP problems, it is possible to use "-step
lookahead, with the aim to improve the performance of the policy obtained
through approximation in value space. This, however, can be computation-
ally expensive, because the lookahead graph expands fast as " increases,
due to the stochastic character of the problem. Using certainty equivalence
(CE for short) is an important approximation approach for dealing with
this difficulty, as it reduces the size of the "-step minimization graph. More-
over, CE mitigates the potentially excessive simulation because it reduces
the stochastic variance of the Q-factors calculated by the method at each
stage.

In the pure but somewhat flawed version of this approach, when solv-
ing the "-step lookahead minimization problem, we simply replace all of
the uncertain quantities wk, wk+1, . . . , wk+!−1, . . . , wN−1 by some nominal
value w, thus making that problem fully deterministic. Unfortunately, this
affects significantly the character of the approximation: when wk is re-
placed by a deterministic quantity the Newton step interpretation of the
underlying approximation in value space scheme is lost to a great extent.

Still, we may largely correct this difficulty, while retaining substan-
tial simplification, by using CE for only after the first stage of the "-step
lookahead. We can do this with a CE scheme whereby only the uncertain
quantities wk+1, . . . , wN−1 are replaced by a deterministic value w, while
wk is treated as a stochastic quantity.

This approach, first proposed in the paper by Bertsekas and Castañon
[BeC99], has an important advantage: it maintains the Newton step charac-
ter of the approximation in value space scheme. In particular, the function
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Jµ̃ of the !-step lookahead policy µ̃ obtained is generated by a Newton
step, applied to the function obtained by the last !− 1 minimization steps
(modified by CE, and applied to the terminal cost function approxima-
tion); see the monograph [Ber20a] for a discussion. Thus the benefit of
the fast convergence of Newton’s method is restored. In fact based on in-
sights derived from this Newton step interpretation, it appears that the
performance penalty for the CE approximation is typically small. At the
same time the !-step lookahead minimization involves only one stochas-
tic step, the first one, and hence potentially a much “thinner” lookahead
graph, than the !-step minimization that does not involve any CE-type
approximations; see Fig. 2.7.1. Moreover, the ideas of tree pruning and it-
erative deepening, which we have discussed in Section 2.4 for deterministic
multistep lookahead, come into play when the CE approximation is used.

2.7.3 Simulation-Based Implementation of the Rollout Algorithm

A conceptually straightforward way to compute the rollout control at a
given state xk and time k is to consider each possible control uk ∈ Uk(xk),
and to generate a “large” number of simulated trajectories of the system
starting from (xk, uk). Thus a simulated trajectory is obtained from

xi+1 = fi
(
xi, µi(xi), wi

)
, i = k + 1, . . . , N − 1,

where {µk+1, . . . , µN−1} is the tail portion of the base policy, the starting
state of the simulated trajectory is

xk+1 = fk(xk, uk, wk),

and the disturbance sequence {wk, . . . , wN−1} is obtained by random sam-
pling. The costs of the trajectories corresponding to a pair (xk, uk) can be
viewed as samples of the Q-factor

Qk,π(xk, uk) = E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
,

where Jk+1,π is the cost-to-go function of the base policy, i.e., Jk+1,π(xk+1)
is the cost of using the base policy starting from xk+1. For problems with a
large number of stages, it is also common to truncate the rollout trajectories
and add a terminal cost function approximation as compensation for the
resulting error.

By Monte Carlo averaging of the costs of the sample trajectories plus
the terminal cost (if any), we obtain an approximation to the Q-factor
Qk,π(xk, uk) for each uk ∈ Uk(xk), denoted by Q̃k,π(xk, uk). We then com-
pute the (approximate) rollout control µ̃k(xk) with the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k,π(xk, uk). (2.63)
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Figure 2.7.1 Illustration of multistep lookahead for stochastic problems with
the CE approximation, applied at the states after the first layer of states of the
multistep lookahead tree. The figure on the top (or the bottom) illustrates the
lookahead tree without (or with, respectively) CE. It can be seen that with CE, the
lookahead tree grows much faster (the layers contain more states). In particular,
the “height” of the !-step lookahead graph without the CE approximation is the
same as the “height” of a !′-step lookahead graph with the CE approximation,
where !′ = 2! − 1. Moreover, with a number m of controls per state, and a
number n of disturbances per state-control pair, the number of leaves of the !-

step lookahead tree is estimated as O(mn!) without CE and O
(
m(n + !)

)
with

CE.

Example 2.7.3 (Backgammon)

The first impressive application of rollout was given for the ancient two-player
game of backgammon, in the paper by Tesauro and Galperin [TeG96]; see
Fig. 2.7.2. They implemented a rollout algorithm, which attained a level of
play that was better than all computer backgammon programs, and eventu-
ally better than the best humans. Tesauro had proposed earlier the use of
one-step and two-step lookahead with lookahead cost function approximation
provided by a neural network, resulting in a backgammon program called TD-
Gammon [Tes89a], [Tes89b], [Tes92], [Tes94], [Tes95], [Tes02]. TD-Gammon
was trained with an approximate policy iteration method, and was used as
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Figure 2.7.2 Illustration of rollout for backgammon. At a given position and
roll of the dice, the set of all possible moves is generated, and the outcome of the
game for each move is evaluated by “rolling out” (simulating to the end) many
games using a suboptimal/heuristic backgammon player (the TD-Gammon player
was used for this purpose in [TeG96]), and by Monte Carlo averaging the scores.
The move that results in the best average score is selected for play.

the base policy (for each of the two players) to simulate game trajectories.
The rollout algorithm also involved truncation of long game trajectories, us-
ing a terminal cost function approximation based on TD-Gammon’s position
evaluation. Game trajectories are of course random, since they involve the
use of dice at each player’s turn. Thus the scores of many trajectories have
to be generated and Monte Carlo averaged to assess the probability of a win
from a given position.

An important issue to consider here is that backgammon is a two-player
game and not an optimal control problem that involves a single decision
maker. While there is a DP theory for sequential zero-sum games, this theory
has not been covered in these notes. Thus how are we to interpret rollout
algorithms in the context of two-player games, with both players using some
base policy? The answer is to view the game as a (one-player) optimal control
problem, where one of the two players passively uses the base policy exclu-
sively (TD-Gammon in the present example). The other player takes the
role of the optimizer, and actively tries to improve on his base policy (TD-
Gammon) by using rollout. Thus “policy improvement” in the context of the
present example means that when playing against a TD-Gammon opponent,
the rollout player achieves a better score on the average than if he/she were
to play with the TD-Gammon strategy. In particular, the theory does not
guarantee that a rollout player that is trained using TD-Gammon for both
players will do better than TD-Gammon would against a non-TD-Gammon
opponent. While this is a plausible practical hypothesis, it is one that can only
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be tested empirically. In fact relevant counterexamples have been constructed
for the game of Go using “adversarial” optimization techniques; see Wang et
al. [WGB22], and also our discussion on minimax problems in Section 2.12.

Most of the currently existing computer backgammon programs descend
from TD-Gammon. Rollout-based backgammon programs are the most pow-
erful in terms of performance, consistent with the principle that a rollout
algorithm performs better than its base heuristic. However, they are too time-
consuming for real-time play (without parallel computing hardware), because
of the extensive on-line simulation requirement at each move.† They have
been used in a limited diagnostic way to assess the quality of neural network-
based programs (many articles and empirical works on computer backgammon
are posted on-line; see e.g., http://www.bkgm.com/articles/page07.html).

2.7.4 Variance Reduction in Rollout - Comparing Advantages

When using simulation, sampling is often organized to effect variance re-
duction. By this we mean that for a given problem, the collection and
use of samples is structured so that the variance of the simulation error is
made smaller, with the same amount of simulation effort. There are several
methods of this type for which we refer to textbooks on simulation (see,
e.g., Ross [Ros12], and Rubinstein and Kroese [RuK1]).

In this section we discuss a method to reduce the effects of the sim-
ulation error in the calculation of the Q-factors in the context of rollout.
The key idea is that the selection of the rollout control depends on the
values of the Q-factor differences

Q̃k,π(xk, uk)− Q̃k,π(xk, ûk)

for all pairs of controls (uk, ûk). These values must be computed accu-
rately, so that the controls uk and ûk can be accurately compared. On the
other hand, the simulation/approximation errors in the computation of the
individual Q-factors Q̃k,π(xk, uk) may be magnified through the preceding
differencing operation.

An approach to counteract this type of simulation error magnification
is to approximate the Q-factor difference Q̃k,π(xk, uk) − Q̃k,π(xk, ûk) by
sampling the difference

Ck(xk, uk,wk)− Ck(xk, ûk,wk), (2.64)

where wk = (wk, wk+1, . . . , wN−1) is the same disturbance sequence for the
two controls uk and ûk, and

Ck(xk, uk,wk) = gN (xN ) + gk(xk, uk, wk) +
N−1∑

i=k+1

gi
(
xi, µi(xi), wi

)
,

† The situation in backgammon is exacerbated by its high branching factor,
i.e., for a given position, the number of possible successor positions is quite large,
as compared for example with chess.
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with {µk+1, . . . , µN−1} being the tail portion of the base policy. †
For a simple example that illustrates how this form of variance re-

duction works, suppose we want to calculate the difference q1 − q2 of two
numbers q1 and q2 by subtracting two simulation samples s1 = q1 + w1

and s2 = q2+w2, where w1 and w2 are zero mean random variables. Then
s1 − s2 is unbiased in the sense that its mean is equal to q1 − q2. However,
the variance of s1 − s2 decreases as the correlation of w1 and w2 increases.
It is maximized when w1 and w2 are uncorrelated, and it is minimized (it
is equal to 0) when w1 and w2 are equal.

The preceding example suggests a simulation scheme that is based
on the difference (2.64) and involves a common disturbance wk for uk and
ûk. In particular, it may be far more accurate than the one obtained by
differencing samples of Ck(xk, uk,wk) and Ck(xk, ûk, ŵk), which involve
two different disturbances wk and ŵk. Indeed, by introducing the zero
mean sample errors

Dk(xk, uk,wk) = Ck(xk, uk,wk)− Q̃k,π(xk, uk),

it can be seen that the variance of the error in estimating Q̃k,π(xk, uk) −
Q̃k,π(xk, ûk) with the former method will be no larger than with the latter
method if and only if

Ewk , ŵk

{∣∣Dk(xk, uk,wk)−Dk(xk, ûk, ŵk)
∣∣2
}

≥ Ewk

{∣∣Dk(xk, uk,wk)−Dk(xk, ûk,wk)
∣∣2
}
.

By expanding the quadratic forms and using the fact E
{
Dk(xk, uk,wk)

}
=

0, we see that this condition is equivalent to

E
{
Dk(xk, uk,wk)Dk(xk, ûk,wk)

}
≥ 0; (2.65)

i.e., the errors Dk(xk, uk,wk) and Dk(xk, ûk,wk) being nonnegatively cor-
related. A little thought should convince the reader that this property is
likely to hold in many types of problems.

Roughly speaking, the relation (2.65) holds if changes in the value of
uk (at the first stage) have little effect on the value of the errorDk(xk, uk,wk)
relative to the effect induced by the randomness of wk. To see this, sup-
pose that there exists a scalar γ < 1 such that, for all xk, uk, and ûk, there
holds

E
{∣∣Dk(xk, uk,wk)−Dk(xk, ûk,wk)

∣∣2
}
≤ γE

{∣∣Dk(xk, uk,wk)
∣∣2
}
.

(2.66)

† For this to be possible, we need to assume that the probability distribution
of each disturbance wi does not depend on xi and ui.
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Then we have, by using the generic relation ab ≥ a2 − |a| · |b − a| for two
scalars a and b,

Dk(xk, uk,wk)Dk(xk, ûk,wk)

≥
∣∣Dk(xk, uk,wk)

∣∣2

−
∣∣Dk(xk, uk,wk)

∣∣ ·
∣∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)

∣∣,

from which we obtain

E
{
Dk(xk,uk,wk)Dk(xk, ûk,wk)

}

≥ E
{∣∣Dk(xk, uk,wk)

∣∣2
}

− E
{∣∣Dk(xk, uk,wk)

∣∣ ·
∣∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)

∣∣
}

≥ E
{∣∣Dk(xk, uk,wk)

∣∣2
}
−

1

2
E
{∣∣Dk(xk, uk,wk)

∣∣2
}

−
1

2
E
{∣∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)

∣∣2
}

≥
1− γ

2
E
{∣∣Dk(xk, uk,wk)

∣∣2
}
,

where for the second inequality we use the generic relation

−|a| · |b| ≥ −
1

2
(a2 + b2)

for two scalars a and b, and for the third inequality we use Eq. (2.66).
Thus, under the assumption (2.66), the condition (2.65) holds and

guarantees that by averaging cost difference samples rather than differenc-
ing (independently obtained) averages of cost samples, the simulation error
variance does not increase.

Let us finally note the potential benefit of using Q-factor differences
in contexts other than rollout. In particular when approximating Q-factors
Qk,π(xk, uk) using parametric architectures (Section 3.3 in the next chap-
ter), it may be important to approximate and compare instead the differ-
ences

Ak,π(xk, uk) = Qk,π(xk, uk)− min
uk∈Uk(xk)

Qk,π(xk, uk).

The functionAk,π(xk, uk) is also known as the advantage of the pair (xk, uk),
and can serve just as well as Qk,π(xk, uk) for the purpose of comparing con-
trols, but may work better in the presence of approximation errors. The
use of advantages will be discussed further in Chapter 3.



226 Approximation in Value Space - Rollout Algorithms Chap. 2

2.7.5 Monte Carlo Tree Search

In our earlier discussion of simulation-based rollout implementation, we
implicitly assumed that once we reach state xk, we generate the same large
number of trajectories starting from each pair (xk, uk), with uk ∈ U(xk),
to the end of the horizon. The drawback of this is threefold:

(a) The trajectories may be too long because the horizon length N is
large (or infinite, in an infinite horizon context).

(b) Some of the controls uk may be clearly inferior to others, and may
not be worth as much sampling effort.

(c) Some of the controls uk that appear to be promising, may be worth
exploring better through multistep lookahead.

This has motivated multistep lookahead variants, generally referred
to as Monte Carlo tree search (MCTS for short), which aim to trade off
computational economy with a hopefully small risk of degradation in per-
formance. Such variants involve, among others, early discarding of controls
deemed to be inferior based on the results of preliminary calculations, and
simulation that is limited in scope (either because of a reduced number
of simulation samples, or because of a shortened horizon of simulation, or
both).

A simple remedy for (a) above is to use rollout trajectories of reason-
ably limited length, with some terminal cost approximation at the end (in
an extreme case, the rollout may be skipped altogether for some states, i.e.,
rollout trajectories have zero length). The terminal cost function may be
very simple (such as zero) or may be obtained through some auxiliary cal-
culation. In fact the base policy used for rollout may be used to construct
the terminal cost function approximation, as noted for the rollout-based
backgammon algorithm of Example 2.7.3. In particular, an approximation
to the cost function of the base policy may be obtained by training some
approximation architecture, such as a neural network (see Chapter 3), and
may be used as a terminal cost function.

A simple but less straightforward remedy for (b) is to use some heuris-
tic or statistical test to discard some of the controls uk, as soon as this is
suggested by the early results of simulation. Similarly, to implement (c) one
may use some heuristic to increase the length of lookahead selectively for
some of the controls uk. This is similar to the incremental multistep rollout
scheme for deterministic problems that we discussed in Section 2.4.3; see
Fig. 2.4.6.

The MCTS approach can be based on sophisticated procedures for im-
plementing and combining the ideas just described. The general idea is to
use the interim results of the computation and statistical tests to focus the
simulation effort along the most promising directions. Thus to implement
MCTS with multistep lookahead, one needs to maintain a lookahead tree,
which is expanded as the relevant Q-factors are evaluated by simulation,
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and which balances the competing desires of exploitation and exploration
(generate and evaluate controls that seem most promising in terms of per-
formance versus assessing the potential of inadequately explored controls).
Ideas that were developed in the context of multiarmed bandit problems
have played an important role in the construction of this type of MCTS
procedures (see the end-of-chapter references).

In the simple case of one-step lookahead, with Q-factors calculated by
Monte Carlo simulation, MCTS fundamentally aims to find efficiently the
minimum of the expected values of a finite number of random variables.
This is illustrated in the following example.

Example 2.7.4 (Statistical Tests for Adaptive Sampling with
One-Step Lookahead)

Let us consider a typical one-step lookahead selection strategy that is based
on adaptive sampling. We are at a state xk and we try to find a control ũk

that minimizes an approximate Q-factor

Q̃k(xk, uk) = E
{
gk(xk, uk, wk) + J̃k+1

(
fk(xk, uk, wk)

)}

over uk ∈ Uk(xk), with Q̃k(xk, uk) computed by averaging samples of the
expression within braces. We assume that Uk(xk) contains m elements, which
for simplicity are denoted 1, . . . ,m. At the !th sampling period, knowing the
outcomes of the preceding sampling periods, we select one of the m controls,
say i!, and we draw a sample of Q̃k(xk, i!), whose value is denoted by Si!

.
Thus after the nth sampling period we have an estimate Qi,n of the Q-factor
of each control i = 1, . . . ,m that has been sampled at least once, given by

Qi,n =

∑n

!=1
δ(i! = i)Si!∑n

!=1
δ(i! = i)

,

where

δ(i! = i) =
{
1 if i! = i,
0 if i! "= i.

Thus Qi,n is the empirical mean of the Q-factor of control i (total sample
value divided by total number of samples), assuming that i has been sampled
at least once.

After n samples have been collected, with each control sampled at least
once, we may declare the control i that minimizes Qi,n as the “best” one,
i.e., the one that truly minimizes the Q-factor Qk(xk, i). However, there is
a positive probability that there is an error: the selected control may not
minimize the true Q-factor. In adaptive sampling, roughly speaking, we want
to design the sample selection strategy and the criterion to stop the sampling,
in a way that keeps the probability of error small (by allocating some sampling
effort to all controls), and the number of samples limited (by not wasting
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-Factors Current State xCurrent State xk

Sample Q-Factors Simulation

Simulation Nearest Neighbor Heuristic Move to the Right

Simulation Nearest Neighbor Heuristic Move to the Right

Simulation Nearest Neighbor Heuristic Move to the Right

Q1,n +R1,n

Q2,n +R2,n

Q3,n +R3,n

Figure 2.7.3 Illustration of one-step lookahead MCTS at a state xk. The
Q-factor sampled next corresponds to the control i with minimum sum of
exploitation index (here taken to be the running average Qi,n) and exploration
index (Ri,n, possibly given by the UCB rule).

samples on controls i that appear inferior based on their empirical mean
Qi,n).

Intuitively, a good sampling policy will balance at time n the desires of
exploitation and exploration (i.e., sampling controls that seem most promis-
ing, in the sense that they have a small empirical mean Qi,n, versus assessing
the potential of inadequately explored controls, those i that have been sam-
pled a small number of times). Thus it makes sense to sample next the control
i that minimizes the sum

Ti,n +Ri,n

of two indexes: an exploitation index Ti,n and an exploration index Ri,n.
Usually the exploitation index is chosen to be the empirical mean Qi,n; see
Fig. 2.7.3. The exploration index is based on a confidence interval formula
and depends on the sample count

si =

n∑

!=1

δ(i! = i)

of control i. A frequently suggested choice is the UCB rule (upper confidence
bound), which sets

Ri,n = −c

√
log n
si

,

where c is a positive constant that is selected empirically (some analysis sug-
gests values near c =

√
2, assuming that Qi,n is normalized to take values in

the range [−1, 0]). The UCB rule, first proposed in the paper by Auer, Cesa-
Bianchi, and Fischer [ACF02], has been extensively discussed in the literature
both for one-step and for multistep lookahead [where it is called UCT (UCB
applied to trees; see Kocsis and Szepesvari [KoS06])].†

† The paper [ACF02] refers to the rule given here as UCB1 and credits its mo-
tivation to the paper by Agrawal [Agr95]. The book by Lattimore and Szepesvari
[LaS20] provides an extensive discussion of the UCB rule and its generalizations.
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Its justification is based on probabilistic analyses that relate to the
multiarmed bandit problem, and is beyond our scope. Alternatives to the
UCB formula have been suggested, and in fact in the AlphaZero program,
the exploitation term has a different form than the one above, and depends
on the depth of lookahead (see Silver et al. [SHS17]).

Sampling policies for MCTS with multistep lookahead are based on
similar sampling ideas to the case of one-step lookahead. A simulated
trajectory is run from a node i of the lookahead tree that minimizes the
sum Ti,n + Ri,n of an exploitation index and an exploration index. There
are several schemes of this type, but the details are beyond our scope and
are often problem-dependent (see the end-of-chapter references).

A major success has been the use of MCTS in two-player game con-
texts, such as the AlphaGo program (Silver et al. [SHM16]), which performs
better than the best humans in the game of Go. This program integrates
several of the techniques discussed in these notes, including MCTS and
rollout using a base policy that is trained off-line using a deep neural net-
work. The AlphaZero program, which has performed spectacularly well
against humans and other programs in the games of Go and chess (Silver
et al. [SHS17]), bears some similarity with AlphaGo, and critically relies
on MCTS, but does not use rollout in its on-line playing mode (it relies
primarily on very long lookahead).

2.7.6 Randomized Policy Improvement by Monte Carlo Tree
Search

We have described rollout and MCTS as schemes for policy improvement:
start with a base policy, and compute an improved policy based on the
results of one-step lookahead or multistep lookahead followed by simula-
tion with the base policy. We have implicitly assumed that both the base
policy and the rollout policy are deterministic in the sense that they map
each state xk into a unique control µ̃k(xk) [cf. Eq. (2.63)]. In some (even
nonstochastic) contexts, success has been achieved with randomized poli-
cies , which map a state xk to a probability distribution over the set of
controls Uk(xk), rather than mapping onto a single control. In particular,
the AlphaGo and AlphaZero programs use MCTS to generate and use for
training purposes randomized policies, which specify at each board position
the probabilities with which the various moves are selected.

A randomized policy can be used as a base policy in a rollout con-
text in exactly the same way as a deterministic policy: for a given state
xk, we just generate sample trajectories and associated sample Q-factors,
using probabilistically selected controls, starting from each leaf-state of the
lookahead tree that is rooted at xk. We then average the corresponding
Q-factor samples. The rollout/improved policy, as described here, is a de-
terministic policy, i.e., it applies at xk the control µ̃k(xk) that is “best”
according to the results of the rollout [cf. Eq. (2.63)]. Still, however, if we
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wish to generate an improved policy that is randomized, we can simply
change the probabilities of different controls in the direction of the deter-
ministic rollout policy. This can be done by increasing by some amount the
probability of the “best” control µ̃k(xk) from its base policy level, while
proportionally decreasing the probabilities of the other controls.

The use of MCTS provides a related method to “improve” a random-
ized policy. In the process of the adaptive simulation that is used in MCTS,
we generate frequency counts of the different controls in Uk(xk), i.e., the
proportion of rollout trajectories associated with each uk ∈ Uk(xk). We
can then obtain the rollout randomized policy by moving the probabili-
ties of the base policy in the direction suggested by the frequency counts,
i.e., increase the probability of high-count controls and reduce the prob-
ability of the others. This type of policy improvement is reminiscent of
gradient-type methods, and has been successful in some contexts; see the
end-of-chapter references for such policy improvement implementations in
AlphaGo, AlphaZero, and other applications.

2.8 ROLLOUT FOR INFINITE-SPACES PROBLEMS -
OPTIMIZATION HEURISTICS

We have considered so far finite control space applications of rollout, so
there is a finite number of relevant Q-factors at each state xk, which are
evaluated by simulation and are exhaustively compared. When the control
constraint set is infinite, to implement this approach the constraint set
must be replaced by a finite set, obtained by some form of discretization or
random sampling, which can be inconvenient and ineffective. In this section
we will discuss an alternative approach to deal with an infinite number of
controls and Q-factors at xk. The idea is to use a base heuristic that
involves a continuous optimization, and to rely on a linear or nonlinear
programming method to solve the corresponding lookahead optimization
problem.

2.8.1 Rollout for Infinite-Spaces Deterministic Problems

To develop the basic idea of how to deal with infinite control spaces, we
first consider deterministic problems, involving a system

xk+1 = fk(xk, uk),

and a cost per stage gk(xk, uk). The one-step lookahead rollout minimiza-
tion is

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (2.67)

where Q̃k(xk, uk) is the approximate Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(
fk(xk, uk)

)
, (2.68)
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k xk+1

-Factors Current State x

Current State xk
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Sample Q-Factors Simulation Control 1 States xk+!

,n Stage k k Stages
Stages k+1, . . . , k+!−1

Control
Control uk

1)-Stages Base Heuristic Minimization

1)-Stages Base Heuristic Minimization
(! − 1)-Stages

Figure 2.8.1 Schematic illustration of rollout for a deterministic problem with
infinite control spaces. The base heuristic is to solve an (! − 1)-stage determin-
istic optimal control problem, which together with the kth stage minimization
over uk ∈ Uk(xk), seamlessly forms an !-stage continuous spaces optimal con-
trol/nonlinear programming problem that starts at state xk.

with Hk+1(xk+1) being the cost of the base heuristic starting from state
xk+1 [cf. Eq. (2.12)]. Suppose that we have a differentiable closed-form
expression for Hk+1, and the functions gk and fk are known and are differ-
entiable with respect to uk. Then the Q-factor Q̃k(xk, uk) of Eq. (2.68) is
also differentiable with respect to uk, and its minimization (2.67) may be
addressed with one of the many gradient-based methods that are available
for differentiable unconstrained and constrained optimization.

The preceding approach requires that the heuristic cost Hk+1(xk+1)
can be differentiated, so it should either be available in closed form, which
is quite restrictive, or that it can be differentiated numerically, which may
be inconvenient and/or unreliable. These difficulties can be circumvented
by using a base heuristic that is itself based on multistep optimization. In
particular, suppose that Hk+1(xk+1) is the optimal cost of some (! − 1)-
stage deterministic optimal control problem that is related to the original
problem. Then the rollout algorithm (2.67)-(2.68) can be implemented by
solving the !-stage deterministic optimal control problem, which seamlessly
concatenates the first stage minimization over uk [cf. Eq. (2.67)], with the
(!−1)-stage minimization of the base heuristic; see Fig. 2.8.1. This !-stage
problem may be solvable on-line by standard continuous spaces nonlinear
programming or optimal control methods.† A major paradigm of methods
of this type is model predictive control, which we have discussed in Chapter

† Note, however, that for this to be possible, it is necessary to have a math-
ematical model of the system; a simulator is not sufficient. Another difficulty
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Figure 2.8.2. Illustration of a simple supply chain system for Example 2.8.1.

1 (cf. Section 1.6.7). In the present section we will discuss a few other
possibilities. The following is a simple example of an important class of
inventory storage and supply chain management processes.

Example 2.8.1 (Supply Chain Management)

Let us consider a supply chain system, where a certain item is produced at a
production center and fulfilled at a retail center. Stock of the item is shipped
from the production center to the retail center, where it arrives with a delay
of τ ≥ 1 time units, and is used to fulfill a known stream of demands dk over
an N-stage horizon; see Fig. 2.8.2. We denote:

x1
k: The stock at hand at the production center at time k.

x2
k: The stock at hand at the retail center at time k, and used to fulfill

demand (both positive and negative x2
k are allowed; a negative value

indicates that there is backordered demand).

u1
k: The amount produced at time k.

u2
k: The amount shipped at time k (and arriving at the retail center τ time

units later).

The state at time k is the stock available at the production and retail
centers, x1

k, x
2
k, plus the stock amounts that are in transit and have not yet

arrived at the retail center u2
k−τ−1, . . . , u

2
k−1. The control uk = (u1

k, u
2
k) is

chosen from some constraint set that may depend on the current state, and
is subject to production capacity and transport availability constraints. The
system equation is

x1
k+1 = x1

k + u1
k − u2

k, x2
k+1 = x2

k + u2
k−τ − dk,

and involves the delayed control component u2
k−τ . Thus the exact DP algo-

rithm involves state augmentation as introduced in Section 1.6.3, and may
thus be much more complicated than in the case where there are no delays.†

occurs when the control space is the union of a discrete set and a continuous set.

Then it may be necessary to use some type of mixed integer programming tech-

nique to solve the "-stage problem. Alternatively, it may be possible to handle the
discrete part by brute force enumeration, followed by continuous optimization.

† Despite the fact that with large delays, the size of the augmented state
space can become very large (cf. Section 1.6.3), the implementation of rollout
schemes is not affected much by this increase in size. For this reason, rollout
can be very well suited for problems involving delayed effects of past states and
controls.
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The cost at time k consists of three components: a production cost
that depends on x1

k and u1
k, a transportation cost that depends on u2

k, and
a fulfillment cost that depends on x2

k [which includes positive costs for both
excess inventory (i.e., x2

k > dk) and for backordered demand (i.e., x2
k < dk)].

The precise forms of these cost components are immaterial for the purposes
of this example.

Here the control vector uk is often continuous (or a mixture of discrete
and continuous components), so it may be essential for the purposes of rollout
to use the continuous optimization framework of this section. In particular,
at the current stage k, we know the current state, which includes x1

k, x
2
k, and

the amounts of stock in transit together with their scheduled arrival times
at the retail center. We then apply some heuristic optimization to determine
the stream of future production and shipment levels over ! steps, and use
the first component of this stream as the control applied by rollout. As an
example we may use as base policy one that brings the retail inventory to
some target value ! stages ahead, and possibly keep it at that value for a
portion of the remaining periods. This is a nonlinear programming or mixed
integer programming problem that may be solvable with available software
far more efficiently than by a discretized form of DP.

A major benefit of rollout in the supply chain context is that it can
readily incorporate on-line replanning. This is necessary when unexpected
demand changes, production or transport equipment failures occur, or up-
dated forecasts become available.

The following example deals with a common class of problems of
resource allocation over time.

Example 2.8.2 (Multistage Linear and Mixed Integer
Programming)

Let us consider a deterministic optimal control problem with linear system
equation

xk+1 = Akxk +Bkuk + dk, k = 0, . . . , N − 1,

where Ak and Bk are known matrices of appropriate dimension, dk is a known
vector, and xk and uk are column vectors. The cost function is linear of the
form

cN
′xN +

N−1∑

k=0

(ck
′xk + dk

′uk),

where ck and dk are known column vectors of appropriate dimension, and a
prime denotes transpose. The terminal state and state-control pairs (xk, uk)
are constrained by

xN ∈ T, (xk, uk) ∈ Pk, k = 0, . . . , N − 1,

where T and Pk, k = 0, . . . , N−1, are given sets, which are specified by linear
and possibly integer constraints.
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As an example, consider a multi-item production system, where the
state is xk = (x1

k, . . . , x
n
k ) and xi

k represents stock of item i available at the
start of period k. The state evolves according to the system equation

xi
k+1 =

n∑

j=1

aij
k uij

k − dik, i = 1, . . . , n,

where uij
k is the amount of product i that is used during time k for the manu-

facture of product j, aij
k are known scalars that are related to the underlying

production process, and dik is a deterministic demand of product i that is
fulfilled at time k. One constraint here is that

n∑

j=1

uij
k ≤ xi

k, i = 1, . . . , n,

and there are additional linear and integer constraints on (xk, uk), which are
collected in a general constraint of the form (xk, uk) ∈ Pk (e.g., nonnega-
tivity, production capacity, storage constraints, etc). Note that the problem
may be further complicated by production delays, as in the preceding supply
chain Example 2.8.1. Moreover, while in this section we focus on determin-
istic problems, we may envision a stochastic version of the problem where
the demands dik are random with given probability distributions, which are
subject to revisions based on randomly received forecasts.

The problem may be solved using a linear or mixed integer programming
algorithm, but this may be very time-consuming when N is large. Moreover,
the problem will need to be resolved on-line if some of the problem data
changes and replanning is necessary. A suboptimal alternative is to use trun-
cated rollout with an !-stage mixed integer optimization, and a polyhedral
terminal cost function J̃k+! to provide a terminal cost optimization. A sim-
ple possibility is no terminal cost [J̃k+!(xk+!) ≡ 0], and another possibility is
a polyhedral lower bound approximation that can be based on relaxing the
integer constraints after stage k + !, or some kind of training approach that
uses data.

We will next discuss how rollout can accommodate stochastic distur-
bances by using deterministic optimization ideas based on certainty equiv-
alence (cf. Section 2.7.4) and the methodology of stochastic programming.

2.8.2 Rollout Based on Stochastic Programming

We have focused so far in this section on rollout that relies on deterministic
continuous optimization. There is an important class of methods, known as
stochastic programming, which can be used for stochastic optimal control,
but bears a close connection to continuous spaces deterministic optimiza-
tion. We will first describe this connection for two-stage problems, then
discuss extensions to many-stages problems, and finally show how rollout
can be brought to bear for their approximate solution.
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ū1

) u1

ū1
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Figure 2.8.3. Illustration of the DP problem associated with two-stage stochas-
tic programming; cf. Example 2.8.3. The figure depicts the case where each
variable u0, w0, and u1 can take only two values. A similar conversion to
a DP problem is possible for a multistage stochastic programming problem,
involving multiple choices of decisions, each followed by an uncertain event
whose outcome is perfectly observed by the decision maker.

Example 2.8.3 (Two-Stage Stochastic Programming)

Consider a stochastic problem of optimal decision making over two stages: In
the first stage we will choose a finite-dimensional vector u0 from a subset U0

with cost g0(u0). Then an uncertain event represented by a random variable
w0 will occur, whereby w0 will take one of the values w1, . . . , wm with cor-
responding probabilities p1, . . . , pm. Once w0 occurs, we will know its value
wi, and we must then choose at the second stage a vector ui

1 from a subset
U1(u0, w

i) at a cost g1(u
i
1, w

i). The objective is to minimize the expected
cost

g0(u0) +

m∑

i=1

pig1(u
i
1, w

i),

subject to

u0 ∈ U0, ui
1 ∈ U1(u0, w

i), i = 1, . . . ,m.

We can view this problem as a two-stage DP problem, where x1 = w0 is
the system equation, the disturbance w0 can take the values w1, . . . , wm with
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probabilities p1, . . . , pm, the cost of the first stage is g0(u0), the cost of the
second stage is g1(x1, u1), and the terminal cost is 0. The intuitive meaning
is that since at time 0 we don’t know yet which of the m values wi of w0 will
occur, we must calculate (in addition to u0) a separate second stage decision
ui
1 for each i, which will be used after we know that the value of w0 is wi.

However, if u0 and u1 take values in a continuous space such as the
Euclidean spaces !d0 and !d1 , respectively, we can also equivalently view
the problem as a nonlinear programming problem of dimension (d0 + md1)
(the optimization variables are u0 and ui

1, i = 1, . . . , m).

For a generalization of the preceding example, consider the stochastic
DP problem of Section 1.3 for the case where there are only two stages,
and the disturbances w0 and w1 can independently take one of the m val-
ues w1, . . . , wm with corresponding probabilities p10, . . . , p

m
0 and p11, . . . , p

m
1 ,

respectively. The optimal cost function J0(x0) is given by the two-stage
DP algorithm

J0(x0) = min
u0∈U0(x0)

[
m∑

i=1

pi0

{

g0(x0, u0, wi)

+ min
ui
1∈U1(f0(x0,u0,w

i))

[
m∑

j=1

pj1

{
g1
(
f0(x0, u0, wi), ui

1, wj
)

+ g2
(
f1
(
f0(x0, u0, wi), ui

1, wj
))}

]}]

.

By bringing the inner minimization outside the inner brackets, we see that
this DP algorithm is equivalent to solving the nonlinear programming prob-
lem

minimize
m∑

i=1

pi0

{

g0(x0, u0, wi) +
m∑

j=1

pj1

{
g1
(
f0(x0, u0, wi), ui

1, wj
)

+ g2
(
f1
(
f0(x0, u0, wi), ui

1, wj
))}

}

subject to u0 ∈ U0(x0), ui
1 ∈ U1

(
f0(x0, u0, wi)

)
, i = 1, . . . ,m.

(2.69)
If the controls u0 and ui

1 are elements of "d, this problem involves

d(1 +m)

scalar variables.
We can also consider an N -stage stochastic optimal control problem.

A similar reformulation as a nonlinear programming problem is possible. It
converts the N -stage stochastic problem into a deterministic optimization
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problem of dimension that grows exponentially with the number of stages
N . In particular, for an N -stage problem, the number of control variables
expands by a factor m with each additional stage. The total number of
variables is bounded by

d
(
1 +m+m2 + · · ·+mN−1

)
,

where m is the maximum number of values that a disturbance can take
at each stage and d is the dimension of the control vector. An example is
the multi-item production problem described in Example 2.8.2 in the case
where the demands wi

k and/or the production coefficients aijk are stochastic.

2.8.3 Stochastic Rollout with Certainty Equivalence

The dimension of the preceding nonlinear programming formulation of
the multistage stochastic optimal control problem with continuous control
spaces can be very large. This motivates a variant of a rollout algorithm
that relies on a stochastic optimization for the current stage, and a deter-
ministic optimization that relies on (assumed) certainty equivalence for the
remaining stages, where the base policy is used. In this way, the dimension
of the nonlinear programming problem to be solved by rollout is drastically
reduced.

This rollout algorithm operates as follows: Given a state xk and con-
trol uk ∈ Uk(xk), we consider the next states xi

k+1 that correspond to them
possible values wi

k, i = 1, . . . ,m, which occur with the known probabilities
pik, i = 1, . . . ,m. We then consider the approximate Q-factors

Q̃k(xk, uk) =
m∑

i=1

pik
(
gk(xk, uk, wi

k) + H̃k+1(xi
k+1)

)
, (2.70)

where H̃k+1(xi
k+1) is the cost of a base policy, which starting at stage k+1

from
xi
k+1 = fk(xk, uk, wi

k),

optimizes the cost-to-go starting from xi
k+1, while assuming that the future

disturbances wk+1, . . . , wN−1, will take some nominal (nonrandom) values
w̄k+1, . . . , w̄N−1. The rollout control µ̃k(xk) computed by this algorithm is

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (2.71)

Note that this rollout algorithm does not have the cost improvement prop-
erty, because it involves an approximation: the cost H̃k+1(xi

k+1) used in
Eq. (2.70) is an approximation to the cost of a policy. It is the cost of a
policy applied to the certainty equivalent version of the original stochastic
problem.
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The key fact now is that the problem (2.71) can be viewed as a seam-
less (N − k)-stage deterministic optimization, which involves the control
u0, and for each value wi

k of the disturbance wk, the sequence of controls
(ui

k+1, . . . , u
i
N−1). If the controls are elements of "d, this deterministic

optimization involves a total of

d
(
1 + (N − k − 1)m

)
(2.72)

scalar variables. Currently available deterministic optimization software
can deal with quite large numbers of variables, particularly in the context
of linear programming, so by using rollout in combination with certainty
equivalence, very large problems with continuous state and control variables
may be addressed.

Another possibility is to use multistep lookahead that aims to repre-
sent better the stochastic character of the uncertainty. Here at state xk

we solve an (N − k)-stage optimal control problem, where the uncertainty
is fully taken into account in the first ! stages, similar to stochastic pro-
gramming, and in the remaining N − k − ! stages, the uncertainty is dealt
with by certainty equivalence, by fixing the disturbances wk+!, . . . , wN−1

at some nominal values (we assume here for simplicity that ! < N − k). If
the controls are elements of "d, and the number of values that the distur-
bances w0, . . . , wN−1 can take is m, the total number of control variables
of this problem is

d
(
1 +m+ · · ·+m!−1 + (N − k − !)m!

)
,

[this is the !-step lookahead generalization of the formula (2.72)]. Once
the optimal policy {ũk, µ̃k+1, µ̃k+2, . . .} for this problem is obtained, the
first control component ũk is applied at xk and the remaining components
{µ̃k+1, µ̃k+2, . . .} are discarded. Note also that this multistep lookahead
approach may be combined with the ideas of multiagent rollout, which will
be discussed in the next section.

2.9 MULTIAGENT ROLLOUT

We will now consider a special structure of the control space, whereby the
control uk consists of m components, uk = (u1

k, . . . , u
m
k ), with a separa-

ble control constraint structure u!
k ∈ U !

k(xk), ! = 1, . . . ,m. The control
constraint set is the Cartesian product

Uk(xk) = U1
k (xk)× · · ·× Um

k (xk). (2.73)

Conceptually, each component u!
k, ! = 1, . . . ,m, is chosen at stage k by

a separate “agent” (a decision making entity), and for the sake of the
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following discussion, we assume that each set U !
k(xk) is finite. We discussed

this type of problem briefly in Section 1.6.5, and we will discuss it in this
section in greater detail.

Thus the one-step lookahead minimization

ũk ∈ arg min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
, (2.74)

where π is a base policy, involves as many as nm Q-factors, where n is the
maximum number of elements of the sets U !

k(xk) [so that nm is an upper
bound to the number of controls in Uk(xk), in view of the Cartesian product
structure (2.73)]. As a result, the standard rollout algorithm requires an
exponential [order O(nm)] number of base policy cost computations per
stage, which can be overwhelming even for moderate values of m.

This motivates an alternative and more efficient rollout algorithm,
called multiagent rollout also referred to as agent-by-agent rollout , that
still achieves the cost improvement property

Jk,π̃(xk) ≤ Jk,π(xk), ∀ xk, k, (2.75)

where Jk,π̃(xk), k = 0, . . . , N , is the cost-to-go of the rollout policy π̃
starting from state xk. Indeed we will exploit the multiagent structure
to construct an algorithm that maintains the cost improvement property
at much smaller computational cost, namely requiring order O(nm) base
policy cost computations per stage.

A key idea here is that the computational requirements of the roll-
out one-step minimization (2.74) are proportional to the size of the control
space and are independent of the size of the state space. We consequently
reformulate the problem so that control space complexity is traded off with
state space complexity, as discussed in Section 1.6.5. This is done by “un-
folding” the control uk into its m components u1

k, u
2
k, . . . , u

m
k . At the same

time, between xk and the next state xk+1 = fk(xk, uk, wk), we introduce
artificial intermediate “states” and corresponding transitions; see Fig. 2.9.1.

It can be seen that this reformulated problem is equivalent to the
original, since any control choice that is possible in one problem is also
possible in the other problem, while the cost structure of the two problems
is the same. In particular, each policy of the reformulated problem corre-
sponds to a policy of the original problem, with the same cost function,
and reversely.†

† Policies of the original problem involve functions of xk, while policies of the

reformulated problem involve functions of the choices of the preceding agents, as

well as xk. However, by successive substitution of the control functions of the
preceding agents, we can view control functions of each agent as depending ex-

clusively on xk. It follows that the multi-transition structure of the reformulated

problem cannot be exploited to reduce the cost function beyond what can be
achieved with a single-transition structure.
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Figure 2.9.1 Equivalent formulation of the N-stage stochastic optimal control
problem for the case where the control uk consists ofm components u1

k, u
2
k, . . . , u

m
k :

uk = (u1
k, . . . , u

m
k ) ∈ U1

k (xk)× · · ·× Um
k (xk).

The figure depicts the kth stage transitions. Starting from state xk, we generate
the intermediate states

(xk, u
1
k), (xk , u

1
k, u

2
k), . . . , (xk, u

1
k, . . . , u

m−1
k

),

using the respective controls u1
k
, . . . , um−1

k
. The final control um

k
leads from

(xk, u
1
k
, . . . , um−1

k
) to xk+1 = fk(xk, uk, wk), and a stage cost gk(xk, uk, wk) is

incurred.

Multiagent Rollout

Consider now the standard rollout algorithm applied to the reformulated
problem of Fig. 2.9.1, with a given base policy π = {µ0, . . . , µN−1}, which
is also a policy of the original problem [so that µk = (µ1

k, . . . , µ
m
k ), with

each µ!
k, " = 1, . . . ,m, being a function of just xk]. The algorithm involves

a minimization over only one control component at the states xk and at
the intermediate states

(xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
m−1
k ).

In particular, for each stage k, the algorithm requires a sequence of m min-
imizations, once over each of the agent controls u1

k, . . . , u
m
k , with the past

controls determined by the rollout policy, and the future controls determined
by the base policy. Assuming a maximum of n elements in the constraint
sets U !

k(xk), the computation required at each stage k is of order O(n) for
each of the “states”

xk, (xk, u1
k), . . . , (xk, u1

k, . . . , u
m−1
k ),

for a total of order O(nm) computation.
To elaborate, at (xk, u1

k, . . . , u
!−1
k ) with " ≤ m, and for each of the

controls u!
k ∈ U !

k(xk), we generate by simulation a number of system tra-
jectories up to stage N , with all future controls determined by the base
policy. We average the costs of these trajectories, thereby obtaining the
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Q-factors corresponding to (xk, u1
k, . . . , u

!−1
k , u!

k), for all values u
!
k ∈ U !

k(xk)
(with the preceding controls u1

k, . . . , u
!−1
k held at the values computed ear-

lier, and the future controls u!+1
k , . . . , um

k , uk+1, . . . , uN−1 determined by
the base policy). We then select the control u!

k ∈ U !
k(xk) that corresponds

to the minimal Q-factor.
Prerequisite assumptions for the preceding algorithm to work in an

on-line multiagent setting are:

(a) All agents have access to the current state xk as well as the base policy
(including the control functions µ!

n, ! = 1, . . . ,m, n = 0, . . . , N − 1 of
all agents).

(b) There is an order in which agents compute and apply their local
controls.

(c) The agents share their information, so agent ! knows the local controls
u1
k, . . . , u

!−1
k computed by the predecessor agents 1, . . . , ! − 1 in the

given order.

Note that the rollout policy obtained from the reformulated problem may
be different from the rollout policy obtained from the original problem.
However, the former rollout algorithm is far more efficient than the latter
in terms of required computation, while still maintaining the cost improve-
ment property (2.75).

The following spiders-and-flies example illustrates how multiagent
rollout may exhibit intelligence and agent coordination that is totally lack-
ing from the base policy. This behavior has been supported by computa-
tional experiments and analysis with larger (two-dimensional) spiders-and-
flies problems.

Example 2.9.1 (Spiders and Flies)

We have two spiders and two flies moving along integer locations on a straight
line. For simplicity we assume that the flies’ positions are fixed at some integer
locations, although the problem is qualitatively similar when the flies move
randomly. The spiders have the option of moving either left or right by one
unit; see Fig. 2.9.2. The objective is to minimize the time to capture both
flies. The problem has essentially a finite horizon since the spiders can force
the capture of the flies within a known number of steps.

The salient feature of the optimal policy here is to move the two spiders
towards different flies. The minimal time to capture is the maximum of the
initial distances of the two spider-fly pairs of the optimal policy.

Let us apply multiagent rollout with the base policy that directs each
spider to move one unit towards the closest fly position (a tie is broken by
moving towards the right-side fly). The base policy is poor because it may
unnecessarily move both spiders in the same direction, when in fact only one
is needed to capture the fly. This limitation is due to the lack of coordination
between the spiders: each acts selfishly, ignoring the presence of the other.
We will see that rollout restores a significant degree of coordination between
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Figure 2.9.2 Illustration of the two-spiders and two-flies problem. The spi-
ders move along integer points of a line. The two flies stay still at some
integer locations. The character of the optimal policy is to move the two
spiders towards two different flies.

Multiagent rollout with the given base policy starts with spider 1 at
location n, and calculates the two Q-factors of moving to locations n− 1 and
n + 1, assuming that the remaining moves of the two spiders will be made
using the go-towards-the-nearest-fly base policy. The Q-factor of going to n−1
is smallest because it saves in unnecessary moves of spider 1 towards fly 2,
so spider 1 will move towards fly 1. The trajectory generated by multiagent
rollout is to move spiders 1 and 2 towards flies 1 and 2, respectively, then
spider 2 first captures fly 2, and then spider 1 captures fly 1.

the spiders through an optimization that takes into account the long-term
consequences of the spider moves.

According to the multiagent rollout mechanism, the spiders choose their
moves one-at-a-time, optimizing over the two Q-factors corresponding to the
right and left moves, while assuming that future moves will be chosen ac-
cording to the base policy. Let us consider a stage, where the two flies are
alive, while both spiders are closest to fly 2, as in Fig. 2.9.2. Then the rollout
algorithm will start with spider 1 and calculate two Q-factors corresponding
to the right and left moves, while using the base heuristic to obtain the next
move of spider 2, and the remaining moves of the two spiders. Depending
on the values of the two Q-factors, spider 1 will move to the right or to the
left, and it can be seen that it will choose to move away from spider 2 even
if doing so increases its distance to its closest fly contrary to what the base
heuristic will do. Then spider 2 will act similarly and the process will con-
tinue. Intuitively, at the state of Fig. 2.9.2, spider 1 moves away from spider
2 and fly 2, because it recognizes that spider 2 will capture earlier fly 2, so it
might as well move towards the other fly.

Thus the multiagent rollout algorithm induces implicit move coordina-

tion, i.e., each spider moves in a way that takes into account future moves of
the other spider. In fact it can be verified that the algorithm will produce an
optimal sequence of moves starting from any initial spider positions. It can
also be seen that ordinary rollout (both flies move at once) will also produce
an optimal move sequence.

The example illustrates how a poor base heuristic can produce an ex-
cellent rollout solution, something that can be observed frequently in many
other problems. Intuitively, the key fact is that rollout is “farsighted” in the
sense that it can benefit from control calculations that reach far into future
stages.

A two-dimensional generalization of the example is also interesting.
Here the flies are at two corners of a square in the plane. It can be shown
that the two spiders, starting from the same position within the square, will
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separate under the rollout policy, with each moving towards a different spider,
while under the base policy, they will move in unison along the shortest path
to the closest surviving fly. Again this will happen for both standard and
multiagent rollout.

Example 2.9.2 (Multi-Vehicle Routing)

Consider the multi-vehicle routing problem of Example 1.2.3, whereby m
vehicles move along the arcs of a given graph, aiming to perform tasks located
at the nodes of the graph; cf. Fig. 2.9.3.

For a large number of vehicles and a complicated graph, this is a non-
trivial combinatorial problem. As we discussed in Example 1.2.3, the prob-
lem can be formulated as a discrete deterministic optimization problem, and
addressed by approximate DP methods. The state at a given stage is the
m-tuple of current positions of the vehicles together with the list of pending
tasks, but the number of these states can be enormous (it increases exponen-
tially with the number of nodes and the number of vehicles). Moreover the
number of joint move choices by the vehicles also increases exponentially with
the number of vehicles.

We are thus motivated to use a multiagent rollout approach. We de-
fine a base heuristic as follows: at a given stage and state (vehicle positions
and pending tasks), it finds the closest pending task (in terms of number of
moves needed to reach it) for each of the vehicles and moves each vehicle one
step towards the corresponding closest pending task (this is a legitimate base
heuristic: it assigns to each state a vehicle move for every vehicle).†

In the multiagent rollout algorithm, at a given stage and state, we
take up each vehicle in the order 1, . . . , n, and we compare the Q-factors of
the available moves to that vehicle while assuming that all the remaining
moves will be made according to the base heuristic, and taking into account
the moves that have been already made and the tasks that have already been
performed; see the illustration of Fig. 2.9.3. In contrast to all-vehicles-at-once
rollout, the one-vehicle-at-a-time rollout algorithm considers a polynomial (in
m) number of moves and corresponding shortest path problems at each stage.
In the example of Fig. 2.9.3, the one-vehicle-at-a-time rollout finds the optimal
solution, while the base heuristic starting from the initial state does not.

† There is an alternative version of the base heuristic, which makes selections
one-vehicle-at-a-time: at a given stage and state (vehicle positions and pending
tasks), it finds the closest pending task (in terms of number of moves needed to
reach it) for vehicle 1 and moves this vehicle one step towards this closest pending
task. Then it finds the closest pending task for vehicle 2 (the pending status of
the tasks, however, may have been affected by the move of vehicle 1) and moves
this vehicle one step towards this closest pending task, and continues similarly
for vehicles 3, . . . , n. There is a subtle difference between the two base heuristics:
for example they may make different choices when vehicle 1 reaches a pending
task in a single move, thereby changing the status of that task, and affecting the
choice of the base heuristic for vehicle 2, etc.
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Capacity=1 Optimal Solution

Move each vehicle one step at a time towards its nearest pending task,
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until all tasks are performed
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Figure 2.9.3 An instance of the vehicle routing problem of Example 2.9.2, and
the multiagent rollout approach. The two vehicles aim to collectively perform the
two tasks as fast as possible. Here, we should avoid sending both vehicles to node
4, towards the task at node 7; sending only vehicle 2 towards that task, while
sending vehicle 1 towards the task at node 9 is clearly optimal. However, the
base heuristic has “limited vision” and does not perceive this. By contrast the
standard and the one-vehicle-at-a-time rollout algorithms look beyond the first
move and avoid this inefficiency: they examine both moves of vehicle 1 to nodes
3 and 4, and use the base heuristic to explore the corresponding trajectories to
the end of the horizon, and discover that vehicle 2 can reach quickly node 7, and
that it is best to send vehicle 1 towards node 9.

In particular, the one-vehicle-at-a-time rollout algorithm will operate as
follows: given the starting position pair (1, 2) of the vehicles and the current
pending tasks at nodes 7 and 9, we first compare the Q-factors of the two possible
moves of vehicle 1 (to nodes 3 and 4), assuming that all the remaining moves will
be selected by the base heuristic at the beginning of each stage. Thus vehicle 1
will choose to move to node 3. Then with knowledge of the move of vehicle 1
from 1 to 3, we select the move of vehicle 2 by comparing the Q-factors of its
two possible moves (to nodes 4 and 5), taking also into account the fact that the
remaining moves will be made according to the base heuristic. Thus vehicle 2 will
choose to move to node 4.

We then continue at the next state [vehicle positions at (3,4) and pending
tasks at nodes 7 and 9], select the base heuristic moves of vehicles 1 and 2 on
the path to the closest pending tasks [(9 and 7), respectively], etc. Eventually
the rollout finds the optimal solution (move vehicle 1 to node 9 in three moves
and move vehicle 2 to node 7 in two moves), which has a total cost of 5. By
contrast it can be seen that the base heuristic at the initial state will move both
vehicles to node 4 (towards the closest pending task), and generate a trajectory
that moves vehicle 1 along the path 1 → 4 → 7 and vehicle 2 along the path
2 → 4 → 7 → 10 → 12 → 9, while incurring a total cost of 7.
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The Cost Improvement Property

Generally, it is unclear how the two rollout policies (standard/all-agents-at-
once and agent-by-agent) perform relative to each other in terms of attained
cost.† On the other hand, both rollout policies perform no worse than the
base policy, since the performance of the base policy is identical for both the
reformulated and the original problems. This cost improvement property
can also be shown analytically as follows by induction, by modifying the
standard rollout cost improvement proof; cf. Section 2.7.

Proposition 2.9.1: (Cost Improvement for Multiagent Roll-
out) The rollout policy π̃ = {µ̃0, . . . , µ̃N−1} obtained by multiagent
rollout satisfies

Jk,π̃(xk) ≤ Jk,π(xk), for all xk and k, (2.76)

where π is the base policy.

Proof: We will show the inequality (2.76) by induction, but for simplicity,
we will give the proof for the case of just two agents, i.e., m = 2. Clearly
the inequality holds for k = N , since JN,π̃ = JN,π = gN . Assuming that it
holds for index k + 1, we have for all xk,

Jk,π̃(xk) = E
{
gk
(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

)

+ Jk+1,π̃

(
fk
(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

))}

† For an example where the standard rollout algorithm works better, consider
a single-stage problem, where the objective is to minimize the first stage cost
g0(u

1
0, . . . , u

m
0 ). Let u0 = (u1

0, . . . , u
m
0 ) be the control applied by the base policy,

and assume that u0 is not optimal. Suppose that starting at u0, the cost cannot be
improved by varying any single control component. Then the multiagent rollout
algorithm stays at the suboptimal u0, while the standard rollout algorithm finds
an optimal control. Thus, for one-stage problems, the standard rollout algorithm
will perform no worse than the multiagent rollout algorithm.

The example just given is best seen within the framework of the classical
coordinate descent method for minimizing a function of m components. This

method can get stuck at a nonoptimal point in the absence of appropriate con-

ditions on the cost function, such as differentiability and/or convexity. However,
within our context of multistage rollout and possibly stochastic disturbances, it

appears that the consequences of such a phenomenon may not be serious. In

fact, one can construct multi-stage examples where multiagent rollout performs
better than the standard rollout.
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≤ E
{
gk
(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

)

+ Jk+1,π

(
fk
(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

))}

= min
u2
k
∈U2

k
(xk)

E
{
gk(xk, µ̃1

k(xk), u2
k, wk)

+ Jk+1,π

(
fk
(
xk, µ̃1

k(xk), u2
k, wk

))}

≤ E
{
gk
(
xk, µ̃1

k(xk), µ2
k(xk), wk

)

+ Jk+1,π

(
fk
(
xk, µ̃1

k(xk), µ2
k(xk), wk

))}

= min
u1
k
∈U1

k
(xk)

E
{
gk(xk, u1

k, µ
2
k(xk), wk)

+ Jk+1,π

(
fk
(
xk, u1

k, µ
2
k(xk), wk

))}

≤ E
{
gk
(
xk, µ1

k(xk), µ2
k(xk), wk

)

+ Jk+1,π

(
fk
(
xk, µ1

k(xk), µ2
k(xk), wk

))}

= Jk,π(xk),

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm
as it pertains to agent 2.

(d) The third equality holds by the definition of the rollout algorithm as
it pertains to agent 1.

(e) The fourth equality is the DP equation for the base policy π.

The induction proof of the cost improvement property (2.76) is thus com-
plete for the case m = 2. The proof for an arbitrary number of agents m
is entirely similar. Q.E.D.

Optimizing the Agent Order in Agent-by-Agent Rollout -
Multiagent Parallelization

In the multiagent rollout algorithm described so far, the agents optimize the
control components sequentially in a fixed order. It is possible to improve
performance by trying to optimize at each stage k the order of the agents.

An efficient way to do this is to first optimize over all single agent Q-
factors, by solving the m minimization problems that correspond to each of
the agents " = 1, . . . ,m being first in the multiagent rollout order. If "1 is
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the agent that produces the minimal Q-factor, we fix !1 to be the first agent
in the multiagent rollout order. Then we optimize over all single agent Q-
factors, by solving the m − 1 minimization problems that correspond to
each of the agents ! "= !1 being second in the multiagent rollout order. Let
!2 be the agent that produces the minimal Q-factor, fix !2 to be the second
agent in the multiagent rollout order, and continue in this manner. In the
end, after

m+ (m− 1) + · · ·+ 1 =
m(m+ 1)

2
(2.77)

minimizations, we obtain an agent order !1, . . . , !m that produces a poten-
tially much reduced Q-factor value, as well as the corresponding rollout
control component selections.

The method just described likely produces substantially better per-
formance, and eliminates the need for guessing a good agent order, but
it increases the number of Q-factor calculations needed per stage roughly
by a factor (m + 1)/2. Still this is much better than the all-agents-at-
once approach, which requires an exponential number of Q-factor calcu-
lations. Moreover, the Q-factor minimizations of the above process can
be parallelized, so with m parallel processors, we can perform the number
of m(m+ 1)/2 minimizations derived above in just m batches of parallel
minimizations, which require about the same time as in the case where
the agents are selected for Q-factor minimization in a fixed order. We fi-
nally note that our earlier cost improvement proof goes through again by
induction, when the order of agent selection is variable at each stage k.

Multiagent Rollout Variants

The agent-by-agent rollout algorithm admits several variants. We describe
briefly a few of these variants.

(a) We may use rollout with multistep lookahead, truncated rollout, and
terminal cost function approximation, as described earlier. Of course,
in such cases the cost improvement property need not hold.

(b) When the control constraint sets U !
k(xk) are infinite, multiagent roll-

out still applies, based on the tradeoff between control and state space
complexity, cf. Fig. 2.9.1. In particular, when the sets U !

k(xk) are in-
tervals of the real line, each agent’s lookahead minimization problem
can be performed with the aid of one-dimensional search methods.

(c) When the problem is deterministic there are additional possible vari-
ants of the multiagent rollout algorithm. In particular, for determin-
istic problems, we may use a more general base policy, i.e., a heuristic
that is not defined by an underlying policy; cf. Section 2.3.1. In this
case, if the sequential improvement assumption for the modified prob-
lem of Fig. 2.9.1 is not satisfied, then the cost improvement property
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may not hold. However, cost improvement may be restored by intro-
ducing fortification, as discussed in Section 2.3.2.

(d) The multiagent rollout algorithm can be simply modified to apply
to infinite horizon problems. In this context, we may also consider
policy iteration methods, which can be viewed as repeated rollout.
These methods may involve agent-by-agent policy improvement, and
value and policy approximations of intermediately generated policies
(see the RL book [Ber19a], Section 5.7.3).

(e) The multiagent rollout algorithm can be simply modified to apply to
deterministic continuous-time optimal control problems; cf. Section
2.6. The idea is again to simplify the minimization over u(t) in the
case where u(t) consists of multiple components u1(t), . . . , um(t).

(f) We can implement within the agent-by-agent rollout context the use
of Q-factor differences. The motivation is similar: deal with the ap-
proximation errors that are inherent in the estimated cost of the base
policy, J̃k+1,π

(
fk(xk, uk)

)
, and may overwhelm the current stage cost

term gk(xk, uk). As noted in Section 2.3.7, this may seriously degrade
the quality of the rollout policy; see also the discussion of advantage
updating and differential training in Chapter 3.

Constrained Multiagent Rollout

Let us consider a special structure of the control space, where the control
uk consists of m components, uk = (u1

k, . . . , u
m
k ), each belonging to a cor-

responding set U "
k(xk), ! = 1, . . . ,m. Thus the control space at stage k is

the Cartesian product

Uk(xk) = U1
k (xk)× · · ·× Um

k (xk).

We refer to this as the multiagent case, motivated by the special case where
each component u"

k, ! = 1, . . . ,m, is chosen by a separate agent ! at stage
k.

Similar to the unconstrained case, we can introduce a modified but
equivalent problem, involving one-at-a-time agent control selection. In par-
ticular, at the generic state xk, we break down the control uk into the se-
quence of the m controls u1

k, u
2
k, . . . , u

m
k , and between xk and the next state

xk+1 = fk(xk, uk), we introduce artificial intermediate “states”

(xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
m−1
k ),

and corresponding transitions. The choice of the last control component
um
k at “state” (xk, u1

k, . . . , u
m−1
k ) marks the transition at cost gk(xk, uk) to

the next state xk+1 = fk(xk, uk) according to the system equation. It is
evident that this reformulated problem is equivalent to the original, since
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any control choice that is possible in one problem is also possible in the
other problem, with the same cost.

By working with the reformulated problem, we can consider a rollout
algorithm that requires a sequence of m minimizations per stage, one over
each of the control components u1

k, . . . , u
m
k , with the past controls already

determined by the rollout algorithm, and the future controls determined
by running the base heuristic. Assuming a maximum of n elements in the
control component spaces U !

k(xk), ! = 1, . . . ,m, the computation required
for the m single control component minimizations is of order O(nm) per
stage. By contrast the standard rollout minimization (2.34) involves the
computation and comparison of as many as nm terms G

(
Tk(ỹk, uk)

)
per

stage.

2.9.1 Asynchronous and Autonomous Multiagent Rollout

In this section we consider multiagent rollout algorithms that are dis-
tributed and asynchronous in the sense that the agents may compute their
rollout controls in parallel rather than in sequence, aiming at computa-
tional speedup. An example of such an algorithm is obtained when at a
given stage, agent ! computes the rollout control ũ!

k before knowing the
rollout controls of some of the agents 1, . . . , ! − 1, and uses the controls
µ1
k(xk), . . . , µ

!−1
k (xk) of the base policy in their place.

This algorithm may work well for some problems, but it does not
possess the cost improvement property, and may not work well for other
problems. In fact we can construct a simple example involving a single
state, two agents, and two controls per agent, where the second agent does
not take into account the control applied by the first agent, and as a result
the rollout policy performs worse than the base policy for some initial
states.

Example 2.9.3 (Cost Deterioration in the Absence of
Adequate Agent Coordination)

Consider a problem with two agents (m = 2) and a single state. Thus the state
does not change and the costs of different stages are decoupled (the problem
is essentially static). Each of the two agents has two controls: u1

k ∈ {0, 1}
and u2

k ∈ {0, 1}. The cost per stage gk is equal to 0 if u1
k "= u2

k, is equal to
1 if u1

k = u2
k = 0, and is equal to 2 if u1

k = u2
k = 1. Suppose that the base

policy applies u1
k = u2

k = 0. Then it can be seen that when executing rollout,
the first agent applies u1

k = 1, and in the absence of knowledge of this choice,
the second agent also applies u2

k = 1 (thinking that the first agent will use
the base policy control u1

k = 0). Thus the cost of the rollout policy is 2 per
stage, while the cost of the base policy is 1 per stage. By contrast the rollout
algorithm that takes into account the first agent’s control when selecting the
second agent’s control applies u1

k = 1 and u2
k = 0, thus resulting in a rollout

policy with the optimal cost of 0 per stage.
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The difficulty here is inadequate coordination between the two agents.
In particular, each agent uses rollout to compute the local control, each think-
ing that the other will use the base policy control. If instead the two agents
were to coordinate their control choices, they would have applied an optimal
policy.

The simplicity of the preceding example raises serious questions as to
whether the cost improvement property (2.76) can be easily maintained by
a distributed rollout algorithm where the agents do not know the controls
applied by the preceding agents in the given order of local control selection,
and use instead the controls of the base policy. One may speculate that
if the agents are naturally “weakly coupled” in the sense that their choice
of control has little impact on the desirability of various controls of other
agents, then a more flexible inter-agent communication pattern may be
sufficient for cost improvement.†

An important question is to clarify the extent to which agent co-
ordination is essential. In what follows in this section, we will discuss a
distributed asynchronous multiagent rollout scheme, which is based on the
use of a signaling policy that provides estimates of coordinating information
once the current state is known.

Autonomous Multiagent Rollout - Signaling Policies

An interesting possibility for autonomous control selection by the agents
is to use a distributed rollout algorithm, which is augmented by a precom-
puted signaling policy that embodies agent coordination.‡ The idea is to
assume that the agents do not communicate their computed rollout control
components to the subsequent agents in the given order of local control se-
lection. Instead, once the agents know the state, they use precomputed (or
easily computed) approximations to the control components of the preceding
agents , and compute their own control components in parallel and asyn-

† In particular, one may divide the agents in “coupled” groups, and require

coordination of control selection only within each group, while the computation
of different groups may proceed in parallel. Note that the “coupled” group for-

mations may change over time, depending on the current state. For example, in

applications where the agents’ locations are distributed within some geographical
area, it may make sense to form agent groups on the basis of geographic proxim-

ity, i.e., one may require that agents that are geographically near each other (and
hence are more coupled) coordinate their control selections, while agents that are

geographically far apart (and hence are less coupled) forego any coordination.

‡ The general idea of coordination by sharing information about the agents’
policies arises also in other multiagent algorithmic contexts, including some that

involve forms of policy gradient methods and Q-learning; see the surveys of the

relevant research cited earlier. The survey by Matignon, Laurent, and Le Fort-
Piat [MLL12] focuses on coordination problems from an RL point of view.
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chronously. We call this algorithm autonomous multiagent rollout . While
this type of algorithm involves a form of redundant computation, it allows
for additional speedup through parallelization.

The algorithm at the kth stage uses a base policy µk = {µ1
k, . . . , µ

m−1
k },

but also uses a second policy µ̂k = {µ̂1
k, . . . , µ̂

m−1
k }, called the signaling pol-

icy, which is computed off-line, is known to all the agents for on-line use,
and is designed to play an agent coordination role. Intuitively, µ̂!

k(xk) pro-
vides an intelligent “guess” about what agent ! will do at state xk. This
is used in turn by all other agents i != ! to compute asynchronously their
own rollout control components on-line.

More precisely, the autonomous multiagent rollout algorithm uses the
base and signaling policies to generate a rollout policy π̃ = {µ̃0, . . . , µ̃N−1}
as follows. At stage k and state xk, µ̃k(xk) =

(
µ̃1
k(xk), . . . , µ̃m

k (xk)
)
, is

obtained according to

µ̃1
k(xk) ∈ arg min

u1
k
∈U1

k
(xk)

E
{
gk
(
xk, u1

k, µ
2
k(xk), . . . , µm

k (xk), wk

)

+ Jk+1,π

(
fk
(
xk, u1

k, µ
2
k(xk), . . . , µm

k (xk), wk

))}
,

µ̃2
k(xk) ∈ arg min

u2
k
∈U2

k
(xk)

E
{
gk
(
xk, µ̂1

k(xk), u2
k, . . . , µ

m
k (xk), wk

)

+ Jk+1,π

(
fk
(
xk, µ̂1

k(xk), u2
k, . . . , µ

m
k (xk), wk

))}
,

· · · · · · · · ·

µ̃m
k (xk) ∈ arg min

um
k

∈Um
k

(xk)
E
{
gk
(
xk, µ̂1

k(xk), . . . , µ̂
m−1
k (xk), um

k , wk

)

+ Jk+1,π

(
fk
(
xk, µ̂1

k(xk), . . . , µ̂
m−1
k (xk), um

k , wk

))}
.

(2.78)
Note that the preceding computation of the controls µ̃1

k(xk), . . . , µ̃m
k (xk)

can be done asynchronously and in parallel, and without direct agent co-
ordination, since the signaling policy values µ̂1

k(xk), . . . , µ̂
m−1
k (xk) are pre-

computed and are known to all the agents.
The simplest choice is to use as signaling policy µ̂ the base policy µ.

However, this choice does not guarantee policy improvement as evidenced
by Example 2.9.3. In fact performance deterioration with this choice is not
uncommon, and can be observed in more complicated examples, including
the following.

Example 2.9.4 (Spiders and Flies - Use of the Base Policy
for Signaling)

Consider the problem of Example 2.9.1, which involves two spiders and two
flies on a line, and the base policy µ that moves a spider towards the closest
surviving fly (and in case where a spider starts at the midpoint between



252 Approximation in Value Space - Rollout Algorithms Chap. 2

the two flies, moves the spider to the right). Assume that we use as signaling
policy µ̂ the base policy µ. It can then be verified that if the spiders start from
different positions, the rollout policy will be optimal (will move the spiders in
opposite directions). If, however, the spiders start from the same position, a
completely symmetric situation is created, whereby the rollout controls move
both flies in the direction of the fly furthest away from the spiders’ position
(or to the left in the case where the spiders start at the midpoint between the
two flies). Thus, the flies end up oscillating around the middle of the interval
between the flies and never catch the flies!

The preceding example is representative of a broad class of coun-
terexamples that involve multiple identical agents. If the agents start at
the same initial state, with a base policy that has identical components,
and use the base policy for signaling, the agents will select identical con-
trols under the corresponding multiagent rollout policy, ending up with a
potentially serious cost deterioration.

This example also highlights an effect of the sequential choice of the
control components u1

k, . . . , u
m
k , based on the reformulated problem of Fig.

2.9.1: it tends to break symmetries and “group think” that guides the
agents towards selecting the same controls under identical conditions. Gen-
erally, any sensible multiagent policy must be able to deal in some way with
this “group think” issue. One simple possibility is for each agent ! to ran-
domize somehow the control choices of other agents j != ! when choosing
its own control, particularly in “tightly coupled” cases where the choice of
agent ! is “strongly” affected by the choices of the agents j != !.

An alternative idea is to choose the signaling policy µ̂k to approximate
the sequential multiagent rollout policy (the one computed with each agent
knowing the controls applied by the preceding agents), or some other policy
that is known to embody coordination between the agents. In particular,
we may obtain µ̂k as the multiagent rollout policy for a related but simpler
problem, such as a certainty equivalent version of the original problem,
whereby the stochastic system is replaced by a deterministic one.

Another interesting possibility is to compute µ̂k = (µ̂1
k, . . . , µ̂

m
k ) by

off-line training of a neural network (or m networks, one per agent) with
training samples generated through the sequential multiagent rollout pol-
icy. We intuitively expect that if the neural network provides a signaling
policy that approximates well the sequential multiagent rollout policy, we
would obtain better performance than the base policy. This expectation
was confirmed in a case study involving a large-scale multi-robot repair
application (see [BKB20]).

The advantage of autonomous multiagent rollout with neural network
or other type of approximations is that it may lead to approximate policy
improvement, while at the same time allowing asynchronous distributed
agent operation without on-line agent coordination through communication
of their rollout control values (but still assuming knowledge of the exact
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state by all agents).

2.10 ROLLOUT FOR BAYESIAN OPTIMIZATION AND
SEQUENTIAL ESTIMATION

In this section, we discuss a wide class of problems that has been studied
intensively in statistics and related fields since the 1940s. Roughly speak-
ing, in these problems we use observations and sampling for the purpose of
inference, but the number and the type of observations are not fixed in ad-
vance. Instead, the outcomes of the observations are sequentially evaluated
on-line with a view towards stopping or modifying the observation process.
This involves sequential decision making, thus bringing to bear exact and
approximate DP. A central issue here is to estimate an m-dimensional ran-
dom vector θ, using optimal sequential selection of observations, which are
based on feedback from preceding observations; see Fig. 2.10.1.

For a simple illustrative example, let us consider a hypothesis testing
problem whereby we can make observations, at a cost C each, relating to
two hypotheses. Given a new observation, we can either accept one of the
hypotheses or delay the decision for one more period, pay the cost C, and
obtain a new observation. At issue is trading off the cost of observation with
the higher probability of accepting the wrong hypothesis. As an example, in
a quality control setting, the two hypotheses may be that a certain product
meets or does not meet a certain level of quality, while the observations
may consist of quantitative tests of the quality of the product.

Intuitively, one expects that once the conditional probability of one
of the hypotheses, given the observations thus far, gets sufficiently close
to 1, we should stop the observations. Indeed classical DP analyses bear
this out; see e.g., the books by Chernoff [Che72], DeGroot [DeG70], Whit-
tle [Whi82], and the references quoted therein. In particular, the simple
version of the hypothesis testing problem just described admits a simple
and elegant optimal solution, known as the sequential probability ratio test .
On the other hand more complex versions of the problem, involving for
example multiple hypotheses and/or multiple types of observations, are
computationally intractable, thus necessitating the use of suboptimal ap-
proaches.

An important distinction in sequential estimation problems is whether
the current choice of observation affects the cost and the availability of
future observations. If this is so, the problem can often be viewed most
fruitfully as a combined estimation and control problem, and is related to
a type of adaptive control problem that we will discuss in the next section.
As an example we will consider there sequential decoding, whereby we
search for a hidden code word by using a sequence of queries, in the spirit
of the Wordle puzzle and the family of Mastermind games [see, e.g., the
Wikipedia page for “Mastermind (board game)”].
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System Unknown Parameter θUnknown Parameter

System Observation Outcome Decision on Next Observation

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Observation Type SelectionObservation Type Selection

Observation Type Selection Observation Type Selection Outcome

Observation Type Selection Outcome Stop Observations

θ Estimate of θ

θ (known prior distribution)

Figure 2.10.1 Illustration of sequential estimation of an unknown parameter θ.
At each time a decision is made to select one of several observation types relating
to θ, each of different cost, or to stop the observations and provide a final estimate
of θ.

If the observation choices are “independent” and do not affect the cost
or availability of future observations, the problem is substantially simpli-
fied. We will discuss problems of this type in the present section, starting
with the case of surrogate and Bayesian optimization.

Surrogate Optimization

Surrogate optimization refers to a collection of methods, which address
suboptimally a broad range of minimization problems, beyond the realm
of DP. The idea is to minimize approximately a function that is given as
a “black box.” By this we mean a function whose analytical expression
is unknown, and whose values at any one point may be hard-to-compute,
e.g., may requite costly simulation or experimentation cost functions with
“surrogates” that are easier to obtain.

Here we introduce a model of the cost function that is parametrized
by a parameter θ; see Fig. 2.10.2. We observe sequentially the cost func-
tion at a few observation points, construct a model of the cost function
(the surrogate) by estimating θ based on the results of the observations,
and minimize the surrogate to obtain a suboptimal solution. The question
is how to select observation points sequentially, using feedback from pre-
vious observations. This selection process often embodies an exploration-
exploitation tradeoff : Observing at points likely to have near-optimal value
vs observing at points in relatively unexplored areas of the search space.

Bayesian Optimization

Bayesian optimization (BO) has been used widely for the approximate op-
timization of functions whose values at given points can only be obtained
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System Unknown Parameter θ
Unknown Parameter

System Observation Outcome Decision on Next Observation

Observation Type Selection Observation Type Selection

Observation Type SelectionObservation Type Selection Outcome

Observation Type Selection Outcome Stop Observations

θ Estimate of θ

Black Box Model

Black Box Model Decision About

Figure 2.10.2 Illustration of construction of a surrogate for a “black box”
function f whose values are hard-to-compute. We replace f with a paramet-
ric model that involves a parameter θ to be estimated by using observations at
some points. The points are selected sequentially, using the results of earlier
observations. Eventually, the observation process is stopped (often when an ob-
servation/computation budget limit is reached), and the final estimate of θ is used
to construct the surrogate to be minimized in place of f .

through time-consuming calculation, simulation, or experimentation. A
classical application from geostatistical interpolation, pioneered by the
statisticians Matheron and Krige, was to identify locations of high gold dis-
tribution in South Africa based on samples from a few boreholes (the name
“kriging” is often used to refer to this type of application; see the review
by Kleijnen [Kle09]). As another example, BO has been used to select the
hyperparameters of machine-learning models, including the architectural
parameters of the deep neural network of AlphaZero; see [SHS17].

In this section, we will focus on a relatively simple BO formulation
that can be viewed as the special case of surrogate optimization. In partic-
ular, we will discuss the case where the surrogate function is parametrized
by the collection of its values at the points where it is defined.† Formally,
we want to minimize a real-valued function f , defined over a set of m
points, which we denote by 1, . . . ,m. These m points lie in some space,
which we leave unspecified for the moment.‡ The values of the function are
not readily available, but can be estimated with observations that may be

† More complex forms of surrogates are obtained through linear combinations
of some basis functions, with the parameter vector θ consisting of the weights of

the basis functions. See the references cited later in this section.

‡ We restrict the domain of definition of f to be the finite set {1, . . . , m} in
order to facilitate the implementation of the rollout algorithm to be discussed

in what follows. However, in a more general and sometimes more convenient

formulation, the domain of f can be an infinite set, such as a subset of a finite-
dimensional Euclidean space.
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u 1 2 3 4u 1 2 3 41 2 3 41 2 3 41 2 3 4

4 Function

θ1

θ2

2 θ3

θ4

Function f(u) = θu
z1 = θ1 + w1

z2 = θ2 + w2

z3 = θ3 + w3

z4 = θ4 + w4

Minimize f over u = 1, . . . ,m

Using measurements of the form

z = f(u) + w (w is “noise”)

Figure 2.10.3 Illustration of a function f that we wish to estimate. The func-
tion is defined at the points u = 1, 2, 3, 4, and is represented by a vector θ =
(θ1, θ2, θ3, θ4) ∈ "4, in the sense that f(u) = θu for all u. The prior distribution
of θ is given, and is used to construct the posterior distribution of θ given noisy
observations zu = θu +wu at some of the points u.

imperfect. However, the observations are so costly that we can only hope
to observe the function at a limited number of points. Once the function
has been estimated with this type of observation process, we obtain a sur-
rogate cost function, which may be minimized to obtain an approximately
optimal solution.

We denote the value of f at a point u by θu:

θu = f(u), for all u = 1, . . . ,m.

Thus the m-dimensional vector θ = (θ1, . . . , θm) belongs to !m and rep-
resents the function f . We assume that we obtain sequentially noisy ob-
servations of values f(u) = θu at suitably selected points u. These values
are used to estimate the vector θ (i.e., the function f), and to ultimately
minimize (approximately) f over the m points u = 1, . . . ,m. The essence
of the problem is to select points for observation based on an exploration-
exploitation tradeoff (exploring the potential of relatively unexplored can-
didate solutions and improving the estimate of promising candidate solu-
tions). The fundamental idea of the BO methodology is that the function
value changes relatively slowly, so that observing the function value at some
point provides information about the function values at neighboring points.
Thus a limited number of strategically chosen observations can provide rea-
sonable approximation to the true cost function over a large portion of the
search space.

For a mathematical formulation of a BO framework, we assume that
at each of N successive times k = 1, . . . , N , we select a single point uk ∈
{1, . . . ,m}, and observe the corresponding component θuk

of θ (i.e., the



Sec. 2.10 Rollout for Bayesian Optimization and Sequential Estimation 257

function value at uk) with some noise wuk
, i.e.,

zuk
= θuk

+ wuk
; (2.79)

see Fig. 2.10.3. We view the observation points u1, . . . , uN as the op-
timization variables (or controls/actions in a DP/RL context), and con-
sider policies for selecting uk with knowledge of the preceding observations
zu1 , . . . , zuk−1 that have resulted from the selections u1, . . . , uk−1. We as-
sume that the noise random variables wu, u ∈ {1, . . . ,m} are independent
and that their distributions are given. Moreover, we assume that θ has
a given a priori distribution on the space of m-dimensional vectors "m,
which we denote by b0. The posterior distribution of θ, given any subset
of observations

{zu1 , . . . , zuk
},

is denoted by bk.
An important special case arises when b0 and the distributions of wu,

u ∈ {1, . . . ,m}, are Gaussian. In this case b0 is a multidimensional Gaus-
sian distribution, defined by its mean (based on prior knowledge, or an
equal value for all u = 1, . . . ,m in case of absence of such knowledge) and
its covariance matrix [implying greater correlation for pairs (u, u′) that are
“close” to each other in some problem-specific sense, e.g., exponentially de-
creasing with the Euclidean distance between u and u′]. A key consequence
of this assumption is that the posterior distribution bk is multidimensional
Gaussian, and can be calculated in closed form by using well-known for-
mulas.

More generally, bk evolves according to an equation of the form

bk+1 = Bk(bk, uk+1, zuk+1), k = 0, . . . , N − 1. (2.80)

Thus given the set of observations up to time k, and the next choice uk+1,
resulting in an observation value zuk+1 , the function Bk gives the formula
for updating bk to bk+1, and may be viewed as a recursive estimator of
bk. In the Gaussian case, the function Bk can be written in closed form,
using standard formulas for Gaussian random vector estimation. In other
cases where no closed form expression is possible, Bk can be implemented
through simulation that computes (approximately) the new posterior bk+1

using samples generated from the current posterior bk.
At the end of the sequential estimation process, after the complete

observation set
{zu1 , . . . , zuN }

has been obtained, we have the posterior distribution bN of θ, which we can
use to compute a surrogate of f . As an example we may use as surrogate
the posterior mean θ̂ = (θ̂1, . . . , θ̂m), and declare as minimizer of f over u
the point u∗ with minimum posterior mean:

u∗ ∈ argmin{θ̂u | u = 1, . . . ,m};
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) u

) After 10 Observations

Black Box Model Decision About True Cost Function f(u)

) Posterior b10

Figure 2.10.4 Illustration of the true cost function f , defined over an interval
of the real line, and the posterior distribution b10 after noise-free measurements
at 10 points. The shaded area represents the interval of the mean plus/minus the
standard deviation of the posterior b10 at the points u. The mean of the finally
obtained posterior, as a function of u, may be viewed as a surrogate cost function
that can be minimized in place of f . Note that since the observations are assumed
noise-free, the mean of the posterior is exact at the observation points.

see Fig. 2.10.4.
There is a large literature relating to the surrogate and Bayesian op-

timization methodology and its applications, particularly for the Gaussian
case. We refer to the books by Rasmussen and Williams [RaW06], Pow-
ell and Ryzhov [PoR12], the highly cited papers by Saks et al. [SWM89],
Jones, Schonlau, and Welch [JSW98], and Queipo et al. [QHS05], the re-
views by Sasena [Sas02], Powell and Frazier [PoF08], Forrester and Keane
[FoK09], Kleijnen [Kle09], Brochu, Cora, and De Freitas [BCD10], Ryzhov,
Powell, and Frazier [RPF12], Ghavamzadeh, Mannor, Pineau, and Tamar
[GMP15], Shahriari et al. [SSW16], and Frazier [Fra18], and the references
quoted there. Our purpose here is to focus on the aspects of the subject
that are most closely connected to exact and approximate DP.

A Dynamic Programming Formulation

The sequential estimation problem just described, viewed as a DP prob-
lem, involves a state at time k, which is the posterior (or belief state) bk,
and a control/action at time k, which is the point index uk+1 selected for
observation. The transition equation according to which the state evolves,
is

bk+1 = Bk(bk, uk+1, zuk+1), k = 0, . . . , N − 1;

cf. Eq. (2.80). To complete the DP formulation, we need to introduce a
cost structure. To this end, we assume that observing θu, as per Eq. (2.79),
incurs a cost c(u), and that there is a terminal cost G(bN ) that depends of
the final posterior distribution; as an example, the function G may involve
the mean and covariance corresponding to bN .
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The corresponding DP algorithm is given by

J∗
k (bk) = min

uk+1∈{1,...,m}

[

c(uk+1)

+ Ezuk+1

{
J∗
k+1

(
Bk(bk, uk+1, zuk+1)

) ∣∣ bk, uk+1

}]

,

(2.81)
and proceeds backwards from the terminal condition

J∗
N (bN ) = G(bN ). (2.82)

The expected value in the right side of the DP equation (2.81) is taken
with respect to the conditional distribution of zuk+1 , given bk and the
choice uk+1. The observation cost c(u) may be 0 or a constant for all u,
but it can also have a more complicated dependence on u. The terminal
cost G(bN ) may be a suitable measure of surrogate “fidelity” that depends
on the posterior mean and covariance of θ corresponding to bN .

Generally, executing the DP algorithm (2.81) is practically infeasible,
because the space of posterior distributions is infinite-dimensional. In the
Gaussian case where the a priori distribution b0 is Gaussian and the noise
variables wu are Gaussian, the posterior bk is m-dimensional Gaussian, so
it is characterized by its mean and covariance, and can be specified by a
finite set of numbers. Despite this simplification, the DP algorithm (2.81)
is prohibitively time-consuming even under Gaussian assumptions, except
for simple special cases. We consequently resort to approximation in value
space, whereby the function J∗

k+1 in the right side of Eq. (2.81) is replaced

by an approximation J̃k+1.

Approximation in Value Space

The most popular BO methodology makes use of a myopic/greedy policy
µk+1, which at each time k and given bk, selects a point ûk+1 = µk+1(bk)
for the next observation, using some calculation involving an acquisition
function. This function, denoted Ak(bk, uk+1), quantifies some form of
“expected benefit” for an observation at uk+1, given the current posterior
bk.† The myopic policy selects the next point at which to observe, ûk+1,

† A common type of acquisition function is the upper confidence bound , which
has the form

Ak(bk, u) = Tk(bk, u) + βRk(bk, u),

where Tk(bk, u) is the negative of the mean of f(u) under the posterior distri-

bution bk, Rk(bk, u) is the standard deviation of f(u) under the posterior distri-
bution bk, and β is a tunable positive scalar parameter. Thus Tk(bk, u) can be
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by maximizing the acquisition function:

ûk+1 ∈ arg max
uk+1∈{1,...,m}

Ak(bk, uk+1). (2.83)

Several ways to define suitable acquisition functions have been proposed,
and an important issue is to be able to calculate economically its values
Ak(bk, uk+1) for the purposes of the maximization in Eq. (2.83). Another
important issue of course is to be able to calculate the posterior bk eco-
nomically.

Approximation in value space is an alternative approach, which is
based on the DP formulation of the preceding section. In particular, in
this approach we approximate the DP algorithm (2.81) by replacing J∗

k+1

with an approximation J̃k+1 in the minimization of the right side. Thus
we select the next observation at point ũk+1 according to

ũk+1 ∈ arg min
uk+1∈{1,...,m}

Qk(bk, uk+1), k = 0, . . . , N − 1, (2.84)

where Qk(bk, uk+1) is the Q-factor corresponding to the pair (bk, uk+1),
given by

Qk(bk, uk+1) = c(uk+1) + Ezuk+1

{
J̃k+1

(
Bk(bk, uk+1, zuk+1)

) ∣∣ bk, uk+1

}
.

(2.85)
The expected value in the preceding equation is taken with respect to the
conditional probability distribution of zuk+1 given (bk, uk+1), which can be
computed using bk and the given distribution of the noise wuk+1 . Thus if bk
and J̃k+1 are available, we may use Monte Carlo simulation to determine
the Q-factors Qk(bk, uk+1) for all uk+1 ∈ {1, . . . ,m}, and select as next
point for observation the one that corresponds to the minimal Q-factor [cf.
Eq. (2.84)].

Rollout Algorithms for Bayesian Optimization

A special case of approximation in value space is the rollout algorithm,
whereby the function J∗

k+1 in the right side of the DP Eq. (2.81) is replaced
by the cost function of some base policy µk+1(bk), k = 0, . . . , N − 1. Thus,

viewed as an exploitation index (encoding our desire to search within parts of the
space where f takes low value), while Rk(bk, u) can be viewed as an exploration

index (encoding our desire to search within parts of the space that are relatively

unexplored). There are several other popular acquisition functions, which di-
rectly or indirectly embody a tradeoff between exploitation and exploration. A

popular example is the expected improvement acquisition function, which is equal

to the expected value of the reduction of f(u) relative to the minimal value of f
obtained up to time k (under the posterior distribution bk).
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given a base policy the rollout algorithm uses the cost function of this policy
as the function J̃k+1 in the approximation in value space scheme (2.84)-
(2.85). The values of J̃k+1 needed for the Q-factor calculations in Eq. (2.85)
can be computed or approximated by simulation. Greedy/myopic policies
based on an acquisition function [cf. Eq. (2.83)] have been suggested as
base policies in various rollout proposals.†

One-Step or Multistep Lookahead for stages Possible

. . .

+1Current Info Vector

Possible

Stages Beyond Truncation
Stages Beyond Truncation

Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function
Rollout with Base Policy Using an Acquisition Function

Rollout with Base Policy Using an Acquisition Function
Rollout with Base Policy Using an Acquisition Function

Truncated Horizon

Current Posterior

Current Posterior bk

uk+1

Posteriors bk+1

Q-Factor Calculation
Q-Factor Calculation Qk(bk, uk+1)

b0

) Observations

Figure 2.10.5 Illustration of rollout at the current posterior bk . For each
uk+1 ∈ {1, . . . ,m}, we compute the Q-factor Qk(bk , uk+1) by using Monte-Carlo
simulation with samples from wuk+1

and a base heuristic that uses an acquisition
function starting from each possible posterior bk+1. The rollout may extend to
the end of the horizon N , or it may be truncated after a few steps.

In particular, given bk, the rollout algorithm computes for each uk+1 ∈

† The rollout algorithm for BO was first proposed under Gaussian assump-

tions by Lam, Wilcox, and Wolpert [LWW16]. It was further discussed by Jiang
et al. [JJB20], [JCG20], Lee at al. [LEC20], Lee [Lee20], Yue and Kontar [YuK20],

Lee et al. [LEP21], Paulson, Sorouifar, and Chakrabarty [PSC22], where it is also

referred to as “nonmyopic BO” or “nonmyopic sequential experimental design.”
For related work, see Gerlach, Hoffmann, and Charlish [GHC21]. These papers

also discuss various approximations to the rollout approach, and generally report

encouraging computational results. Section 3.5 of the author’s book [Ber20a]
focuses on rollout algorithms for surrogate and Bayesian optimization.
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{1, . . . ,m} a Q-factor value Qk(bk, uk+1) by simulating the base policy for
multiple time steps starting from all possible posteriors bk+1 that can be
generated from (bk, uk+1), and by accumulating the corresponding cost
[including a terminal cost such as G(bN )]; see Fig. 2.10.5. It then selects
the next point ũk+1 for observation by using the Q-factor minimization of
Eq. (2.84).

Note that the equation

bk+1 = Bk(bk, uk+1, zuk+1), k = 0, . . . , N − 1,

which governs the evolution of the posterior distribution (or belief state),
is stochastic because zuk+1 involves the stochastic noise wuk+1 . Thus some
Monte Carlo simulation is unavoidable in the calculation of the Q-factors
Qk(bk, uk+1). On the other hand, one may greatly reduce the Monte Carlo
computational burden by employing a certainty equivalence approximation,
which at stage k, treats only the noise wuk+1 as stochastic, and replaces
the noise variables wuk+2 , wuk+3 , . . ., after the first stage of the calculation,
by deterministic quantities such as their means ŵuk+2 , ŵuk+3 , . . ..

The simulation of the Q-factor values may also involve other approxi-
mations, some of which have been suggested in various proposals for rollout-
based BO. For example, if the number of possible observations m is very
large, we may compute and compare the Q-factors of only a subset. In
particular, at a given time k, we may rank the observations by using an
acquisition function, select a subset Uk+1 of most promising observations,
compute their Q-factors Qk(bk, uk+1), uk+1 ∈ Uk+1, and select the obser-
vation whose Q-factor is minimal; this idea has been used in the case of
the Wordle puzzle in the paper by Bhambri, Bhattacharjee, and Bertsekas
[BBB22], which will be discussed in the next section.

Multiagent Rollout for Bayesian Optimization

In some BO applications there arises the possibility of simultaneously per-
forming multiple observations before receiving feedback about the corre-
sponding observation outcomes. This occurs, among others, in two impor-
tant contexts:

(a) In parallel computation settings, where multiple processors are used
to perform simultaneously expensive evaluations of the function f
at multiple points u. These evaluations may involve some form of
truncated simulation, so they yield evaluations of the form zu = θu+
wu, where wu is the simulation noise.

(b) In distributed sensor systems, where a number of sensors provide in
parallel relevant information about the random vector θ that we want
to estimate; see e.g., the recent paper by Li, Krakow, and Gopalswamy
[LKG21], which describes related multisensor estimation problems,
based on the multiagent rollout methodology of Section 2.9.
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Of course in such cases we may treat the entire set of simultaneous
observations as a single observation within an enlarged Cartesian product
space of observations, but there is a fundamental difficulty: the size of
the observation space (and hence the number of Q-factors to be calculated
by rollout at each time step) grows exponentially with the number of si-
multaneous observations. This in turn greatly increases the computational
requirements of the rollout algorithm.

To address this difficulty, we may employ the methodology of multi-
agent rollout whereby the policy improvement is done one-agent-at-a-time
in a given order, with (possibly partial) knowledge of the choices of the
preceding agents in the order. As a result, the amount of computation for
each policy improvement grows linearly with the number of agents, as op-
posed to exponentially for the standard all-agents-at-once method. At the
same time the theoretical cost improvement property of the rollout algo-
rithm can be shown to be preserved, while the empirical evidence suggests
that great computational savings are achieved with hardly any performance
degradation.

Generalization to Sequential Estimation of Random Vectors

Aside from BO, there are several other types of simple sequential estimation
problems, which involve “independent sampling,” i.e., problems where the
choice of an observation type does not affect the quality, cost, or availability
of observations of other types. A common class of problems that contains
BO as a special case and admits a similar treatment, is to sequentially
estimate an m-dimensional random vector θ = (θ1, . . . , θm) by using N
linear observations of θ of the form

zu = a′uθ + wu, u ∈ {1, . . . , n},

where n is some integer. Here wu are independent random variables with
given probability distributions, the m-dimensional vectors au are known,
and a′uθ denotes the inner product of au and θ. Similar to the case of BO,
the problem simplifies if the given a priori distribution of θ is Gaussian,
and the random variables wu are independent and Gaussian. Then, the
posterior distribution of θ, given any subset of observations, is Gaussian
(thanks to the linearity of the observations), and can be calculated in closed
form.

Observations are generated sequentially at times 1, . . . , N , one at a
time and with knowledge of the outcomes of the preceding observations,
by choosing an index uk ∈ {1, . . . , n} at time k, at a cost c(uk). Thus
uk are the optimization variables, and affect both the quality of estima-
tion of θ and the observation cost. The objective, roughly speaking, is to
select N observations to estimate θ in a way that minimizes an appropri-
ate cost function; for example, one that penalizes some form of estimation
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error plus the cost of the observations. We can similarly formulate the
corresponding optimization problem in terms of N -stage DP, and develop
rollout algorithms for its approximate solution.

2.11 ADAPTIVE CONTROL BY ROLLOUT WITH A POMDP
FORMULATION

In this section, we discuss various approaches for the approximate solution
of Partially Observed Markovian Decision Problems (POMDP) with a spe-
cial structure, which is well-suited for adaptive control, as well as other
contexts that involve search for a hidden object.† It is well known that
POMDP are among the most challenging DP problems, and nearly always
require the use of approximations for (suboptimal) solution.

The application and implementation of rollout and approximate PI
methods to general finite-state POMDP is described in the author’s RL
book [Ber19a] (Section 5.7.3). Here we will focus attention on a special
class of POMDP where the state consists of two components:

(a) A perfectly observed component xk that evolves over time according
to a discrete-time equation.

(b) An unobserved component θ that stays constant and is estimated
through the perfect observations of the component xk.

We view θ as a parameter in the system equation that governs the evolution
of xk, hence the connection with adaptive control. Thus we have

xk+1 = fk(xk, θ, uk, wk), (2.86)

where uk is the control at time k, selected from a set Uk(xk), and wk

is a random disturbance with given probability distribution that depends
on (xk, θ, uk). We will assume that θ can take one of m known values
θ1, . . . , θm:

θ ∈ {θ1, . . . , θm}.

see Fig. 2.11.1.
The a priori probability distribution of θ is given and is updated based

on the observed values of the state components xk and the applied controls
uk. In particular, we assume that the information vector

Ik = {x0, . . . , xk, u0, . . . , uk−1}

† In Section 1.6.6, we discussed the indirect adaptive control approach, which
enforces a separation of the controller into a system identification algorithm and

a policy reoptimization algorithm. The POMDP approach of this section (also

summarized in Section 1.6.6), does not assume such an a priori separation, and
is thus founded on a more principled algorithmic framework.
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System Unknown ParameterControl State xk

Unknown Parameter θ

Control uk

) Controller

) xk+1 = fk(xk, θ, uk, wk)

Figure 2.11.1 Illustration of an adaptive control scheme involving perfect state
observation of a system with an unknown parameter θ. At each time a decision
is made to select a control and (possibly) one of several observation types, each
of different cost.

is available at time k, and is used to compute the conditional probabilities

bk,i = P{θ = θi | Ik}, i = 1, . . . ,m.

These probabilities form a vector

bk = (bk,1, . . . , bk,m),

which together with the perfectly observed state xk, form the pair (xk, bk)
that is commonly called the belief state of the POMDP at time k.

Note that according to the classical methodology of POMDP (see
e.g., [Ber17a], Chapter 4), the belief component bk+1 is determined by the
belief state (xk, bk), the control uk, and the observation obtained at time
k + 1, i.e., xk+1. Thus bk can be updated according to an equation of the
form

bk+1 = Bk(xk, bk, uk, xk+1),

where Bk is an appropriate function, which can be viewed as a recursive
estimator of θ. There are several approaches to implement this estimator
(perhaps with some approximation error), including the use of Bayes’ rule
and the simulation-based method of particle filtering.

The preceding mathematical model forms the basis for a classical
adaptive control formulation, where each θi represents a set of system pa-
rameters, and the computation of the belief probabilities bk,i can be viewed
as the outcome of a system identification algorithm. In this context, the
problem becomes one of dual control , a combined identification and control
problem, whose optimal solution is notoriously difficult.

Another interesting context arises in search problems, where θ spec-
ifies the locations of one or more objects of interest within a given space.
Some puzzles, including the popular Wordle game, fall within this category,
as we will discuss briefly later in this section.



266 Approximation in Value Space - Rollout Algorithms Chap. 2

The Exact DP Algorithm - Approximation in Value Space

We will now describe an exact DP algorithm that operates in the space of
information vectors Ik. To describe this algorithm, let us denote by Jk(Ik)
the optimal cost starting at information vector Ik at time k. We can view
Ik as a state of the POMDP, which evolves over time according to the
equation

Ik+1 = (Ik, xk+1, uk) =
(
Ik, fk(xk, θ, uk, wk), uk

)
,

Viewing this as a system equation, whose right hand side involves the state
Ik, the control uk, and the disturbance wk, the DP algorithm takes the
form

J∗
k (Ik) = min

uk∈Uk(xk)
Eθ,wk

{
gk(xk, θ, uk, wk) + J∗

k+1(Ik+1) | Ik, uk

}

= min
uk∈Uk(xk)

Eθ,wk

{
gk(xk, θ, uk, wk)+

J∗
k+1

(
Ik, fk(xk, θ, uk, wk), uk

)
| Ik, uk

}
,

(2.87)
for k = 0, . . . , N − 1, with JN (IN ) = gN (xN ); see e.g., the DP textbook
[Ber17a], Section 4.1.

By using the law of iterated expectations,

Eθ,wk
{· | Ik, uk} = Eθ

{
Ewk

{· | Ik, θ, uk} | Ik, uk

}
,

we can rewrite this DP algorithm as

J∗
k (Ik) = min

uk∈Uk(xk)

m∑

i=1

bk,iEwk

{
gk(xk, θi, uk, wk) + J∗

k+1(Ik+1) | Ik, θi, uk

}

= min
uk∈Uk(xk)

m∑

i=1

bk,iEwk

{
gk(xk, θi, uk, wk)+

J∗
k+1

(
Ik, fk(xk, θi, uk, wk), uk

)
| Ik, θi, uk

}
.

(2.88)
The summation over i above represents the expected value of θ conditioned
on Ik and uk.

The algorithm (2.88) is typically very hard to implement, in part
because of the dependence of J∗

k+1 on the entire information vector Ik+1,
which expands in size according to

Ik+1 = (Ik, xk+1, uk).

To address this implementation difficulty, we may use approximation in
value space, based on replacing J∗

k+1(Ik+1) in the DP algorithms (2.87)

and (2.88) with some function J̃k+1(Ik+1) such that the expected value

Ewk

{
J̃k+1(Ik+1) | Ik, θi, uk

}
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can be obtained (either off-line or on-line) with a tractable computation
for any (Ik, θi, uk).

Here we will focus on functions J̃k+1 with a special structure that
facilitates the implementation of the corresponding approximaion in value
space scheme. One such possibility is to use the optimal cost functions
corresponding to the m parameters θi,

Ĵ i
k+1(xk+1), i = 1, . . . ,m. (2.89)

In particular, Ĵ i
k+1(xk+1) is the optimal cost that would be obtained start-

ing from state xk+1 under the assumption that θ = θi; this corresponds
to a perfect state information problem. Then an approximation in value
space scheme with one-step lookahead minimization is given by

ũk ∈ arg min
uk∈Uk(xk)

m∑

i=1

bk,iEwk

{
gk(xk, θi, uk, wk)+

Ĵ i
k+1

(
fk(xk, θi, uk, wk)

)
| xk, θi, uk

}
.

(2.90)
In particular, instead of the optimal control, which minimizes the optimal
Q-factor of (Ik, uk) appearing in the right side of Eq. (2.87), we apply
control ũk that minimizes the expected value over θ of the optimal Q-
factors that correspond to fixed values of θ.

In the case where the horizon is infinite, it is reasonable to expect
that the estimate of the parameter θ improves over time, and that with a
suitable estimation scheme, it converges asymptotically to the correct value
of θ, call it θ∗, i.e.,

lim
k→∞

bk,i =

{
1 if θi = θ∗,
0 if θi "= θ∗.

Then it can be seen that the generated one-step lookahead controls ũk

are asymptotically obtained from the Bellman equation that corresponds
to the correct parameter θ∗, and are typically optimal in some asymptotic
sense. Schemes of this type have been extensively discussed in the adaptive
control literature since the 70s; see the end-of-chapter references.

Generally, the optimal costs Ĵ i
k+1(xk+1) that correspond to the dif-

ferent parameter values θi [cf. Eq. (2.89)] may be hard to compute, despite
their perfect state information structure.† An alternative possibility is to
use off-line trained feature-based or neural network-based approximations
to Ĵ i

k+1(xk+1). Another possibility, described next, is to use a rollout ap-
proach.

† In favorable special cases, such as linear quadratic problems, the optimal

costs Ĵ i
k+1(xk+1) may be easily calculated in closed form. Still, however, even in

such cases the calculation of the belief probabilities bk,i may not be simple, and
may require the use of a system identification algorithm.
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Rollout and Cost Improvement

A simpler possibility for approximation in value space is to use the costs
of given policies πi in place of the optimal costs Ĵ i

k+1(xk+1). In this case
the one-step lookahead scheme (2.90) takes the form

ũk ∈ arg min
uk∈Uk(xk)

m∑

i=1

bk,iEwk

{
gk(xk, θi, uk, wk)+

Ĵ i
k+1,πi

(
fk(xk, θi, uk, wk)

)
| xk, θi, uk

}
,

(2.91)
with πi = {µi

0, . . . , µ
i
N−1}, i = 1, . . . ,m, being known policies, with compo-

nents µi
k that depend only on xk. Here, the term

Ĵ i
k+1,πi

(
fk(xk, θi, uk, wk)

)

in Eq. (2.91) is the cost of the base policy πi, calculated starting from the
next state

xk+1 = fk(xk, θi, uk, wk),

under the assumption that θ will stay fixed at the value θ = θi until the end
of the horizon. Note that the cost function of πi, conditioned on θ = θi, xk,
and uk, which is needed in Eq. (2.91), can be calculated by Monte Carlo
simulation. This is made possible by the fact that the components µi

k of
πi depend only on xk [rather than Ik or the belief state (xk, bk)].

The preceding scheme has the character of a rollout algorithm, but
strictly speaking, it does not qualify as a rollout algorithm because the pol-
icy components µi

k involve a dependence on i in addition to the dependence
on xk. On the other hand if we restrict all the policies πi to be the same
for all i, the corresponding functions µk depend only on xk and not on i,
thus defining a legitimate base policy. It is then possible to view the rollout
policy as being generated from the base policy through a policy iteration
scheme. As a result, a cost improvement property can be shown.

Within our rollout context, a policy π such that πi = π for all i
must be a robust policy, in the sense that it should work adequately well
for all parameter values θi. The choice of such a policy is likely problem-
dependent. On the other hand robust policies have a long history in the
context of adaptive control, and have been discussed widely (see e.g., the
book by Jiang and Jiang [JiJ17], and the references quoted therein).

The Case of a Deterministic System

Let us now consider the case where the system (2.86) is deterministic of
the form

xk+1 = fk(xk, θ, uk). (2.92)
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Then, while the problem still has a stochastic character due to the uncer-
tainty about the value of θ, the DP algorithm (2.88) and its approximation
in value space counterparts are greatly simplified because there is no expec-
tation over wk to contend with. Indeed, given a state xk, a parameter θi,
and a control uk, the on-line computation of the control of the rollout-like
algorithm (2.91), takes the form

ũk ∈ arg min
uk∈Uk(xk)

m∑

i=1

bk,i
(
gk(xk, θi, uk)+ Ĵ i

k+1,πi

(
fk(xk, θi, uk)

))
. (2.93)

The computation of Ĵ i
k+1,πi

(
fk(xk, θi, uk)

)
involves a deterministic propa-

gation from the state xk+1 of Eq. (2.92) up to the end of the horizon, using
the base policy πi, while assuming that θ is fixed at the value θi.

In particular, the term

Qk(xk, uk, θi) = gk(xk, θi, uk) + Ĵ i
k+1,πi

(
fk(xk, θi, uk)

)
(2.94)

appearing on the right side of Eq. (2.93) is viewed as a Q-factor that must
be computed for every pair (uk, θi), uk ∈ Uk(xk), i = 1, . . . ,m, using the
base policy πi. The expected value of this Q-factor,

Q̂k(xk, uk) =
m∑

i=1

bk,iQk(uk, θi),

must then be calculated for every uk ∈ Uk(xk), and the computation of the
rollout control ũk is obtained from the minimization

ũk ∈ arg min
uk∈Uk(xk)

Q̂k(xk, uk); (2.95)

cf. Eq. (2.93). This computation is illustrated in Fig. 2.11.2.
The case of a deterministic system is particularly interesting because

we can typically expect that the true parameter θ∗ is identified in a fi-
nite number of stages, since at each stage k, we are receiving a noiseless
measurement relating to θ, namely the state xk. Once this happens, the
problem becomes one of perfect state information.

An illustration similar to the one of Fig. 2.11.2 applies to the rollout
scheme (2.91) for the case of a stochastic system. In this case, a Q-factor

Qk(xk, uk, θi, wk) = gk(xk, θi, uk, wk) + Ĵ i
k+1,πi

(
fk(xk, θi, uk, wk)

)

must be calculated for every triplet (uk, θi, wk), using the base policy πi.
The rollout control ũk is obtained by minimizing the expected value of this
Q-factor [averaged using the distribution of (θ, wk)]; cf. Eq. (2.91).

An interesting and intuitive example that demonstrates the determin-
istic system case is the popular Worlde puzzle.
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Figure 2.11.2 Schematic illustration of adaptive control by rollout for determin-
istic systems; cf. Eqs. (2.94) and (2.95). The Q-factors Qk(xk , uk, θ

i) are averaged
over θi, using the current belief distribution bk , and the control applied is the one
that minimizes the averaged Q-factor

Q̂k(xk, uk) =

m∑

i=1

bk,iQk(xk, uk, θ
i)

over uk ∈ Uk(xk).

Example 2.11.1 (The Wordle Puzzle)

In the classical form of this puzzle, we try to guess a mystery word θ∗ out
of a known finite collection of 5-letter words. This is done with sequential
guesses each of which provides additional information on the correct word θ∗,
by using certain given rules to shrink the current mystery list (the smallest list
that contains θ∗, based on the currently available information). The objective
is to minimize the number of guesses to find θ∗ (using more than 6 guesses
is considered to be a loss). This type of puzzle descends from the classical
family of Mastermind puzzles that centers around decoding a secret sequence
of objects (e.g., letters or colors) using partial observations.

The rules for shrinking the mystery list relate to the common letters
between the word guesses and the mystery word θ∗, and they will not be de-
scribed here (there is a large literature regarding the Wordle puzzle). More-
over, θ∗ is assumed to be chosen from the initial collection of 5-letter words
according to a uniform distribution. Under this assumption, it can be shown
that the belief distribution bk at stage k continues to be uniform over the
mystery list. As a result, we may use as state xk the mystery list at stage k,
which evolves deterministically according to an equation of the form (2.92),
where uk is the guess word at stage k. There are several base policies to



Sec. 2.11 Adaptive Control by Rollout with a POMDP Formulation 271

System Unknown Parameter θUnknown Parameter

System Observation Outcome Decision on Next Observation

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Observation Type SelectionObservation Type Selection

Observation Type Selection Outcome Stop Observations

θ Estimate of θ

θ (known prior distribution)

vation Belief State Estimator xk

k uk

k xk+1 = fk(θ, uk, wk)

Figure 2.11.3 A view of sequential estimation as an adaptive control problem.
The system function fk does not depend on the current state xk, so the system
provides a decision-dependent noisy observation of θ.

use in the rollout-like algorithm (2.93), which are described in the paper
by Bhambri, Bhattacharjee, and Bertsekas [BBB22], together with compu-
tational results, which show that the corresponding rollout algorithm (2.93)
performs remarkably close to optimal.

The rollout approach also applies to several variations of the Wordle
puzzle. Such variations may include for example a larger length ! > 5 of mys-
tery words, and/or a known nonuniform distribution over the initial collection
of !-letter words; see [BBB22].

The Case of Sequential Estimation - Alternative Base Policies

We finally note that the adaptive control framework of this section contains
as a special case the sequential estimation framework of the preceding sec-
tion. This special case corresponds to a dynamic system of the form

xk+1 = fk(θ, uk, wk),

where the state xk+1 is the observation at time k+1 and exhibits no explicit
dependence on the preceding observation xk, but depends on the stochastic
disturbance wk, and on the decision uk; cf. Figs. 2.11.1 and 2.11.3. This
decision may involve a cost and determines the type of next obsevation out
of a collection of possible types.

While the rollout methodology of the present section applies to se-
quential estimation problems, other rollout algorithms may also be used,
depending on the problem’s detailed structure. In particular, the rollout
algorithms for Bayesian optimization of the works noted in Section 2.10
involve base policies that depend on the current belief state bk, rather
than the current state xk. Another example of rollout for adaptive control,
which uses a base policy that depends on the current belief state is given
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in Section 6.7 of the book [Ber22a]. For work on related stochastic optimal
control problems that involve observation costs and the rollout approach,
see Antunes and Heemels [AnH14], and Khashooei, Antunes, and Heemels
[KAH15].

2.12 ROLLOUT FOR MINIMAX CONTROL

The problem of optimal control of uncertain systems is usually treated
within a stochastic framework, whereby all disturbances w0, . . . , wN−1 are
described by probability distributions, and the expected value of the cost is
minimized. However, in many practical situations a stochastic description
of the disturbances may not be available, but one may have information
with less detailed structure, such as bounds on their magnitude. In other
words, one may know a set within which the disturbances are known to lie,
but may not know the corresponding probability distribution. Under these
circumstances one may use a minimax approach, whereby the worst possi-
ble values of the disturbances within the given set are assumed to occur.
Within this context, we take the view that the disturbances are chosen by
an antagonistic opponent. The minimax approach is also connected with
two-player games, when in lack of information about the opponent, we
adopt a worst case viewpoint during on-line play, as well as with contexts
where we wish to guard against adversarial attacks.†

To be specific, consider a finite horizon context, and assume that the
disturbances w0, w1, . . . , wN−1 do not have a probabilistic description but
rather are known to belong to corresponding given sets Wk(xk, uk) ⊂ Dk,
k = 0, 1, . . . , N − 1, which may depend on the current state xk and control
uk. The minimax control problem is to find a policy π = {µ0, . . . , µN−1}
with µk(xk) ∈ Uk(xk) for all xk and k, which minimizes the cost function

Jπ(x0) = max
wk∈Wk(xk,µk(xk))

k=0,1,...,N−1

[

gN (xN ) +
N−1∑

k=0

gk
(
xk, µk(xk), wk

)
]

.

The DP algorithm for this problem takes the following form, which resem-
bles the one corresponding to the stochastic DP problem (maximization is
used in place of expectation):

J∗
N (xN ) = gN (xN ), (2.96)

† The minimax approach to decision and control has its origins in the 50s
and 60s. It is also referred to by other names, depending on the underlying

context, such as robust control , robust optimization, control with a set membership

description of the uncertainty , and games against nature. In this book, we will
be using the minimax control name.
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J∗
k (xk) = min

uk∈U(xk)
max

wk∈Wk(xk,uk)

[
gk(xk, uk, wk) + J∗

k+1

(
fk(xk, uk, wk)

)]
.

(2.97)
This algorithm can be explained by using a principle of optimality

type of argument. In particular, we consider the tail subproblem whereby
we are at state xk at time k, and we wish to minimize the “cost-to-go”

max
wt∈Wt(xt,µt(xt))
t=k,k+1,...,N−1

[

gN (xN ) +
N−1∑

t=k

gt
(
xt, µt(xt), wt

)
]

.

We argue that if π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} is an optimal policy for the min-

imax problem, then the tail of the policy {µ∗
k, µ

∗
k+1, . . . , µ

∗
N−1} is optimal

for the tail subproblem. The optimal cost of this subproblem is J∗
k (xk),

as given by the DP algorithm (2.96)-(2.97). The algorithm expresses the
intuitive fact that when at state xk at time k, then regardless of what hap-
pened in the past, we should choose uk that minimizes the worst/maximum
value over wk of the sum of the current stage cost plus the optimal cost
of the tail subproblem that starts from the next state. This argument re-
quires a mathematical proof, which turns out to involve a few fine points.
For a detailed mathematical derivation, we refer to the author’s textbook
[Ber17a], Section 1.6. However, the DP algorithm (2.96)-(2.97) is correct
assuming finite state and control spaces, among other cases.

Approximation in Value Space and Minimax Rollout

The approximation ideas for stochastic optimal control are also relevant
within the minimax context. In particular, approximation in value space
with one-step lookahead applies at state xk a control

ũk ∈ arg min
uk∈Uk(xk)

max
wk∈Wk(xk,uk)

[
gk(xk, uk, wk) + J̃k+1

(
fk(xk, uk, wk)

)]
,

(2.98)
where J̃k+1(xk+1) is an approximation to the optimal cost-to-go J∗

k+1(xk+1)
from state xk+1.

Rollout is obtained when this approximation is the tail cost of some
base policy π = {µ0, . . . , µN−1}:

J̃k+1(xk+1) = Jk+1,π(xk+1).

Given π, we can compute Jk+1,π(xk+1) by solving a deterministic maxi-
mization DP problem with the disturbances wk+1, . . . , wN−1 playing the
role of “optimization variables/controls.” For finite state, control, and dis-
turbance spaces, this is a longest path problem defined on an acyclic graph,
since the control variables uk+1, . . . , uN−1 are determined by the base pol-
icy. It is then straightforward to implement rollout: at xk we generate all
next states of the form

xk+1 = fk(xk, uk, wk)



274 Approximation in Value Space - Rollout Algorithms Chap. 2

corresponding to all possible values of uk ∈ Uk(xk) and wk ∈ Wk(xk, uk).
We then run the maximization/longest path problem described above to
compute J̃k+1(xk+1) from each of these possible next states xk+1. Finally,
we obtain the rollout control ũk by solving the minimax problem in Eq.
(2.98). Moreover, it is possible to use truncated rollout to approximate the
tail cost of the base policy.†

Note that like all rollout algorithms, the minimax rollout algorithm is
well-suited for on-line replanning in problems where data may be changing
or may be revealed during the process of control selection.

We mentioned earlier that deterministic problems allow a more gen-
eral form of rollout, whereby we may use a base heuristic that need not
be a legitimate policy, i.e., it need not be sequentially consistent. For cost
improvement it is sufficient that the heuristic be sequentially improving. A
similarly more general view of rollout is not easily constructed for stochastic
problems, but is possible for minimax control.

In particular, suppose that at any state xk there is a heuristic that
generates a sequence of feasible controls and disturbances, and correspond-
ing states,

{uk, wk, xk+1, uk+1, wk+1, xk+2, . . . , uN−1, wN−1, xN},

with corresponding cost

Hk(xk) = gk(xk, uk, wk) + · · ·+ gN−1(xN−1, uN−1, wN−1) + gN (xN ).

Then the rollout algorithm applies at state xk a control

ũk ∈ arg min
uk∈Uk(xk)

max
wk∈Wk(xk,uk)

[
gk(xk, uk, wk) +Hk+1

(
fk(xk, uk, wk)

)]
.

This does not preclude the possibility that the disturbances wk, . . . , wN−1

are chosen by an antagonistic opponent, but allows more general choices
of disturbances, obtained for example, by some form of approximate max-
imization. For example, when the disturbance involves multiple compo-
nents, wk = (w1

k, . . . , w
m
k ), corresponding to multiple opponent agents, the

heuristic may involve an agent-by-agent maximization strategy.
The sequential improvement condition, similar to the deterministic

case, is that for all xk and k,

min
uk∈Uk(xk)

max
wk∈Wk(xk,wk)

[
gk(xk, uk, wk) +Hk+1

(
fk(xk, uk, wk)

)]
≤ Hk(xk).

It guarantees cost improvement, i.e., that for all xk and k, the rollout policy

π̃ = {µ̃0, . . . , µ̃N−1}

† For a more detailed discussion of this implementation, see the author’s
paper [Ber19b] (Section 5.4).
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satisfies
Jk,π̃(xk) ≤ Hk(xk).

Thus, generally speaking, minimax rollout is fairly similar to rollout
for deterministic as well as stochastic DP problems. The main difference
with deterministic (or stochastic) problems is that to compute the Q-factor
of a control uk, we need to solve a maximization problem, rather than carry
out a deterministic (or Monte-Carlo, respectively) simulation with the given
base policy.

Example 2.12.1 (Pursuit-Evasion Problems)

Consider a pursuit-evasion problem with state xk = (x1
k, x

2
k), where x1

k is
the location of the minimizer/pursuer and x2

k is the location of the maxi-
mizer/evader, at stage k, in a (finite node) graph defined in two- or three-
dimensional space. There is also a cost-free and absorbing termination state
that consists of a subset of pairs (x1, x2) that includes all pairs with x1 = x2.
The pursuer chooses one out of a finite number of actions uk ∈ Uk(xk) at each
stage k, when at state xk, and if the state is xk and the pursuer selects uk,
the evader may choose from a known set Xk+1(xk, uk) of next states xk+1,
which depends on (xk, uk). The objective of the pursuer is to minimize a
nonnegative terminal cost g(x1

N , x2
N) at the end of N stages (or reach the

termination state, which has cost 0 by assumption). A reasonable base pol-
icy for the pursuer can be precomputed by DP as follows: given the current
(nontermination) state xk = (x1

k, x
2
k), make a move along the path that starts

from x1
k and minimizes the terminal cost after N − k stages, under the as-

sumption that the evader will stay motionless at his current location x2
k. (In

a variation of this policy, the DP computation is done under the assumption
that the evader will follow some nominal sequence of moves.)

For the on-line computation of the rollout control, we need the max-
imal value of the terminal cost that the evader can achieve starting from
every xk+1 ∈ Xk+1(xk, uk), assuming that the pursuer will follow the base
policy (which has already been computed). We denote this maximal value
by J̃k+1(xk+1). The required values J̃k+1(xk+1) can be computed by an
(N − k)-stage DP computation involving the optimal choices of the evader,
while assuming the pursuer uses the (already computed) base policy. Then
the rollout control for the pursuer is obtained from the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

max
xk+1∈Xk+1(xk,uk)

J̃k+1(xk+1).

Note that the preceding algorithm can be adapted for the imperfect
information case where the pursuer knows x2

k imperfectly. This is possible
by using a form of assumed certainty equivalence: the pursuer’s base policy
and the evader’s maximization can be computed by using an estimate of the
current location x2

k instead of the unknown true location.

In the preceding pursuit-evasion example, the choice of the base policy
was facilitated by the special structure of the problem. Generally, however,
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finding a suitable base policy that can be conveniently implemented is an
important problem-dependent issue.

Variants of Minimax Rollout

Several of the variants of rollout discussed earlier have analogs in the min-
imax context, e.g., truncation with terminal cost approximation, multistep
and selective step lookahead, and multiagent rollout. In particular, in the
!-step lookahead variant, we solve the !-stage problem

min
uk,µk+1,...,µk+!−1

max
wk∈Wk(xk,uk)

wt∈Wt(xt,µt(xt))
t=k+1,...,N−1

{
gk(xk, uk, wk) +

k+!−1∑

t=k+1

gt
(
xt, µt(xt), wt

)

+Hk+!(xk+!)

}
,

we find an optimal solution ũk, µ̃k+1, . . . , µ̃k+!−1, and we apply the first
component ũk of that solution. As an example, this type of problem is
solved at each move of chess programs like AlphaZero, where the terminal
cost function is encoded through a position evaluator. In fact when multi-
step lookahead is used, special techniques such as alpha-beta pruning may
be used to accelerate the computations by eliminating unnecessary portions
of the lookahead graph. These techniques are well-known in the context of
the two-person computer game methodology, and are used widely in games
such as chess.

It is interesting to note that, contrary to the case of stochastic optimal
control, there is an on-line constrained form of rollout for minimax control.
Here there are some additional trajectory constraints of the form

(x0, u0, . . . , uN−1, xN ) ∈ C,

where C is an arbitrary set. The modification needed is similar to the one
of Section 6.6: at partial trajectory

ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k),

generated by rollout, we use a heuristic with cost function Hk+1 to compute
the Q-factor

Q̃k(x̃k, uk) = max
wk ,...,wN−1

[
gk(x̃k, uk, wk)

+Hk+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

for each uk in the set Ũk(ỹk) that guarantee feasibility [we can check fea-
sibility here by running some algorithm that verifies whether the future
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disturbances wk, . . . , wN−1 can be chosen to violate the constraint under
the base policy, starting from (ỹk, uk)]. Once the set of “feasible controls”
Ũk(ỹk) is computed, we can obtain the rollout control by the Q-factor
minimization:

ũk ∈ arg min
uk∈Ũk(ỹk)

Q̃k(x̃k, uk).

We may also use fortified versions of the unconstrained and con-
strained rollout algorithms, which guarantee a feasible cost-improved roll-
out policy. This requires the assumption that the base heuristic at the ini-
tial state produces a trajectory that is feasible for all possible disturbance
sequences. Similar to the deterministic case, there are also truncated and
multiagent versions of the minimax rollout algorithm.

Example 2.12.2 (Multiagent Minimax Rollout)

Let us consider a minimax problem where the minimizer’s choice involves the
collective decision of m agents, u = (u1, . . . , um), with u! corresponding to
agent !, and constrained to lie within a finite set U !. Thus u must be chosen
from within the set

U = U1 × . . .× Um,

which is finite but grows exponentially in size with m. The maximizer’s
choice w is constrained to belong to a finite set W . We consider multiagent
rollout for the minimizer, and for simplicity, we focus on a two-stage problem.
However, there are straightforward extensions to a more general multistage
framework.

In particular, we assume that the minimizer knowing an initial state x0,
chooses u = (u1, . . . , um), with u! ∈ U !, ! = 1, . . . ,m, and a state transition

x1 = f0(x0, u)

occurs with cost g0(x0, u). Then the maximizer, knowing x1, chooses w ∈ W ,
and a terminal state

x2 = f1(x1, w)

is generated with cost
g1(x1, w) + g2(x2).

The problem is to select u ∈ U , to minimize

g0(x0, u) + max
w∈W

[
g(x1, w) + g2(x2)

]
.

The exact DP algorithm for this problem is given by

J∗
1 (x1) = max

w∈W

[
g1(x1, w) + g2

(
f1(x1, w)

)]
,

J∗
0 (x0) = min

u∈U

[
g0(x0, u) + J∗

1

(
f0(x0, u)

)]
.
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This DP algorithm is computationally intractable for large m. The reason is
that the set of possible minimizer choices u grows exponentially with m, and
for each of these choices the value of J∗

1

(
f0(x0, u)

)
must be computed.

However, the problem can be solved approximately with multiagent
rollout, using a base policy µ = (µ1, . . . , µm). Then the number of times
J∗
1

(
f0(x0, u)

)
needs to be computed is dramatically reduced. This computa-

tion is done sequentially, one-agent-at-a-time, as follows:

ũ1 ∈ arg min
u1∈U1

[
g0
(
x0, u

1, µ2(x0), . . . , µ
m(x0)

)

+ J∗
1

(
f0
(
x0, u

1, µ2(x0), . . . , µ
m(x0)

))]
,

ũ2 ∈ arg min
u2∈U2

[
g0
(
x, ũ1, u2, µ3(x0), . . . , µ

m(x0)
)

+ J∗
1

(
f0
(
x0, ũ

1, u2, µ3(x0), . . . , µ
m(x0)

))]
,

. . . . . . . . . . . .

ũm ∈ arg min
um∈Um

[
g0
(
x0, ũ

1, ũ2, . . . , ũm−1, um
)

+ J∗
1

(
f0
(
x0, ũ

1, ũ2, . . . , ũm−1, um
))]

.

In this algorithm, the number of times for which J∗
1

(
f0(x0, u)

)
must be com-

puted grows linearly with m.
When the number of stages is larger than two, a similar algorithm can

be used. Essentially, the one-stage maximizer’s cost function J∗
1 must be

replaced by the optimal cost function of a multistage maximization problem,
where the minimizer is constrained to use the base policy (see also the paper
[Ber19b], Section 5.4).

An interesting question is how do various algorithms work when ap-
proximations are used in the min-max and max-min problems? We can
certainly improve the minimizer’s policy assuming a fixed policy for the
maximizer . However, it is unclear how to improve both the minimizer’s
and the maximizer’s policies simultaneously. In practice, in symmetric
games , like chess, a common policy is trained for both players. In partic-
ular, in the AlphaZero and TD-Gammon programs this strategy is com-
putationally expedient and has worked well. However, there is no reliable
theory to guide the simultaneous training of policies for both maximizer
and minimizer, and it is quite plausible that unusual behavior may arise in
exceptional cases.† Even exact policy iteration methods for Markov games

† Indeed such exceptional cases have been reported for the AlphaGo program

in late 2022, when humans defeated an AlphaGo look-alike, KataGo, “by using

adversarial techniques that take advantage of KataGo’s blind spots” (according
to the reports); see Wang et al. [WGB22].
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encounter serious convergence difficulties, and need to be modified for re-
liable behavior. The author’s paper [Ber21c] and book [Ber22b] (Chapter
5) address these convergence issues with modified versions of the policy
iteration method, and give many earlier references.

We finally note another source of difficulty in minimax control: New-
ton’s method applied to solution of the Bellman equation for minimax
problems exhibits more complex behavior than its expected value coun-
terpart. The reason is that the Bellman operator T for infinite horizon
problems, given by

(TJ)(x) = min
u∈U(x)

max
w∈W (x,u)

[
g(x, u, w) + αJ

(
f(x, u, w)

)]
, for all x,

is neither convex nor concave as a function of J . To see this, note that the
function

max
w∈W (x,u)

[
g(x, u, w) + αJ

(
f(x, u, w)

)]
,

viewed as a function of J [for fixed (x, u)], is convex, and when minimized
over u ∈ U(x), it becomes neither convex nor concave. As a result there are
special difficulties in connection with convergence of Newton’s method and
the natural form of policy iteration, given by Pollatschek and Avi-Itzhak
[PoA69]; see also Chapter 5 of the author’s abstract DP book [Ber22a].

Minimax Control and Zero-Sum Game Theory

Zero-sum game problems are viewed as fundamental in the field of eco-
nomics, and there is an extensive and time-honored theory around them.
In the case where the game involves a dynamic system

xk+1 = fk(xk, uk, wk),

and a cost function
gk(xk, uk, wk),

there are two players, the minimizer choosing uk ∈ Uk(xk), and the maxi-
mizer choosing wk ∈ Wk(xk), at each stage k. Such zero-sum games involve
two minimax control problems:

(a) The min-max problem, where the minimizer chooses a policy first
and the maximizer chooses a policy second with knowledge of the
minimizer’s policy. The DP algorithm for this problem has the form

J∗
N (xN ) = gN(xN ),

J∗
k (xk) = min

uk∈Uk(xk)
max

wk∈Wk(xk)

[
gk(xk, uk, wk)+J∗

k+1

(
fk(xk, uk, wk)

)]
.
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(b) The max-min problem, where the maximizer chooses policy first and
the minimizer chooses policy second with knowledge of the maxi-
mizer’s policy. The DP algorithm for this problem has the form

ĴN (xN ) = gN(xN ),

Ĵk(xk) = max
wk∈Wk(xk)

min
uk∈Uk(xk)

[
gk(xk, uk, wk)+ Ĵk+1

(
fk(xk, uk, wk)

)]
.

A basic and easily seen fact is that

Max-Min optimal value ≤ Min-Max optimal value.

Game theory is particularly interested on conditions that guarantee
that

Max-Min optimal value = Min-Max optimal value. (2.99)

However, this question is of limited interest in engineering contexts that
involve worst case design. Moreover, the validity of the minimax equality
(2.99) is beyond the range of practical RL. This is so primarily because once
approximations are introduced, the delicate assumptions that guarantee
this equality are disrupted.

2.13 NOTES, SOURCES, AND EXERCISES

Section 2.1: In this chapter, we have placed emphasis on finite hori-
zon problems, possibly involving a nonstationary system and cost per
stage. However, the insights that can be obtained from the infinite hori-
zon/stationary context fully apply. These include the interpretation of ap-
proximation in value space as a Newton step, and of rollout as a single step
of the policy iteration method. The reason is that an N -step finite hori-
zon/nonstationary problem can be converted to an infinite horizon/statio-
nary problem with a termination state to which the system moves at the
Nth stage; see Section 1.6.2.

Section 2.2: Approximation in value space has been considered in an ad
hoc manner since the early days of DP, motivated by the curse of dimen-
sionality. Moreover, the idea of !-step lookahead minimization with horizon
truncation beyond the ! steps has a long history and is often referred to
as “rolling horizon” or “receding horizon” optimization. Approximation in
value space was reframed in the late 80s and was coupled with model-free
simulation methods that originated in artificial intelligence.

Section 2.3: The main idea of rollout algorithms, obtaining an improved
policy starting from some other suboptimal policy, has appeared in several
DP contexts, including games; see e.g., Abramson [Abr90], and Tesauro
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and Galperin [TeG96]. The name “rollout” was coined by Tesauro [TeG96]
in the context of backgammon; see Example 2.7.3. The use of the name
“rollout” has gradually expanded beyond its original context; for exam-
ple the samples collected through trajectory simulation are referred to as
“rollouts” by some authors.

In the present notes, we will adopt the original intended meaning:
rollout is an algorithm that provides policy improvement starting from a
base policy, which is evaluated with some form of Monte Carlo simulation,
perhaps augmented by some other calculation that may include a terminal
cost function approximation. The author’s rollout book [Ber20a] provides
a more extensive discussion.

There has been a lot of research on rollout algorithms, which we list
selectively in chronological order: Christodouleas [Chr97], Bertsekas and
Castañon [BeC99], Duin and Voss [DuV99], Secomandi [Sec00], [Sec01],
[Sec03], Ferris and Voelker [FeV02], [FeV04], McGovern, Moss, and Barto
[MMB02], Savagaonkar, Givan, and Chong [SGC02], Wu, Chong, and
Givan [WCG02], [WCG03], Bertsimas and Popescu [BeP03], Guerriero
and Mancini [GuM03], Tu and Pattipati [TuP03], Meloni, Pacciarelli, and
Pranzo [MPP04], Yan et al. [YDR04], Han, Lai, and Spivakovsky [HLS06],
Besse and Chaib-draa [BeC08], Sun et al. [SZL08], Mishra et al. [MCT10],
Bertazzi et al. [BBG13], Sun et al. [SLJ13], Tesauro et al. [TGL13], Antunes
and Heemels [AnH14], Beyme and Leung [BeL14], Goodson, Thomas, and
Ohlmann [GTO15], [GTO17], Khashooei, Antunes, and Heemels [KAH15],
Li and Womer [LiW15], Mastin and Jaillet [MaJ15], Huang, Jia, and
Guan [HJG16], Simroth, Holfeld, and Brunsch [SHB15], Lan, Guan, and
Wu [LGW16], Lam, Willcox, and Wolpert [LWW16], Gommans et al.
[GTA17], Lam and Willcox [LaW17], Ulmer [Ulm17], Bertazzi and Sec-
omandi [BeS18], Zhang, Ohlmann, and Thomas [ZOT18], Sarkale et al.
[SNC18], Ulmer at al. [UGM18], Arcari, Hewing, and Zeilinger [AHZ19],
Chu, Xu, and Li [CXL19], Goodson, Bertazzi, and Levary [GBL19], Guer-
riero, Di Puglia, and Macrina [GDM19], Ho, Liu, and Zabinsky [HLZ19],
Liu et al. [LLL19], Nozhati et al. [NSE19], Singh and Kumar [SiK19],
Yu et al. [YYM19], Yuanhong [Yua19], Andersen, Stidsen, and Reinhardt
[ASR20], Durasevic and Jakobovic [DuJ20], Issakkimuthu, Fern, and Tade-
palli [IFT20], Lee et al. [LEC20], Li et al. [LZS20], Lee [Lee20], Montene-
gro et al. [MLM20], Meshram and Kaza [MeK20], Schope, Driessen, and
Yarovoy [SDY20], Yan, Wang, and Xu [YWX20], Yue and Kontar [YuK20],
Zhang, Kafouros, and Yu [ZKY20], Hoffman et al. [HCR21], Houy and
Flaig [HoF21], Li, Krakow, and Gopalswamy [LKG21], Liu et al. [LPS21],
Nozhati [Noz21], Rimélé et al. [RGG21], Tuncel et al. [TBP21], Xie, Li,
and Xu [XLX21], Bertsekas [Ber22d], Paulson, Sonouifar, and Chakrabarty
[PSC22], Bai et al. [BLJ23], Rusmevichientong et al. [RST23].

These references collectively include a large number of computational
studies, discuss variants and problem-specific adaptations of rollout algo-
rithms for a broad variety of practical problems, and consistently report
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favorable computational experience. The size of the cost improvement over
the base policy is often impressive, evidently owing to the fast convergence
rate of Newton’s method that underlies rollout. Moreover these works
illustrate some of the other important advantages of rollout: reliability,
simplicity, suitability for on-line replanning, and the ability to interface
with other RL techniques, such as neural network training, which can be
used to provide suitable base policies and/or approximations to their cost
functions.

The adaptation of rollout algorithms to discrete deterministic opti-
mization problems, the notions of sequential consistency, sequential im-
provement, fortified rollout, and the use of multiple heuristics for paral-
lel rollout were first given in the paper by Bertsekas, Tsitsiklis, and Wu
[BTW97], and were also discussed in the neuro-dynamic programming book
[BeT96]. Rollout algorithms for stochastic problems were further formal-
ized in the papers by Bertsekas [Ber97b], and Bertsekas and Castañon
[BeC99]. Extensions to constrained rollout were first given in the author’s
papers [Ber05a], [Ber05b]. A survey of rollout in discrete optimization was
given by the author in [Ber13a].

The model-free rollout algorithm, in the form given here, was first dis-
cussed in the RL book [Ber19a]. It is inspired by the method of comparison
training, proposed by Tesauro [Tes89a], [Tes89b], [Tes01], and subsequently
used by several other authors (see [DNW16], [TCW19]). This is a general
method for training an approximation architecture to choose between two
alternatives, using a dataset of expert choices in place of an explicit cost
function.

Section 2.4: Our discussion of rollout, iterative deepening, and pruning
in the context of multistep approximation in value space for deterministic
problems contains some original ideas particularly in connection with the
incremental multistep rollout algorithms.

Section 2.5: Constrained forms of rollout were introduced in the author’s
papers [Ber05a] and [Ber05b]. The paper [Ber05a] also discusses rollout
and approximation in value space for stochastic problems in the context of
so-called restricted structure policies . The idea here is to simplify the prob-
lem by selectively restricting the information and/or the controls available
to the controller, thereby obtaining a restricted but more tractable problem
structure, which can be used conveniently in a one-step lookahead context.
An example of such a structure is one where fewer observations are ob-
tained, or one where the control constraint set is restricted to a single or a
small number of given controls at each state.

Section 2.6: Rollout for continuous-time optimal control was first dis-
cussed in the author’s rollout book [Ber20a]. A related discussion of policy
iteration, including the motivation for approximating the gradient of the
optimal cost-to-go ∇xJt rather than the optimal cost-to-go Jt, has been



Sec. 2.13 Notes, Sources, and Exercises 283

given in Section 6.11 of the neuro-dynamic programming book [BeT96].
This discussion also includes the use of value and policy networks for ap-
proximate policy evaluation and policy improvement for continuous-time
optimal control. The underlying ideas have long historical roots, which are
recounted in detail in the book [BeT96].

Section 2.7: The idea of the certainty equivalence approximation in the
context of rollout for stochastic systems (Section 2.7.3) was proposed in the
paper by Bertsekas and Castañon [BeC99], together with extensive empir-
ical justification. However, the associated theoretical insight into this idea
was established more recently, through the interpretation of approximation
in value space as a Newton step, which suggests that the lookahead min-
imization after the first step can be approximated with small degradation
of performance.

The idea of variance reduction in the context of rollout (Section 2.7.4)
was proposed by the author in the paper [Ber97b]; see also the DP text-
book [Ber17a], Section 6.5.2. The paper by Chang, Hu, Fu, and Marcus
[CHF05], and the 2007 first edition of their monograph proposed and an-
alyzed adaptive sampling in connection with DP, as well as early forms of
Monte Carlo tree search, including statistical tests to control the sampling
process (a second edition, [CHF13], appeared in 2013). The name “Monte
Carlo tree search” has become popular, and in its current use, it encom-
passes a variety of methods that involve adaptive sampling, rollout, and
extensions to sequential games. We refer to the papers by Coulom [Cou06],
and Chang et al. [CHF13], the discussion by Fu [Fu17], and the survey by
Browne et al. [BPW12].

Statistical tests for adaptive sampling has been inspired by works
on multiarmed bandit problems; see Lai and Robbins [LaR85], Agrawal
[Agr95], Burnetas and Katehakis [BuK97], Meuleau and Bourgine [MeB99],
Auer, Cesa-Bianchi, and Fischer [ACF02], Kocsis and Szepesvari [KoS06],
Dimitrakakis and Lagoudakis [DiL08], Audibert, Munos, and Szepesvari
[AMS09], and Munos [Mun14]. The book by Lattimore and Szepesvari
[LaS20] focuses on multiarmed bandit methods, and provides an extensive
account of the UCB rule.

Adaptive sampling and MCTS may be viewed within the context of
a broader class of on-line lookahead minimization techniques, sometimes
called on-line search methods. These techniques are based on a variety
of ideas, such as random search and intelligent pruning of the lookahead
tree. One may naturally combine them with approximation in value space
and (possibly) rollout, although it is not necessary to do so (the multistep
minimization horizon may extend to the terminal time N). For representa-
tive works, some of which apply to continuous spaces problems, including
POMDP, see Hansen and Zilberstein [HaZ01], Kearns, Mansour, and Ng
[KMN02], Peret and Garcia [PeG04], Ross et al. [RPP08], Silver and Veness
[SiV10], Hostetler, Fern, and Dietterich [HFD17], and Ye et al. [YSH17].
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The multistep lookahead approximation ideas of Section 2.4 may also be
viewed within the context of on-line search methods.

Another rollout idea for stochastic problems, which we have not dis-
cussed in these notes, is the open-loop feedback controller (OLFC), a subop-
timal control scheme that dates to the 60s; see Dreyfus [Dre65]. The OLFC
applies to POMDP as well, and uses an open-loop optimization over the
future evolution of the system. In particular, it uses the current informa-
tion vector Ik to determine the belief state bk. It then solves the open-loop
problem of minimizing

E

{

gN (xN ) +
N−1∑

i=k

gi(xi, ui, wi)
∣∣∣ Ik

}

subject to the constraints

xi+1 = fi(xi, ui, wi), ui ∈ Ui, i = k, k + 1, . . . , N − 1,

and applies the first control uk in the optimal open-loop control sequence
{uk, uk+1, . . . , uN−1}. It is easily seen that the OLFC is a rollout algorithm
that uses as base policy the optimal open-loop policy for the problem (the
one that ignores any state or observation feedback).

For a detailed discussion of the OLFC, we refer to the author’s sur-
vey paper [Ber05a] (Section 4) and DP textbook [Ber17a] (Section 6.4.4).
The survey [Ber05a] discusses also a generalization of the OLFC, called
partial open-loop-feedback-control , which calculates the control input on
the basis that some (but not necessarily all) of the observations will in
fact be taken in the future, and the remaining observations will not be
taken. This method often allows one to deal with those observations that
are troublesome and complicate the solution, while taking into account the
future availability of other observations that can be reasonably dealt with.
A computational case study for hydrothermal power system scheduling is
given by Martinez and Soares [MaS02]. A variant of the OLFC, which
also applies to minimax control problems, is given in the author’s paper
[Ber72b], together with a proof of a cost improvement property over the
optimal open-loop policy.

Section 2.8: The role of stochastic programming in providing a link be-
tween stochastic DP and continuous spaces deterministic optimization (cf.
Section 2.8) is well known; see the texts by Birge and Louveaux [BiL97],
Kall andWallace [KaW94], and Prekopa [Pre95], and the survey by Ruszczy-
nski and Shapiro [RuS03]. Stochastic programming has been applied widely,
and there is much to be gained from its combination with RL. The material
of this section comes from the author’s rollout book [Ber20a].

Section 2.9: The multiagent rollout algorithm was proposed in the au-
thor’s papers [Ber19c], [Ber20b]. The paper [Ber21a] provides an extensive
overview of this research. See also the notes and sources for Chapter 1.
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Section 2.10: The material on rollout for Bayesian optimization and se-
quential estimation comes from a recent paper by the author [Ber22d].
This paper is also the basis for the adaptive control material of Section
2.11, and has been included in the book [Ber22a]. The paper by Bham-
bri, Bhattacharjee, and Bertsekas [BBB22] discusses this material for the
case of a deterministic system, applies rollout to sequential decoding in the
context of the challenging Wordle puzzle, and provides an implementation
using some popular base heuristics, with performance that is very close to
optimal. For related work see Loxley and Cheung [LoC23].

Section 2.11: The POMDP framework for adaptive control dates to the
60s, and has stimulated substantial theoretical investigations; see Mandl
[Man74], Doshi and Shreve [DoS80], Kumar and Lin [KuL82], and the
survey by Kumar [Kum85]. Some of the pitfalls of performing parameter
identification while simultaneously applying adaptive control have been
described by Borkar and Varaiya [BoV79], and by Kumar [Kum83]; see
[Ber17a], Section 6.8 for a related discussion.

Section 2.12: The treatment of sequential minimax problems by DP (cf.
Section 2.12) has a long history. For some early influential works, see Black-
well and Girshick [BlG54], Shapley [Sha53], and Witsenhausen [Wit66]. In
minimax control problems, the maximizer is assumed to make choices with
perfect knowledge of the minimizer’s policy. If the roles of maximizer and
minimizer are reversed, i.e., the maximizer has a policy (a sequence of func-
tions of the current state) and the minimizer makes choices with perfect
knowledge of that policy, the minimizer gains an advantage, the problem
may genuinely change, and the optimal value may be reduced. Thus “min-
max” and “max-min” are generally two different problems. In classical
two-person zero-sum game theory, however, the main focus is on situations
where the min-max and max-min are equal. By contrast, in engineering
worst case design contexts, the min-max and max-min values are typically
unequal.

There is substantial literature on sequential zero-sum games in the
context of DP, often called Markov games . The classical paper by Shap-
ley [Sha53] addresses discounted infinite horizon games. A PI algorithm
for finite-state Markov games was proposed by Pollatschek and Avi-Itzhak
[PoA69], and was interpreted as a Newton method for solving the associ-
ated Bellman equation. They have also shown that the algorithm may not
converge to the optimal cost function. Computational studies have verified
that the Pollatschek and Avi-Itzhak algorithm converges much faster than
its competitors, when it converges (see Breton et al. [BFH86], and also Fi-
lar and Tolwinski [FiT91], who proposed a modification of the algorithm).
Related methods have been discussed for Markov games by van der Wal
[Van78] and Tolwinski [Tol89]. The paper by Raghavan and Filar [RaF91],
and the textbook by Filar and Vrieze [FiV96] provide extensive surveys of
the research up to that time.
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The paper by Yu [Yu14] provides an analysis of stochastic shortest
path games, where the termination state may not be reachable under some
policies, following the earlier paper by Patek and Bertsekas [PaB99]. The
paper [Yu14] also includes a rigorous analysis of the Q-learning algorithm
for stochastic shortest path games (without any cost function approxima-
tion). The papers by Perolat et al. [PSP15], [PPG16], and the survey by
Zhang, Yang, and Basar [ZYB21] discuss alternative RL methods for games.
The author’s paper [Ber19b] develops VI, PI, and Dijkstra-like finitely ter-
minating algorithms for exact solution of shortest path minimax problems.
It also discusses related rollout algorithms for approximate solution.

The author’s paper [Ber21b] has explained the reason behind the
unreliable behavior of the Pollatschek and Avi-Itzhak algorithm, based on
the Newton step interpretation of PI given in Chapter 1: in the case of
Markov games, the Bellman operator does not have the concavity property
that is typical of one-player games. This paper has also provided a modified
algorithm with solid convergence properties under a totally asynchronous
implementation, which applies to very general types of sequential zero-sum
games and minimax control. Related aggregation-based RL algorithms
were also given. The algorithms, variations, and analysis of the paper
[Ber21b] were incorporated as Chapter 5 in the 3rd edition of the abstract
DP book [Ber22b].
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E X E R C I S E S

2.1 (A Traveling Salesman Rollout Example with a
Sequentially Improving Heuristic)

Consider the traveling salesman problem of Example 1.2.3 and Fig. 1.2.11, and
the rollout algorithm starting from city A.

(a) Assume that the base heuristic is chosen to be the farthest neighbor heuris-
tic, which completes a partial tour by successively moving to the farthest
neighbor city not visited thus far. Show that this base heuristic is se-
quentially consistent. What are the tours produced by this base heuristic
and the corresponding rollout algorithm? Answer : The base heuristic will
produce the tour A→AD→ADB→ADBC→A with cost 45. The rollout
algorithm will produce the tour A→AB→ABD→ABDC→A with cost 13.

(b) Assume that the base heuristic at city A is the nearest neighbor heuristic,
while at the partial tours AB, AC, and AD it is the farthest neighbor
heuristic. Show that this base heuristic is sequentially improving but not
sequentially consistent. Compute the final tour generated by rollout.

Solution of part (b): Clearly the base heuristic is not sequentially consistent,
since from A it generates

A→AC→ACD→ACDB→A,

but from AC it generates

AC→ACB→ACBD→A.

However, it is seen that the sequential improvement criterion (2.15) holds at each
of the states A, AB, AC, and AD (and also trivially for the remaining states).

The base heuristic at A is the nearest neighbor heuristic so it generates

A→AC→ACD→ACDB→A with cost 28.

The rollout algorithm at state A looks at the three successor states AB,
AC, AD, and runs the farthest neighbor heuristic from each, and generates:

A→AB→ABD→ABDC→A with cost 13,

A→AC→ACB→ACBD→A with cost 45,

A→AD→ADB→ADBC→A with cost 45,

so the rollout algorithm will move from A to AB.
Then the rollout algorithm looks at the two successor states ABC, ABD,

and runs the base heuristic (whatever that may be; it does not matter) from
each. The paths generated are:

AB→ABC→ABCD→A with cost 26,
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AB→ABD→ABDC→A with cost 13,

so the rollout algorithm will move from AB to ABD.
Thus the final tour generated by the rollout algorithm is

A→AB→ABD→ABDC→A, with cost 13.

2.2 (A Generic Example of a Base Heuristic that is not
Sequentially Improving)

Consider a rollout algorithm for a deterministic problem with a base heuristic
that produces an optimal control sequence at the initial state x0, and uses the
(optimal) first control u0 of this sequence to move to the (optimal) next state
x1. Suppose that the base heuristic produces a strictly suboptimal sequence from
every successor state x2 = f1(x1, u1), u1 ∈ U1(x1), so that the rollout yields a
control u1 that is strictly suboptimal. Show that the trajectory produced by the
rollout algorithm starting from the initial state x0 is strictly inferior to the one
produced by the base heuristic starting from x0, while the sequential improvement
condition does not hold.

2.3 (Computational Exercise - Parking with Problem
Approximation and Rollout)

In this computational exercise we consider a more complex, imperfect state infor-
mation version of the one-directional parking problem of Example 1.6.1. Recall
that in this problem a driver is looking for a free parking space in an area con-
sisting of N spaces arranged in a line, with a garage at the end of the line (space
N). The driver starts at space 0 and traverses the parking spaces sequentially,
i.e., from each space he/she goes to the next space, up to when he/she decides to
park in space k at cost c(k), if space k is free. Upon reaching the garage, parking
is mandatory at cost C.

In Example 1.6.1, we assumed that the driver knows the probabilities p(k+
1), . . . , p(N − 1) of the parking spaces (k + 1), . . . , (N − 1), respectively, being
free. Under this assumption, the state at stage k is either the termination state t
(if already parked), or it is F (location k free), or it is F (location k taken), and
the DP algorithm has the form

J∗
k (F ) =

{
min

[
c(k), p(k + 1)J∗

k+1(F ) +
(
1− p(k + 1)

)
J∗
k+1(F )

]
if k < N − 1,

min
[
c(N − 1), C

]
if k = N − 1,

(2.100)

J∗
k (F ) =

{
p(k + 1)J∗

k+1(F ) +
(
1− p(k + 1)

)
J∗
k+1(F ) if k < N − 1,

C if k = N − 1,
(2.101)

for the states other than the termination state t, while for t we have J∗
k (t) = 0

for all k.
We will now consider the more complex variant of the problem where the

probabilities p(0), . . . , p(N − 1) do not change over time, but are unknown to
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the driver, so that he/she cannot use the exact DP algorithm (2.100)-(2.101).
Instead, the driver considers a one-step lookahead approximation in value space
scheme, which uses empirical estimates of these probabilities that are based on
the ratio

fk
k+1 , where fk is the number of free spaces seen up to space k, after

the free/taken status of spaces 0, . . . , k has been observed. In particular, these
empirical estimates are given by

bk(m,fk) = γp̄(m) + (1− γ)
fk

k + 1
, m = k + 1, . . . , N − 1, (2.102)

where fk is the number of free spaces seen up to space k, and γ and p̄(m) are fixed
numbers between 0 and 1. Of course the values fk observed by the driver evolve
according to the true (and unknown) probabilities p(0), . . . , p(N − 1) according
to

fk+1 =

{
fk + 1 with probability p(k + 1),
fk with probability 1− p(k + 1).

(2.103)

For the solution of this exercise you may assume any reasonable values you wish
for N , p(m), p̄(m), and γ. Recommended values are N ≥ 100, and probabilities
p(m) and p̄(m) that are nonincreasing with m.

The decision made by the approximation in value space scheme is to park
at space k if and only if it is free and in addition

c(k) ≤ bk(k + 1, fk)J̃k+1(F ) +
(
1− bk(k + 1, fk)

)
J̃k+1(F ), (2.104)

where J̃k+1(F ) and J̃k+1(F ) are the cost-to-go approximations from stage k+1.
Consider the following two different methods to compute J̃k+1(F ) and J̃k+1(F )
for use in Eq. (2.104):

(1) Here the approximate cost function values J̃k+1(F ) and J̃k+1(F ) are ob-
tained by using problem approximation, whereby at time k it is assumed
that the probabilities of free/taken status at the future spaces m = k +
1, . . . , N − 1 are bk(m, fk), m = k + 1, . . . , N − 1, as given by Eq. (2.102).

More specifically, J̃k+1(F ) and J̃k+1(F ) are obtained by solving optimally
the problem whereby we use the probabilities bk(m,fk) of Eq. (2.102) in
place of the unknown p(m) in the DP algorithm (2.100)-(2.101):

J̃k+1(F ) = Ĵk+1(F ), J̃k+1(F ) = Ĵk+1(F ),

where Ĵk+1(F ) and Ĵk+1(F ) are given at the last step of the DP algorithm

ĴN−1(F ) = min
[
c(N − 1), C

]
, ĴN−1(F ) = C,

Ĵm(F ) = min
[
c(m), bk(m+ 1, fk)Ĵm+1(F )+

(
1− bk(m+ 1, fk)

)
Ĵm+1(F )

]
,

if k < m < N − 1,

Ĵm(F ) = bk(m+ 1, fk)Ĵm+1(F )+
(
1− bk(m+ 1, fk)

)
Ĵm+1(F ),

if k < m < N − 1.
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(2) Here for each k, the approximate cost function values J̃k+1(F ) and J̃k+1(F )
are obtained by using rollout with a greedy base heuristic (park as soon
as possible), and Monte Carlo simulation. In particular, according to this
greedy heuristic, we have J̃k+1(F ) = c(k + 1). To compute J̃k+1(F ) we
generate many random trajectories by running the greedy heuristic forward
from space k+ 1 assuming the probabilities bk(m+1, fk) of Eq. (2.102) in
place of the unknown p(m+ 1), m = k + 1, . . . , N − 1, and we average the
cost results obtained.

(a) Use Monte Carlo simulation to compute the expected cost from spaces
0, . . . , N − 1, when using each of the two schemes (1) and (2).

(b) Compare the performance of the schemes of part (a) with the following:

(i) The optimal expected costs J∗
k (F ) and J∗

k (F ) from k = 0, . . . , N − 1,
using the DP algorithm (2.100)-(2.101), and the probabilities p(m),
m = 0, . . . , N − 1, that you used for the random generation of the
numbers of free spaces fk [cf. Eq. (2.103)].

(ii) The expected costs Ĵk(F ) and Ĵk(F ) from k = 0, . . . , N − 1 that are
attained by using the greedy base heuristic. Argue that these are
given by

Ĵk(F ) = c(k), k = 0, . . . , N − 1,

Ĵk(F ) = p(k+1)c(k+1)+
(
1−p(k+1)

)
Ĵk+1(F ), k = 0, . . . , N−2,

ĴN−1(F ) = C.

(c) Argue that scheme (1) becomes superior to scheme (2) in terms of cost
attained as γ ≈ 1 and p̄(m) ≈ p(m). Are your computational results in
rough agreement with this assertion?

(d) Argue that as γ ≈ 0 and N >> 1, scheme (1) becomes superior to scheme
(2) in terms of cost attained from parking spaces k >> 1.

(e) What happens if the probabilities p(m) do not change much with m?
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In this chapter, we will discuss the methods and objectives of off-line train-
ing through the use of parametric approximation architectures such as neu-
ral networks. We begin with a general discussion of parametric architec-
tures and their training in Section 3.1. We then consider the training of
neural networks in Section 3.2, and their use in the context of finite horizon
approximate DP in Section 3.3. In Section 3.4, we discuss the training of
policies. Finally, in Section 3.5, we discuss aggregation methods.

3.1 PARAMETRIC APPROXIMATION ARCHITECTURES

As we have noted earlier, for the success of approximation in value space,
it is important to select a class of lookahead function approximations J̃k
that is suitable for the problem at hand. In the preceding two chapters we
discussed several methods for choosing J̃k, based mostly on some form of
rollout. We will now discuss how J̃k can be obtained by off-line training
from a parametric class of functions, possibly involving a neural network,
with the parameters “optimized” with the use of some algorithm.

Target Cost Function
Target Cost Function

Training Data Approximation Architecture Parameter
Approximation Architecture Parameter

J(x)Training Data
(

xs, J(xs)
)

)

s = 1, . . . , q
, . . . , q Parameter r r J̃(x, r)

r Approximating Function
Approximating Function

Figure 3.1.1 The general structure for parametric cost approximation. We ap-
proximate the target cost function J(x) with a member from a parametric class

J̃(x, r) that depend on a parameter vector r. We use training data
(

xs, J(xs)
)

,
s = 1, . . . , q, and a form of optimization that aims to find a parameter r̂ that
“minimizes” the size of the errors J(xs)− J̃(xs, r̂), s = 1, . . . , q.

A general structure for parametric cost function approximation is
illustrated in Fig. 3.1.1. We have a target function J(x) that we want
to approximate with a member of a parametric class of functions J̃(x, r)
that depend on a parameter vector r. To this end, we collect training data
(

xs, J(xs)
)

, s = 1, . . . , q, which we use to determine a parameter r̂ that

leads to a good “fit” between the data J(xs) and the predictions J̃(xs, r̂)
of the parametrized function. This is usually done through some form of
optimization that aims to minimize the size of the errors J(xs)− J̃(xs, r̂),
s = 1, . . . , q.

The methodological ideas for parametric cost approximation can also
be used for approximation of a target policy µ with a policy from a para-
metric class µ̃(x, r). The training data may be obtained, for example, from
rollout control calculations, thus enabling the construction of both value
and policy networks that can be combined for use in a perpetual rollout
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Training Data J

, . . . , q Parameter r

r Approximating Function

Target PolicyTarget Policy

) µ(x) (

xs, µ(xs)
)

)

s = 1, . . . , q

Target Policy Classifier

Target Policy Classifier . . .Target Policy Classifier . . .Target Policy Classifier . . .

. . . Randomized Policy

) Probabilities µ̃1(x, r), . . . , µ̃m(x, r)

( )

Control Probabilities ˜

Randomized Policy (Assigns State x to
Class/Control u)

) Max Operation
) Max Operation

Figure 3.1.2 A general structure for parametric policy approximation for the
case where the control space is finite, U = {u1, . . . , um}, and its relation to a
classification scheme. It produces a randomized policy of the form (3.1), which is
converted to a nonrandomized policy through the maximization operation (3.2).

scheme. However, there is an important difference: the approximate cost
values J̃(x, r) are real numbers, whereas the approximate policy values
µ̃(x, r) are elements of a control space U . Thus if U consists of m dimen-
sional vectors, µ̃(x, r) consists of m numerical components. In this case the
parametric approximation problems for cost functions and for policies are
fairly similar, and both involve continuous space approximations.

However, the case where the control space is finite U = {u1, . . . , um}
is markedly different. In this case, for any x, µ̃(x, r) consists of one of the
m possible controls u1, . . . , um. This ushers a connection with traditional
classification schemes, whereby objects x are classified as belonging to one
of the categories u1, . . . , um, so that µ(x) defines the category of x, and
can be viewed as a classifier . Some of the most prominent classification
schemes actually produce randomized outcomes, i.e., x is associated with
a probability distribution

{µ̃(u1, r), . . . , µ̃(um, r)}, (3.1)

which is a randomized policy in our policy approximation context; see Fig.
3.1.2. This is done usually for reasons of algorithmic convenience, since
many optimization methods, including least squares regression, require that
the optimization variables are continuous. In this case, the randomized pol-
icy (3.1) can be converted to a nonrandomized policy using a maximization
operation: associate x with the control of maximum probability (cf. Fig.
3.1.2),

µ̃(x, r) ∈ arg max
i=1,...,m

µ̃i(x, r). (3.2)

The use of classification methods for approximation in policy space will be
discussed more fully in Section 3.4.

3.1.1 Cost Function Approximation

For the remainder of this section, as well as Sections 3.2 and 3.3, we will fo-
cus on approximation in value space schemes, where the approximate cost
functions are selected from a parametric class of functions J̃k(xk, rk) that
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for each k, depend on the current state xk and a vector rk = (r1,k, . . . , rmk ,k)
of mk “tunable” scalar parameters. By adjusting the parameters, one can
change the “shape” of J̃k so that it is a reasonably good approximation to
some target function, usually the true optimal cost-to-go function J*

k , or the
cost-to-go function Jk,π of some policy π. The class of functions J̃k(xk, rk)
is called an approximation architecture, and the process of choosing the pa-
rameter vectors rk is commonly called training or tuning the architecture.
We will focus initially on approximation of cost functions, hence the use
of the J̃k notation. In Section 3.4 we will consider the other major use of
parametric approximation architectures, of the form µ̃k(xk, rk), where the
target function is a control function µk that is part of some policy.

The simplest training approach for parametric architectures is to do
some form of semi-exhaustive or semi-random search in the space of pa-
rameter vectors and adopt the parameters that result in best performance
of the associated one-step lookahead controller (according to some crite-
rion). There are methods of this type that have been used primarily in
cases where the number of parameters is relatively small.

Random search and Bayesian optimization methods have also been
used to tune hyperparameters of an approximation architecture; for exam-
ple, the number of layers in a neural network, or the number of clusters in
the context of partitioning discrete spaces into clusters, etc. We refer to
the research literature for further discussion.

Other systematic approaches are based on numerical optimization,
such as a least squares fit that aims to match the cost approximation pro-
duced by the architecture to a “training set,” i.e., a large number of pairs
of state and cost values that are obtained through some form of sampling
process. Throughout Sections 3.1-3.3 we will focus primarily on this ap-
proach.

3.1.2 Feature-Based Architectures

There is a large variety of approximation architectures, based for example
on polynomials, wavelets, radial basis functions, discretization/interpolation
schemes, neural networks, and others. A particularly interesting type of
cost approximation involves feature extraction, a process that maps the
state xk into some vector φk(xk), called the feature vector associated with
xk at time k. The vector φk(xk) consists of scalar components

φ1,k(xk), . . . ,φmk,k(xk),

called features . A feature-based cost approximation has the form

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

,

where rk is a parameter vector and Ĵk is some function. Thus, the cost
approximation depends on the state xk through its feature vector φk(xk).
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i Feature Extraction Mapping Feature Vector
Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

i) Linear Cost
i) Linear Cost-Solutions Feature Vector

State x x φ(x) Approximator ) Approximator r′φ(x)

Figure 3.1.3 The structure of a linear feature-based architecture. At time k, we
use a feature extraction mapping to generate an input φk(xk) to a linear mapping
defined by a parameter vector rk.

Note that we are allowing for different features φk(xk) and different
parameter vectors rk for each stage k. This is necessary for nonstationary
problems (e.g., if the state space changes over time), and also to capture
the effect of proximity to the end of the horizon. On the other hand,
for stationary problems with a long or infinite horizon, where the state
space does not change with k, it is common to use the same features and
parameters for all stages. The subsequent discussion can easily be adapted
to infinite horizon methods, as we will discuss later.

Features are often handcrafted, based on whatever human intelli-
gence, insight, or experience is available, and are meant to capture the
most important characteristics of the current state. There are also sys-
tematic ways to construct features, including the use of data and neural
networks, which we will discuss shortly. In this section, we provide a brief
and selective presentation of architectures.

One idea behind using features is that the optimal cost-to-go functions
J*
k may be complicated nonlinear mappings, so it is sensible to try to break

their complexity into smaller, less complex pieces. In particular, if the
features encode much of the nonlinearity of J*

k , we may be able to use a

relatively simple architecture Ĵk to approximate J*
k . For example, with a

well-chosen feature vector φk(xk), a good approximation to the cost-to-go
is often provided by linearly weighting the features, i.e.,

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

=

mk
∑

"=1

r",kφ",k(xk) = r′kφk(xk), (3.3)

where r",k and φ",k(xk) are the #th components of rk and φk(xk), respec-
tively, and r′kφk(xk) denotes the inner product of rk and φk(xk), viewed
as column vectors of #mk (a prime denotes transposition, so r′k is a row
vector); see Fig. 3.1.3.

This is called a linear feature-based architecture, and the scalar param-
eters r",k are also called weights . Among other advantages, these architec-
tures admit simpler training algorithms than their nonlinear counterparts;
see the NDP book [BeT96]. Mathematically, the approximating function
J̃k(xk, rk) can be viewed as a member of the subspace spanned by the fea-
tures φ",k(xk), # = 1, . . . ,mk, which for this reason are also referred to as
basis functions . We provide a few examples, where for simplicity we drop
the index k.



Sec. 3.1 Parametric Approximation Architectures 297

J̃(x, r) =
∑

m

!=1
r!φ!(x)

x S1 S! ! Sm

. . . . . . ) x S

. . . r1

r! rm

1 r!

Figure 3.1.4 Illustration of a piecewise constant architecture. The state space
is partitioned into subsets S1, . . . , Sm, with each subset S! defining the feature

φ!(x) =
{

1 if x ∈ S!,
0 if x /∈ S!,

" = 1, . . . ,m,

with its own weight r!.

Example 3.1.1 (Piecewise Constant Approximation)

Suppose that the state space is partitioned into subsets S1, . . . , Sm, so that
every state belongs to one and only one subset. Let the !th feature be defined
by membership to the set S!, i.e.,

φ!(x) =
{

1 if x ∈ S!,
0 if x /∈ S!,

! = 1, . . . ,m.

Consider the architecture

J̃(x, r) =

m
∑

!=1

r!φ!(x),

where r is the vector consists of the m scalar parameters r1, . . . , rm. It can
be seen that J̃(x, r) is the piecewise constant function that has value r! for
all states within the set S!; see Fig. 3.1.4.

The piecewise constant approximation is an example of a linear fea-
ture-based architecture that involves exclusively local features . These are
features that take a nonzero value only for a relatively small subset of
states. Thus a change of a single weight causes a change of the value of
J̃(x, r) for relatively few states x. At the opposite end we have linear
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feature-based architectures that involve global features . These are features
that take nonzero values for a large number of states. The following is a
common example.

Example 3.1.2 (Polynomial Approximation)

An important case of linear architecture is one that uses polynomial basis
functions. Suppose that the state consists of n components x1, . . . , xn, each
taking values within some range of integers. For example, in a queueing
system, xi may represent the number of customers in the ith queue, where
i = 1, . . . , n. Suppose that we want to use an approximating function that
is quadratic in the components xi. Then we can define a total of 1 + n+ n2

basis functions that depend on the state x = (x1, . . . , xn) via

φ0(x) = 1, φi(x) = xi, φij(x) = xixj , i, j = 1, . . . , n.

A linear approximation architecture that uses these functions is given by

J̃(x, r) = r0 +

n
∑

i=1

rix
i +

n
∑

i=1

n
∑

j=1

rijx
ixj ,

where the parameter vector r has components r0, ri, and rij , with i, j =
1, . . . , n. Indeed, any kind of approximating function that is polynomial in
the components x1, . . . , xn can be constructed similarly.

A more general polynomial approximation may be based on some other
known features of the state. For example, we may start with a feature vector

φ(x) =
(

φ1(x), . . . ,φm(x)
)′
,

and transform it with a quadratic polynomial mapping. In this way we obtain
approximating functions of the form

J̃(x, r) = r0 +

m
∑

i=1

riφi(x) +

m
∑

i=1

m
∑

j=1

rijφi(x)φj(x),

where the parameter r has components r0, ri, and rij , with i, j = 1, . . . ,m.
This can also be viewed as a linear architecture that uses the basis functions

w0(x) = 1, wi(x) = φi(x), wij(x) = φi(x)φj(x), i, j = 1, . . . , m.

The preceding example architectures are generic in the sense that they
can be applied to many different types of problems. Other architectures rely
on problem-specific insight to construct features, which are then combined
into a relatively simple architecture. We present two examples involving
games.
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Figure 3.1.5 The board of the tetris game. The squares fill up as blocks of
different shapes fall from the top of the grid and are added to the top of the
wall. The shapes are generated according to some stochastic process. As a given
block falls, the player can move horizontally and rotate the block in all possible
ways, subject to the constraints imposed by the sides of the grid and the top of
the wall. When a row of full squares is created, this row is removed, the bricks
lying above this row move one row downward, and the player scores a point.
The player’s objective is to maximize the score attained (total number of rows
removed) within N steps or up to termination of the game, whichever occurs first.

Example 3.1.3 (Tetris)

Let us consider the game of tetris, which we formulated in Example 1.6.2 as
a stochastic shortest path problem with the termination state being the end
of the game (see Fig. 3.1.5). The state is the pair of the board position x and
the shape of the current falling block y. We viewed as control, the horizontal
positioning and rotation applied to the falling block. The optimal cost-to-
go function is a vector of huge dimension (there are 2200 board positions in
a “standard” tetris board of width 10 and height 20). However, it has been
successfully approximated in practice by low-dimensional linear architectures.

In particular, the following features have been proposed in the paper by
Bertsekas and Ioffe [BeI96]: the heights of the columns, the height differen-
tials of adjacent columns, the wall height (the maximum column height), the
number of holes of the board, and the constant 1 (the unit is often included
as a feature in cost approximation architectures, as it allows for a constant
shift in the approximating function). These features are readily recognized by
tetris players as capturing important aspects of the board position.† There

† The use of feature-based approximate DP methods for the game of tetris
was first suggested in the paper by Tsitsiklis and Van Roy [TsV96], which in-
troduced just two features (in addition to the constant 1): the wall height and
the number of holes of the board. Most studies have used the set of features of
[BeI96] described here, but other sets of features have also been used; see [ThS09]
and the discussion in [GGS13].
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Feature Extraction Features: Material Balance, Mobility, Safety, etc
Feature Extraction Features: Material Balance,

Feature Extraction Features: Material Balance,

Feature Extraction Features: Material Balance,
Mobility, Safety, etc Weighting of Features Score Position Evaluator

Mobility, Safety, etc Weighting of Features Score Position Evaluator
Mobility, Safety, etc Weighting of Features Score Position Evaluator

Mobility, Safety, etc Weighting of Features Score Position Evaluator

Figure 3.1.6 A feature-based architecture for computer chess.

are a total of 22 features for a “standard” board with 10 columns. Of course
the 2200 × 22 matrix of feature values cannot be stored in a computer, but
for any board position, the corresponding row of features can be easily gener-
ated, and this is sufficient for implementation of the associated approximate
DP algorithms. For recent works involving approximate DP methods and the
preceding 22 features, see [Sch13], [GGS13], and [SGG15], which reference
several other related papers.

In the works mentioned above the shapes of the falling blocks are
stochastically independent. In a more challenging version of the problem,
which has not been considered in the literature thus far, successive shapes
are correlated. Then the state of the problem would become more complex,
since past shapes would be useful in predicting future shapes. As a result,
we may need to introduce state estimation and additional features in order
to properly deal with the effects of correlations.

Example 3.1.4 (Computer Chess)

Computer chess programs that involve feature-based architectures have been
available for many years, and are still used widely (they have been upstaged
in the mid-2010s by alternative types of chess programs, which use neural
network techniques that will be discussed later). These programs are based
on approximate DP for minimax problems, a feature-based parametric archi-
tecture, and multistep lookahead.

The fundamental principles on which all computer chess programs (as
well as most two-person game programs) are based were laid out by Shannon
[Sha50], before Bellman started his work on DP. Shannon proposed multistep
lookahead and evaluation of the end positions by means of a “scoring function”
(in our terminology this plays the role of a cost function approximation). This
function may involve, for example, the calculation of a numerical value for
each of a set of major features of a position that chess players easily recognize
(such as material balance, mobility, pawn structure, and other positional
factors), together with a method to combine these numerical values into a
single score. Shannon then went on to describe various strategies of exhaustive
and selective search over a multistep lookahead tree of moves.

We may view the scoring function as a feature-based architecture for
evaluating a chess position/state (cf. Fig. 3.1.6). In most computer chess pro-
grams, the features are weighted linearly, i.e., the architecture J̃(x, r) that
is used for multistep lookahead is linear [cf. Eq. (3.3)]. In many cases, the
weights have been determined manually, by trial and error based on experi-
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ence. However, in some programs, the weights have been determined with
supervised learning techniques that use examples of grandmaster play, i.e.,
by adjustment to bring the play of the program as close as possible to the
play of chess grandmasters. This is a technique that applies more broadly in
artificial intelligence; see Tesauro [Tes89b], [Tes01].

In a recent computer chess breakthrough, the entire idea of extracting
features of a position through human expertise was abandoned in favor of
feature discovery through self-play and the use of neural networks. The first
program of this type to attain supremacy over humans, as well as over the best
computer programs that use human expertise-based features, was AlphaZero
(Silver et al. [SHS17]). This program, described in Section 1.1, is based on
DP principles of approximate policy iteration and multistep lookahead based
on Monte Carlo tree search.

Our next example relates to a methodology for feature construction,
where the number of features may increase as more data is collected. For a
simple example, consider the piecewise constant approximation of Exam-
ple 3.1.1, where more pieces are progressively added based on new data,
possibly using some form of exploration-exploitation tradeoff.

Example 3.1.5 (Feature Extraction from Data)

We have viewed so far feature vectors φ(x) as functions of x, obtained through
some unspecified process that is based on prior knowledge about the cost func-
tion being approximated. On the other hand, features may also be extracted
from data. For example suppose that with some preliminary calculation using
data, we have identified some suitable states x(!), ! = 1, . . . ,m, that can serve
as “anchors” for the construction of Gaussian basis functions of the form

φ!(x) = e
−

‖x−x(!)‖2

2σ2 , ! = 1, . . . ,m, (3.4)

where σ is a scalar “variance” parameter, and ‖ · ‖ denotes the standard
Euclidean norm. This type of function is known as a radial basis function. It
is concentrated around the state x(!), and it is weighed with a scalar weight r!
to form a parametric linear feature-based architecture, which can be trained
using additional data. Several other types of data-dependent basis functions,
such as support vector machines, are used in machine learning, where they
are often referred to as kernels.

While it is possible to use a preliminary calculation to obtain the an-
chors x(!) in Eq. (3.4), and then use additional data for training, one may also
consider enrichment of the set of basis functions simultaneously with training.
In this case the number of the basis functions increases as the training data
is collected. A motivation here is that the quality of the approximation may
increase with additional basis functions. This idea underlies a field of machine
learning, known as kernel methods or sometimes nonparametric methods.

A further discussion is outside our scope. We refer to the literature; see
e.g., books such as Cristianini and Shawe-Taylor [ChS00], [ShC04], Scholkopf
and Smola [ScS02], Bishop [Bis06], Kung [Kun14], surveys such as Hofmann,
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Scholkopf, and Smola [HSS08], Pillonetto et al. [PDC14], RL-related discus-
sions such as Dietterich and Wang [DiW02], Ormoneit and Sen [OrS02], En-
gel, Mannor, and Meir [EMM05], Jung and Polani [JuP07], Reisinger, Stone,
and Miikkulainen [RSM08], Busoniu et al. [BBD10a], Bethke [Bet10], and
recent developments such as Tu et al. [TRV16], Rudi, Carratino, and Rosasco
[RCR17], Belkin, Ma, and Mandal [BMM18]. In what follows, for the sake of
simplicity, we will focus on parametric architectures with a fixed and given
feature vector, since the choice of approximation architecture is somewhat
peripheral to our main focus.

The next example considers a feature extraction strategy that is par-
ticularly relevant to problems of partial state information.

Example 3.1.6 (Feature Extraction from Sufficient Statistics)

The concept of a sufficient statistic, which originated in inference methodolo-
gies, plays an important role in DP. As discussed in Section 1.6, it refers to
quantities that summarize all the essential content of the state xk for optimal
control selection at time k.

In particular, consider a partial information context where at time k we
have accumulated the information vector (also called the past history)

Ik = (z0, . . . , zk, u0, . . . , uk−1),

which consists of the past controls u0, . . . , uk−1 and the state-related mea-
surements z0, . . . , zk obtained at the times 0, . . . , k. The control uk is al-
lowed to depend only on Ik, and the optimal policy is a sequence of the
form

{

µ∗
0(I0), . . . , µ

∗
N−1(IN−1)

}

. We say that a function Sk(Ik) is a suffi-
cient statistic at time k if the control function µ∗

k depends on Ik only through
Sk(Ik), i.e., for some function µ̂k, we have

µ∗
k(Ik) = µ̂k

(

Sk(Ik)
)

,

where µ∗
k is optimal.

There are several examples of sufficient statistics, and they are typically
problem-dependent. A trivial possibility is to view Ik itself as a sufficient
statistic, and a more sophisticated possibility is to view the belief state bk
as a sufficient statistic (this is the conditional probability distribution of xk

given Ik; cf. Section 1.6.4). For a proof that bk is indeed a sufficient statistic
and for a more detailed discussion of other possible sufficient statistics, see
[Ber17a], Chapter 4. For a mathematically more advanced discussion, see
[BeS78], Chapter 10.

Since a sufficient statistic contains all the relevant information for opti-
mal control purposes, an idea that suggests itself is to introduce features of a
given sufficient statistic and to train a corresponding approximation architec-
ture accordingly. As examples of potentially good features, one may consider
some special characteristic of Ik (such as whether some alarm-like “special”
event has been observed), or a partial history (such as the last m measure-
ments and controls in Ik, or more sophisticated versions based on the concept
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of a finite-state controller proposed by White [Whi91], and White and Scherer
[WhS94], and further discussed by Hansen [Han98], Kaelbling, Littman, and
Cassandra [KLC98], Meuleau et al. [MPK99], Poupart and Boutilier [PoB04],
Yu and Bertsekas [YuB08], Saldi, Yuksel, and Linder [SYL17]). In the case
where the belief state bk is used as a sufficient statistic, examples of good
features may be a point estimate based on bk, the variance of this estimate,
and other quantities that can be simply extracted from bk.

The paper by Bhattacharya et al. [BBW20] considers another type of
feature vector that is related to the belief state. This is a sufficient statistic,
denoted by yk, which subsumes the belief state bk, in the sense that bk can
be computed exactly knowing yk. One possibility is for yk to be the union of
bk and some identifiable characteristics of the belief state, or some compact
representation of the measurement history up to the current time (such as a
number of most recent measurements, or the state of a finite-state controller).
Even though the information content of yk is no different than the information
content of bk for the purposes of exact optimization, a sufficient statistic yk
that is specially designed for the problem at hand may lead to improved
performance in the presence of cost and policy approximations.

We finally note a related idea, which is to supplement a sufficient
statistic with features of other sufficient statistics, and thus obtain an en-
larged/richer sufficient statistic. In problem-specific contexts, and in the
presence of approximations, this may yield improved results.

Example 3.1.7 (Feature-Based Dimensionality Reduction by
Aggregation)

The use of a feature vector φ(x) to represent the state x in an approximation
architecture of the form J̃

(

φ(x), r
)

implicitly involves state aggregation, i.e.,
the grouping of states into subsets. We will discuss aggregation in some detail
in Section 3.5. Here we will give a summary of a particular type of aggregation
architecture.

In particular, let us assume that the feature vector can take only a finite
number of values, and define for each possible value v, the subset of states Sv

whose feature vector is equal to v:

Sv =
{

i | φ(x) = v
}

.

We refer to the sets Sv as the aggregate states induced by the feature vector.
These sets form a partition of the state space. An approximate cost-to-go
function of the form J̃

(

φ(x), r
)

is piecewise constant with respect to this

partition; that is, it assigns the same cost-to-go value J̃(v, r) to all states in
the set Sv.

An often useful approach to deal with problem complexity in DP is
to introduce an “aggregate” DP problem, whose states are some suitably
defined feature vectors φ(x) of the original problem. The precise form of
the aggregate problem may depend on intuition and/or heuristic reasoning,
based on our understanding of the original problem. Suppose now that the
aggregate problem is simple enough to be solved exactly by DP, and let Ĵ(v)
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Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

State Space Feature SpaceState Space Feature Space

Y S
Y SY

Figure 3.1.7 Feature-based state partitioning using a partition of the space of
features. Each set Y of the feature space partition induces a set SY of the state
space partition that consists of states with “similar” features, i.e., states that map
into the same subset of the feature-space partition.

be its optimal cost-to-go when the initial value of the feature vector is v. Then
Ĵ
(

φ(x)
)

provides an approximation architecture for the original problem,
i.e., the architecture that assigns to state x the (exactly) optimal cost-to-
go Ĵ

(

φ(x)
)

of the feature vector φ(x) in the aggregate problem. There is
considerable freedom on how one formulates and solves aggregate problems.
We refer to the DP textbooks [Ber12], [Ber17a], and the RL textbook [Ber19a],
Chapter 6, for a detailed treatment; see also the discussion of Section 3.5.

The next example relates to an architecture that is particularly useful
when parallel computation is available.

Example 3.1.8 (Feature-Based State Space Partitioning)

A simple method to construct complex and sophisticated approximation ar-
chitectures, is to partition the state space into several subsets and construct
a separate approximation in each subset. For example, by using a separate
linear or quadratic polynomial approximation in each subset of the partition,
we can construct piecewise linear or piecewise quadratic approximations over
the entire state space. Similarly, we may use a separate neural network ar-
chitecture on each set of the partition. An important issue here is the choice
of the method for partitioning the state space. Regular partitions (e.g., grid
partitions) may be used, but they often lead to a large number of subsets and
very time-consuming computations.

Generally speaking, each subset of the partition should contain “simi-
lar” states so that the variation of the optimal cost-to-go over the states of the
subset is relatively smooth and can be approximated with smooth functions.
An interesting possibility is to use features as the basis for partition. In par-
ticular, one may use a more or less regular partition of the space of features,
which induces a possibly irregular partition of the original state space. In
this way, each subset of the irregular partition contains states with “similar
features;” see Fig. 3.1.7.

As an illustration consider the game of chess. The state here consists
of the board position, but the nature of the position progresses over time
through opening, middlegame, and endgame phases. Moreover each of these
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phases may be affected differently by special features of the position. For
example there are several different types of endgames (rook endgames, king-
and-pawn endgames, minor-piece endgames, etc), which are characterized by
identifiable features and call for different playing strategies. It would thus
make sense to partition the set of chess positions according to their features,
and use a separate strategy on each set of the partition. Indeed this is done
to some extent in a number of chess programs.

A potential difficulty with partitioned architectures is that there is dis-
continuity of the approximation along the boundaries of the partition. For this
reason, a variant, called soft partitioning , is sometimes employed, whereby
the subsets of the partition are allowed to overlap and the discontinuity is
smoothed out over their intersection. In particular, once a function approx-
imation is obtained in each subset, the approximate cost-to-go in the over-
lapping regions is taken to be a smoothly varying linear combination of the
function approximations of the corresponding subsets.

Partitioning and local approximations can also be used to enhance the
quality of approximation in parts of the space where the target function has
some special character. For example, suppose that the state space S is par-
titioned in subsets S1, . . . , SM and consider approximations of the form

J̃(x, r) = Ĵ(x, r̂) +

M
∑

m=1

Km
∑

k=1

rm(k)φk,m(x), (3.5)

where each φk,m(x) is a basis function which is local, in the sense that it
contributes to the approximation only on the set Sm; that is, it takes the
value 0 for x /∈ Sm. Here Ĵ(x, r̂) is an architecture of the type discussed
earlier, and the parameter vector r consists of r̂ and the coefficients rm(k) of
the basis functions. Thus the portion Ĵ(x, r̂) of the architecture is used to
capture “global” aspects of the target function, while each portion

Km
∑

k=1

rm(k)φk,m(i)

is used to capture aspects of the target function that are “local” to the subset
Sm. The book [BeT96] (Section 3.1.3) discusses the training of local-global
approximation architectures with methods that are tailored to their special
structure.

Architectures with Automatic Feature Construction

Unfortunately, in practice we often do not know an adequate set of features,
so it is important to have methods that construct features automatically, to
supplement whatever features may already be available. Indeed, there are
architectures that do not rely on the knowledge of good features. We have
noted the kernel methods of Example 3.1.5 in this connection. Another very
popular possibility is neural networks , which we will describe in Section 3.2.
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Some of these architectures involve training that constructs simultaneously
both the feature vectors φ(x) and the parameter vectors r that weigh them.

Generally, architectures that construct features automatically do not
preclude the use of additional features that are based on a priori knowledge
or understanding of the problem at hand. In particular these architectures
may, in addition to x, use as inputs additional hand-crafted features that
are relevant for the problem at hand. Another possibility is to combine
automatically constructed features with other a priori known good features
into a (mixed) linear architecture that involves both types of features. The
weights of the latter linear architecture may be obtained with a separate
second stage training process, following the first stage training process that
constructs automatically suitable features using a nonlinear architecture
such as a neural network.

3.1.3 Training of Linear and Nonlinear Architectures

In this section, we discuss briefly the training process of choosing the pa-
rameter vector r of a parametric architecture J̃(x, r), focusing primarily
on incremental gradient methods. The most common type of training is
based on a least squares optimization, also known as least squares regres-
sion. Here a set of state-cost training pairs (xs,βs), s = 1, . . . , q, called
the training set , is collected and r is determined by solving the problem

min
r

q
∑

s=1

(

J̃(xs, r)− βs
)2
. (3.6)

Thus r is chosen to minimize the sum of squared errors between the sample
costs βs and the architecture-predicted costs J̃(xs, r). Here there is some
target cost function J that we aim to approximate with J̃(·, r), and the
sample cost βs is the value J(xs) plus perhaps some error or “noise.”

The cost function of the training problem (3.6) is generally nonconvex,
and can be quite complicated. This may pose challenges, since there may
exist multiple local minima. However, for a linear architecture the cost
function is convex quadratic, and the training problem admits a closed-
form solution. In particular, for the linear architecture J̃(x, r) = r′φ(x),
the problem becomes

min
r

q
∑

s=1

(

r′φ(xs)− βs
)2
.

By setting the gradient of the quadratic objective to 0, we obtain

q
∑

s=1

φ(xs)
(

r′φ(xs)− βs
)

= 0,
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or
q
∑

s=1

φ(xs)φ(xs)′r =
q
∑

s=1

φ(xs)βs.

Thus by matrix inversion we obtain the minimizing parameter vector

r̂ =

(

q
∑

s=1

φ(xs)φ(xs)′

)−1 q
∑

s=1

φ(xs)βs. (3.7)

If the inverse above does not exist, an additional quadratic in r, called a
regularization function, is added to the least squares objective to deal with
this, and also to help with other issues to be discussed later. A singular
value decomposition approach may also be used to deal with the matrix
inversion issue; see [BeT96], Section 3.2.2.

Thus a linear architecture has the important advantage that the train-
ing problem can be solved exactly and conveniently with the formula (3.7)
(of course it may be solved by any other algorithm that is suitable for lin-
ear least squares problems, including iterative algorithms). By contrast, if
we use a nonlinear architecture, such as a neural network, the associated
least squares problem is nonquadratic and also nonconvex, so it is hard
to solve in principle. Despite this fact, through a combination of sophis-
ticated implementation of special gradient algorithms, called incremental ,
and powerful computational resources, neural network methods have been
successful in practice.

Incremental Gradient Methods

We will now discuss briefly special methods for solution of the nonlinear
least squares training problem (3.6), assuming a parametric architecture
that is differentiable in the parameter vector. This methodology can be
properly viewed as a subject in nonlinear programming and iterative algo-
rithms, and as such it can be studied independently of the approximate DP
methods of this book. Thus the reader who has already some exposure to
the subject may skip to the next section. The author’s nonlinear program-
ming textbook [Ber16] and the RL book [Ber19a] provide more detailed
presentations.

We view the training problem (3.6) as a special case of the minimiza-
tion of a sum of component functions

f(y) =
m
∑

i=1

fi(y), (3.8)

where each fi is a differentiable scalar function of the n-dimensional column
vector y (this is the parameter vector). Thus we use the more common
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symbols y and m in place of r and q, respectively, and we replace the
squared error terms

(

J̃(xs, r) − βs
)2

in the training problem (3.6) with the generic terms fi(y).
The (ordinary) gradient method for problem (3.8) generates a se-

quence {yk} of iterates, starting from some initial guess y0 for the minimum
of the cost function f . It has the form†

yk+1 = yk − γk∇f(yk) = yk − γk

m
∑

i=1

∇fi(yk), (3.9)

where γk is a positive stepsize parameter. The incremental gradient method
is similar to the ordinary gradient method, but uses the gradient of a single
component of f at each iteration. It has the general form

yk+1 = yk − γk∇fik (y
k), (3.10)

where ik is some index from the set {1, . . . ,m}, chosen by some determin-
istic or randomized rule. Thus a single component function fik is used at
iteration k, with great economies in gradient calculation cost over the ordi-
nary gradient method (3.9), particularly when m is large. This is of course
a radical simplification, which involves a large approximation error, yet it
performs surprisingly well! The idea is to attain faster convergence when
far from the solution as we will explain shortly; see the author’s books
[BeT96], [Ber16], and [Ber19a] for a more detailed discussion.

The method for selecting the index ik of the component to be iterated
on at iteration k is important for the performance of the method. We
describe three common rules , the last two of which involve randomization:‡

(1) A cyclic order , the simplest rule, whereby the indexes are taken up in
the fixed deterministic order 1, . . . ,m, so that ik is equal to (k modulo
m) plus 1. A contiguous block of iterations involving the components
f1, . . . , fm in this order and exactly once is called a cycle.

(2) A uniform random order , whereby the index ik chosen randomly by
sampling over all indexes with a uniform distribution, independently
of the past history of the algorithm. This rule may perform better
than the cyclic rule in some circumstances.

† We use standard calculus notation for gradients; see, e.g., [Ber16], Ap-

pendix A. In particular, ∇f(y) denotes the n-dimensional column vector whose
components are the first partial derivatives ∂f(y)/∂yi of f with respect to the

components y1, . . . , yn of the column vector y.

‡ With these stepsize rules, the incremental gradient method is often called
stochastic gradient or stochastic gradient descent method.
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(3) A cyclic order with random reshuffling , whereby the indexes are taken
up one by one within each cycle, but their order after each cycle is
reshuffled randomly (and independently of the past). This rule is used
widely in practice, particularly when the number of components m is
modest, for reasons to be discussed later.

Note that in the cyclic cases, it is essential to include all components in a
cycle; otherwise some components will be sampled more often than others,
leading to a bias in the convergence process. Similarly, it is necessary to
sample according to the uniform distribution in the random order case.

Focusing for the moment on the cyclic rule (with or without reshuf-
fling), we note that the motivation for the incremental gradient method is
faster convergence: we hope that far from the solution, a single cycle of
the method will be as effective as several (as many as m) iterations of the
ordinary gradient method (think of the case where the components fi are
similar in structure). Near a solution, however, the incremental method
may not be as effective.

To be more specific, we note that there are two complementary per-
formance issues to consider in comparing incremental and nonincremental
methods:

(a) Progress when far from convergence. Here the incremental method
can be much faster. For an extreme case take m large and all com-
ponents fi identical to each other. Then an incremental iteration
requires m times less computation than a classical gradient iteration,
but gives exactly the same result, when the stepsize is scaled to be m
times larger. While this is an extreme example, it reflects the essential
mechanism by which incremental methods can be much superior: far
from the minimum a single component gradient will point to “more
or less” the right direction, at least most of the time; see the following
example.

(b) Progress when close to convergence. Here the incremental method can
be inferior. In particular, the ordinary gradient method (3.9) can be
shown to converge with a constant stepsize under reasonable assump-
tions, see e.g., [Ber16], Chapter 1. However, the incremental method
requires a diminishing stepsize, and its ultimate rate of convergence
can be much slower.

This type of behavior is illustrated in the following example.

Example 3.1.9

Assume that y is a scalar, and that the problem is

minimize f(y) = 1
2

m
∑

i=1

(ciy − bi)
2

subject to y ∈ &,
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where ci and bi are given scalars with ci '= 0 for all i. The minimum of each
of the components fi(y) = 1

2 (ciy − bi)2 is

y∗
i =

bi
ci
,

while the minimum of the least squares cost function f is

y∗ =

∑m

i=1
cibi

∑m

i=1
c2i

.

It can be seen that y∗ lies within the range of the component minima

R =
[

min
i

y∗
i , max

i
y∗
i

]

,

and that for all y outside the range R, the gradient

∇fi(y) = ci(ciy − bi)

has the same sign as ∇f(y) (see Fig. 3.1.8). As a result, when outside the
region R, the incremental gradient method

yk+1 = yk − γkcik (ciky
k − bik )

approaches y∗ at each step, provided the stepsize γk is small enough. In fact
it can be verified that it is sufficient that

γk ≤ min
i

1
c2i

.

However, for y inside the region R, the ith step of a cycle of the in-
cremental gradient method need not make progress. It will approach y∗ (for
small enough stepsize γk) only if the current point yk does not lie in the in-
terval connecting y∗

i and y∗. This induces an oscillatory behavior within the
region R, and as a result, the incremental gradient method will typically not
converge to y∗ unless γk → 0. By contrast, the ordinary gradient method,
which takes the form

yk+1 = yk − γ

m
∑

i=1

ci(ciy
k − bi),

can be verified to converge to y∗ for any constant stepsize γ with

0 < γ ≤ 1
∑m

i=1
c2i

.

However, for y outside the region R, a full iteration of the ordinary gradient
method need not make more progress towards the solution than a single step of
the incremental gradient method. In other words, with comparably intelligent
stepsize choices, far from the solution (outside R), a single pass through the
entire set of cost components by incremental gradient is roughly as effective
as m passes by ordinary gradient.

The preceding example assumes that each component function fi has
a minimum, so that the range of component minima is defined. In cases
where the components fi have no minima, a similar phenomenon may oc-
cur, as illustrated by the following example (the idea here is that we may
combine several components into a single component that has a minimum).
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Figure 3.1.8. Illustrating the advantage of incrementalism when far from the
optimal solution. The region of component minima

R =
[

min
i

y∗i , max
i

y∗i

]

,

is labeled as the “region of confusion.” It is the region where the method
does not have a clear direction towards the optimum. The ith step in an
incremental gradient cycle is a gradient step for minimizing (ciy − bi)2, so

if y lies outside the region of component minima R =
[

mini y∗i , maxi y∗i
]

,

(labeled as the “farout region”) and the stepsize is small enough, progress
towards the solution y∗ is made.

Example 3.1.10:

Consider the case where f is the sum of increasing and decreasing convex
exponentials, i.e.,

fi(y) = aie
biy , y ∈ &,

where ai and bi are scalars with ai > 0 and bi '= 0. Let

I+ = {i | bi > 0}, I− = {i | bi < 0},

and assume that I+ and I− have roughly equal numbers of components. Let
also y∗ be the minimum of

∑m

i=1
fi.

Consider the incremental gradient method that given the current point,
call it yk, chooses some component fik and iterates according to the incre-
mental gradient iteration

yk+1 = yk − αk∇fik (y
k).

Then it can be seen that if yk >> y∗, yk+1 will be substantially closer to y∗ if
i ∈ I+, and negligibly further away than y∗ if i ∈ I−. The net effect, averaged
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over many incremental iterations, is that if yk >> y∗, an incremental gradient
iteration makes roughly one half the progress of a full gradient iteration, with
m times less overhead for calculating gradients. The same is true if yk << y∗.
On the other hand as yk gets closer to y∗ the advantage of incrementalism is
reduced, similar to the preceding example. In fact in order for the incremental
method to converge, a diminishing stepsize is necessary, which will ultimately
make the convergence slower than the one of the nonincremental gradient
method with a constant stepsize.

The discussion of the preceding examples relies on y being one-dimen-
sional, but in many multidimensional problems the same qualitative behav-
ior can be observed. In particular, a pass through the ith component fi by
the incremental gradient method can make progress towards the solution
in the region where the component gradient ∇fik (y

k) makes an angle less
than 90 degrees with the cost function gradient ∇f(yk). If the components
fi are not “too dissimilar,” this is likely to happen in a region of points that
are not too close to the optimal solution set. This behavior has been ver-
ified in many practical contexts, including the training of neural networks
(cf. the next section), where incremental gradient methods have been used
extensively, frequently under the name backpropagation methods .

Stepsize Choice and Diagonal Scaling

The choice of the stepsize γk plays an important role in the performance of
incremental gradient methods. In practice, it is common to use a constant
stepsize for a (possibly prespecified) number of iterations, then decrease
the stepsize by a certain factor, and repeat, up to the point where the
stepsize reaches a prespecified floor value. An alternative possibility is to
use a diminishing stepsize rule of the form

γk = min

{

γ,
β1

k + β2

}

,

where γ, β1, and β2 are some positive scalars. There are also variants of
the method that use a constant stepsize throughout, and can be shown to
converge to a stationary point of f under reasonable assumptions. In one
type of such method the degree of incrementalism gradually diminishes as
the method progresses (see [Ber97a]). Another incremental approach with
similar aims, is the aggregated gradient method, which is discussed in the
author’s textbooks [Ber15a], [Ber16], [Ber19a].

Regardless of whether a constant or a diminishing stepsize is ulti-
mately used, the incremental method must use a much larger stepsize than
the corresponding nonincremental gradient method (as much as m times
larger, so that the size of the incremental gradient step is comparable to
the size of the nonincremental gradient step).

One possibility is to use an adaptive stepsize rule, whereby, roughly
speaking, the stepsize is reduced (or increased) when the progress of the
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method indicates that the algorithm is (or is not) oscillating. There are
formal ways to implement such stepsize rules with sound convergence prop-
erties (see [Tse98], [MYF03]).

The difficulty with stepsize selection may also be addressed with di-
agonal scaling, i.e., using a stepsize γk

j that is different for each of the
components yj of y. Second derivatives can be very useful for this purpose.
In generic nonlinear programming problems of unconstrained minimization
of a function f , it is common to use diagonal scaling with stepsizes

γk
j = γ

(

∂2f(yk)

∂2yj

)−1

, j = 1, . . . , n,

where γ is a constant that is nearly equal 1 (the second derivatives may also
be approximated by gradient difference approximations). However, in least
squares training problems, this type of scaling is inconvenient because of
the additive form of f as a sum of a large number of component functions:

f(y) =
m
∑

i=1

fi(y),

cf. Eq. (3.8). The neural network literature includes a number of practical
scaling schemes, some of which have been incorporated in publicly and
commercially available software.

The RL book [Ber19a] (Section 3.1.3) describes another type method
that involves second derivatives and is based on Newton’s method. The
idea here is to write Newton’s method in a format that is well suited to
the additive character of the cost function f , and involves low order matrix
inversion. One can then implement diagonal scaling by setting to zero the
off-diagonal terms of the inverted matrices, so that the algorithm involves
no matrix inversion. There is also another related algorithm, which is
based on the Gauss-Newton method and the extended Kalman filter; see
the author’s paper [Ber96], and the books [BeT96] and [Ber16].

3.2 NEURAL NETWORKS

There are several different types of neural networks that can be used for
a variety of tasks, such as pattern recognition, classification, image and
speech recognition, natural language processing, and others. In this sec-
tion, we focus on our finite horizon DP context, and the role that neural
networks can play in approximating the optimal cost-to-go functions J*

k . As
an example within this context, we may first use a neural network to con-
struct an approximation to J*

N−1. Then we may use this approximation to

approximate J*
N−2, and continue this process backwards in time, to obtain

approximations to all the optimal cost-to-go functions J*
k , k = 1, . . . , N−1,

as we will discuss in more detail in Section 3.3.
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Throughout this section, we will focus on the type of neural network,
known as a multilayer perceptron, which is the one most used at present
in the RL applications discussed in these notes. Naturally, there are vari-
ations that are adapted to the problem at hand. For example AlphaZero
uses a specialized neural network that can take advantage of the board-like
structure of chess and Go to facilitate and expedite the associated compu-
tations.

To describe the use of neural networks in finite horizon DP, let us
consider the typical stage k, and for convenience drop the index k; the
subsequent discussion applies to each value of k separately. We consider
parametric architectures J̃(x, v, r) of the form

J̃(x, v, r) = r′φ(x, v) (3.11)

that depend on two parameter vectors v and r. Our objective is to select v
and r so that J̃(x, v, r) approximates some target cost function that can be
sampled (possibly with some error). The process is to collect a training set
that consists of a large number of state-cost pairs (xs,βs), s = 1, . . . , q, and
to find a function J̃(x, v, r) of the form (3.11) that matches the training
set in a least squares sense, i.e., (v, r) minimizes

q
∑

s=1

(

J̃(xs, v, r)− βs
)2
.

We postpone for later the question of how the training pairs (xs,βs) are
generated.† Notice the different roles of the two parameter vectors here:
v parametrizes φ(x, v), which in some interpretation may be viewed as a
feature vector, and r is a vector of linear weighting parameters for the
components of φ(x, v).

Single Layer Perceptron

A neural network architecture provides a parametric class of functions
J̃(x, v, r) of the form (3.11) that can be used in the optimization framework
just described. The simplest type of neural network is the single layer per-
ceptron; see Fig. 3.2.1. Here the state x is encoded as a vector of numerical
values y(x) with components y1(x), . . . , yn(x), which is then transformed
linearly as

Ay(x) + b,

† The least squares training problem used here is based on nonlinear re-
gression. This is a classical method for approximating the expected value of a

function with a parametric architecture, and involves a least squares fit of the

architecture to simulation-generated samples of the expected value. We refer to
machine learning and statistics textbooks for more discussion.
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Figure 3.2.1 Schematic illustration of a single layer perceptron, a neural network
consisting of a linear layer and a nonlinear layer. It provides a way to compute
features of the state, which can be used for cost function approximation. The
state x is encoded as a vector of numerical values y(x), which is then transformed
linearly as Ay(x) + b in the linear layer. The m scalar output components of the
linear layer, become the inputs to nonlinear one-dimensional functions σ : # $→ #,
thus producing the m scalars

φ!(x, v) = σ
(

(Ay(x) + b)!
)

,

which can be viewed as features that are in turn linearly weighted with parameters
r!.

where A is an m×n matrix and b is a vector in #m.† This transformation
is called the linear layer of the neural network. We view the components
of A and b as parameters to be determined, and we group them together
into the parameter vector v = (A, b).

Each of the m scalar output components of the linear layer,

(

Ay(x) + b
)

"
, # = 1, . . . ,m,

becomes the input to a nonlinear differentiable and monotonically increas-
ing function σ that maps scalars to scalars. A simple and popular pos-
sibility is the rectified linear unit (ReLU for short), which is simply the
function max{0, ξ}, approximated by a differentiable function σ by some
form of smoothing operation; for example σ(ξ) = ln(1 + eξ), which is illus-
trated in Fig. 3.2.2. Other functions, used since the early days of neural
networks, have the property

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) < ∞;

† The method of encoding x into the numerical vector y(x) is generally

problem-dependent, but it can be critical for the success of the training process.

We should note also that some of the components of y(x) could be known inter-
esting features of x that can be designed based on problem-specific knowledge.
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ξ)

max{0, ξ}

Figure 3.2.2 The rectified linear unit σ(ξ) = ln(1 + eξ). It is the function
max{0, ξ} with its corner “smoothed out.” Its derivative is σ′(ξ) = eξ/(1 + eξ),
and approaches 0 and 1 as ξ → −∞ and ξ → ∞, respectively.

Selective Depth Lookahead Tree σ(ξ) Selective Depth Lookahead Tree σ(ξ)
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1 0 -11 0 -1
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Figure 3.2.3 Some examples of sigmoid functions. The hyperbolic tangent func-
tion is on the left, while the logistic function is on the right.

see Fig. 3.2.3. Such functions are called sigmoids , and some common
choices are the hyperbolic tangent function

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

and the logistic function

σ(ξ) =
1

1 + e−ξ
.

In what follows, we will ignore the character of the function σ (except for
differentiability), and simply refer to it as a “nonlinear unit” and to the
corresponding layer as a “nonlinear layer.”

At the outputs of the nonlinear units, we obtain the scalars

φ"(x, v) = σ
(

(Ay(x) + b)"
)

, # = 1, . . . ,m.

One possible interpretation is to view φ"(x, v) as features of x, which are
linearly combined using weights r", # = 1, . . . ,m, to produce the final
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Figure 3.2.4 Nonlinear architecture with a view of the state encoding process
as a feature extraction mapping preceding the neural network. The state encoder
may also contain tunable parameters.

output

J̃(x, v, r) =
m
∑

"=1

r"φ"(x, v) =
m
∑

"=1

r"σ
(

(Ay(x) + b)"
)

.

Note that each value φ"(x, v) depends on just the #th row of A and the #th
component of b, not on the entire vector v. In some cases this motivates
placing some constraints on individual components of A and b to achieve
special problem-dependent “handcrafted” effects.

State Encoding and Direct Feature Extraction

The state encoding operation that transforms x into the neural network in-
put y(x) can be instrumental in the success of the approximation scheme.
Examples of state encodings are components of the state x, numerical rep-
resentations of qualitative characteristics of x, and more generally features
of x, i.e., functions of x that aim to capture “important nonlinearities” of
the optimal cost-to-go function. With the latter view of state encoding,
we may consider the approximation process as consisting of a feature ex-
traction mapping, followed by a neural network with input the extracted
features of x, and output the cost-to-go approximation; see Fig. 3.2.4. In
a more general view of the neural network, the state encoder may involve
some tunable parameters.

The idea here is that with a good feature extraction mapping, the
neural network need not be very complicated (may involve few nonlinear
units and corresponding parameters), and may be trained more easily. This
intuition is borne out by simple examples and practical experience. How-
ever, as is often the case with neural networks, it is hard to support it with
a quantitative analysis.

Universal Approximation Property of Neural Networks

An important question is how well we can approximate the target function
J*
k with a neural network architecture, assuming we can choose the num-

ber of the nonlinear units m to be as large as we want. The answer to
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this question is quite favorable and is provided by the so-called universal
approximation theorem.

Roughly, the theorem says that assuming that x is an element of a
Euclidean space X and y(x) ≡ x, a neural network of the form described
can approximate arbitrarily closely (in an appropriate mathematical sense),
over a compact subset S ⊂ X , any piecewise continuous function J : S )→
#, provided the number m of nonlinear units is sufficiently large. For
proofs of the theorem, we refer to Cybenko [Cyb89], Funahashi [Fun89],
Hornik, Stinchcombe, and White [HSW89], and Leshno et al. [LLP93]. For
additional sources and intuitive explanations we refer to Bishop ([Bis95],
pp. 129-130), Jones [Jon90], and the RL textbook [Ber19a], Section 3.2.1.

While the universal approximation theorem provides some assurance
about the adequacy of the neural network structure, it does not predict
how many nonlinear units we may need for “good” performance in a given
problem. Unfortunately, this is a difficult question to even pose precisely,
let alone to answer adequately. In practice, one is often reduced to try-
ing increasingly larger values of m until one is convinced that satisfactory
performance has been obtained for the task at hand. One may improve
on trial-and-error schemes with more systematic hyperparameter search
methods, such as Bayesian optimization, and in fact this has been used to
tune the parameters of the deep network used by AlphaZero. Experience
has shown that in many cases the number of required nonlinear units and
corresponding dimension of A can be very large, adding significantly to the
difficulty of solving the training problem. This has given rise to many sug-
gestions for modifications of the neural network structure. An important
possibility is to concatenate multiple single layer perceptrons so that the
output of the nonlinear layer of one perceptron becomes the input to the
linear layer of the next, giving rise to deep neural networks, which we will
discuss later.

3.2.1 Training of Neural Networks

Given a set of state-cost training pairs (xs,βs), s = 1, . . . , q, the parameters
of the neural network A, b, and r are obtained by solving the problem

min
A,b,r

q
∑

s=1

(

m
∑

"=1

r"σ
((

Ay(xs) + b
)

"

)

− βs

)2

. (3.12)

Note that the cost function of this problem is generally nonconvex, so there
may exist multiple local minima.

In practice it is common to augment the cost function of this problem
with a regularization function, such as a quadratic in the parameters A,
b, and r. This is customary in least squares problems in order to make
the problem easier to solve algorithmically. However, in the context of
neural network training, regularization is primarily important for a different
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reason: it helps to avoid overfitting, which occurs when the number of
parameters of the neural network is relatively large (comparable to the
size of the training set). In this case a neural network model matches the
training data very well but may not do as well on new data. This is a known
difficulty, which is the subject of much current research, particularly in the
context of deep neural networks.

An important issue is to select a method to solve the training problem
(3.12). While we can use any unconstrained optimization method that is
based on gradients, in practice it is important to take into account the cost
function structure of problem (3.12). The salient characteristic of this cost
function is that it is the sum of a potentially very large number q of com-
ponent functions. This makes the computation of the cost function value
of the training problem and/or its gradient very costly. For this reason
the incremental methods of Section 3.1.3 are universally used for training.†
Experience has shown that these methods can be vastly superior to their
nonincremental counterparts in the context of neural network training.

The implementation of the training process has benefited from expe-
rience that has been accumulated over time, and has provided guidelines
for scaling, regularization, initial parameter selection, and other practi-
cal issues; we refer to books on neural networks such as Bishop [Bis95],
Goodfellow, Bengio, and Courville [GBC16], and Haykin [Hay08], and to
the overview paper on deep neural network training [Sun19] for related
accounts. Still, incremental methods can be quite slow, and training may
be a time-consuming process. Fortunately, the training is ordinarily done
off-line, possibly using parallel computation, in which case computation
time may not be a serious issue. Moreover, in practice the neural network
training problem typically need not be solved with great accuracy. This is
also supported by the Newton step view of approximation in value space,
which suggests that great accuracy in the terminal cost function approxi-
mation is not critically important for good performance of the on-line play
controller.

3.2.2 Multilayer and Deep Neural Networks

An important generalization of the single layer perceptron architecture in-
volves a concatenation of multiple layers of linear and nonlinear functions;
see Fig. 3.2.5. In particular the outputs of each nonlinear layer become the
inputs of the next linear layer. In some cases it may make sense to add

† The incremental methods are valid for an arbitrary order of component

selection within the cycle, but it is common to randomize the order at the begin-

ning of each cycle. Also, in a variation of the basic method, we may operate on
a batch of several components at each iteration, called a minibatch, rather than

a single component. This has an averaging effect, which reduces the tendency

of the method to oscillate and allows for the use of a larger stepsize; see the
end-of-chapter references.
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Figure 3.2.5 A deep neural network, with multiple layers. Each nonlinear layer
constructs the inputs of the next linear layer.

as additional inputs some of the components of the state x or the state
encoding y(x).

In the early days of neural networks practitioners tended to use few
nonlinear layers (say one to three). However, more recently a lot of success
in certain problem domains (including image and speech processing, as well
as approximate DP) has been achieved with deep neural networks , which
involve a considerably larger number of layers.

There are a few questions to consider here. The first has to do with the
reason for having multiple nonlinear layers, when a single one is sufficient to
guarantee the universal approximation property. Here are some qualitative
(and somewhat speculative) explanations:

(a) If we view the outputs of each nonlinear layer as features, we see that
the multilayer network produces a hierarchy of features, where each
set of features is a function of the preceding set of features [except for
the first set of features, which is a function of the encoding y(x) of
the state x]. In the context of specific applications, this hierarchical
structure can be exploited to specialize the role of some of the layers
and to enhance some characteristics of the state.

(b) Given the presence of multiple linear layers, one may consider the
possibility of using matrices A with a particular sparsity pattern,
or other structure that embodies special linear operations such as
convolution, which may be well-matched to the training problem at
hand. Moreover, when such structures are used, the training problem
often becomes easier, because the number of parameters in the linear
layers is drastically decreased.

(c) Overparametrization (more weights than data, as in a deep neural
network) helps to mitigate the detrimental effects of overfitting, and
the attendant need for regularization. The explanation for this fasci-
nating phenomenon (observed as early as the late 90s) is the subject
of much current research; see [ZBH16], [BMM18], [BRT18], [SJL18],
[ADH19], [BLL19], [HMR19], [MVS19], [SuY19], [Sun19], [HaR21],
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[VLK21], [ZBH21] for representative works.

We finally note that the use of deep neural networks has been an
important factor for the success of the AlphaGo and AlphaZero programs
that play Go and chess, respectively; see [SHM16], [SHS17]. By contrast,
Tesauro’s backgammon program and its descendants have performed well
with one or two nonlinear layers [PaR12]. Moreover, as new applications of
approximate DP/RL are being considered, it is likely that different and/or
specialized neural network architectures will be discovered, which may be
better suited to the structure of these applications.

3.3 TRAINING OF COST FUNCTIONS IN APPROXIMATE DP

In the context of approximate DP/RL, architectures are mainly used to
approximate either cost functions or policies. When a neural network is
involved, the terms value network and policy network are commonly used,
respectively.† In this section we will illustrate the use of value networks
in finite horizon DP, while in the next section we will discuss the use of
policy networks. We will also illustrate in Section 3.3.3 the combined use
of policy and value networks within an approximate policy iteration con-
text, whereby the policies and their cost functions are approximated by
a policy and a value network, respectively, to generate a sequence of (ap-
proximately) improved policies. Finally, in Sections 3.3.4 and 3.4.5, we
will describe how approximating Q-factor or cost differences (rather than
Q-factors or costs) can be beneficial within our context of approximation
in value space.

3.3.1 Fitted Value Iteration

Let us describe a popular approach for training an approximation architec-
ture J̃k(xk, rk) for a finite horizon DP problem. The parameter vectors rk
are determined sequentially, starting from the end of the horizon, and pro-
ceeding backwards as in the DP algorithm: first rN−1 then rN−2, and so
on. The algorithm samples the state space for each stage k, and generates
a large number of states xs

k, s = 1, . . . , q. It then determines sequentially
the parameter vectors rk to obtain a good “least squares fit” to the DP
algorithm. The method can also be used in the infinite horizon case, in
essentially identical form, and it is commonly called fitted value iteration.

In particular, each rk is determined by generating a large number of
sample states and solving a least squares problem that aims to minimize
the error in satisfying the DP equation for these states at time k. At

† The alternative terms critic network and actor network are also used often.
In these notes, we will use the terms “value network” and “policy network.”
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the typical stage k, having obtained rk+1, we determine rk from the least
squares problem

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xs
k, r)

− min
u∈Uk(x

s
k
)
E
{

gk(xs
k, u, wk) + J̃k+1

(

fk(xs
k, u, wk), rk+1

)

}

)2

where xs
k, i = 1, . . . , q, are the sample states that have been generated for

the kth stage. Since rk+1 is assumed to be already known, the complicated
minimization term in the right side of this equation is the known scalar

βs
k = min

u∈Uk(x
s
k
)
E
{

gk(xs
k, u, wk) + J̃k+1

(

fk(xs
k, u, wk), rk+1

)

}

, (3.13)

so that rk is obtained as

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xs
k, r)− βs

k

)2
. (3.14)

The algorithm starts at stage N − 1 with the minimization

rN−1 ∈ argmin
r

q
∑

s=1

(

J̃N−1(xs
N−1, r)

− min
u∈UN−1(x

s
N−1

)
E
{

gN−1(xs
N−1, u, wN−1) + gN

(

fN−1(xs
N−1, u, wN−1)

)

}

)2

and ends with the calculation of r0 at k = 0.
In the case of a linear architecture, where the approximate cost-to-go

functions are

J̃k(xk, rk) = r′kφk(xk), k = 0, . . . , N − 1,

the least squares problem (3.14) greatly simplifies, and admits the closed
form solution

rk =

(

q
∑

s=1

φk(xs
k)φk(xs

k)
′

)−1 q
∑

s=1

βs
kφk(xs

k);

cf. Eq. (3.7). For a nonlinear architecture such as a neural network, incre-
mental gradient algorithms may be used.

An important implementation issue is how to select the sample states
xs
k, s = 1, . . . , q, k = 0, . . . , N − 1. In practice, they are typically obtained
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by some form of Monte Carlo simulation, but the distribution by which
they are generated is important for the success of the method. In particu-
lar, it is important that the sample states are “representative” in the sense
that they are visited often under a nearly optimal policy. More precisely,
the frequencies with which various states appear in the sample should be
roughly proportional to the probabilities of their occurrence under an op-
timal policy.

Aside from the issue of selection of the sampling distribution that we
have just described, a difficulty with fitted value iteration arises when the
horizon N is very long, since then the total number of parameters over the
N stages may become excessive. In this case, however, the problem is often
stationary, in the sense that the system and cost per stage do not change
as time progresses. Then it may be possible to treat the problem as one
with an infinite horizon and bring to bear additional methods for training
approximation architectures; see the relevant discussions in Chapter 5 of
the book [Ber19a].

We finally note an important difficulty with the training method of
this section: the calculation of each sample βs

k of Eq. (3.13) requires a min-
imization of an expected value, which can be very time consuming. In the
next section, we describe an alternative type of fitted value iteration, which
uses Q-factors, and involves a simpler minimization, whereby the order of
the minimization and expectation operations in Eq. (3.13) is reversed.

3.3.2 Q-Factor Parametric Approximation - Model-Free
Implementation

We will now consider an alternative form of approximation in value space
and fitted value iteration, which involves approximation of the optimal
Q-factors of state-control pairs (xk, uk) at time k, with no intermediate
approximation of cost-to-go functions. An important characteristic of this
algorithm is that it allows for a model-free computation (i.e., the use of a
computer model in place of a mathematical model).

We recall that the optimal Q-factors are defined by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

, k = 0, . . . , N−1,

(3.15)
where J*

k+1 is the optimal cost-to-go function for stage k+1. ThusQ*
k(xk, uk)

is the cost attained by using uk at state xk, and subsequently using an op-
timal policy.

As noted in Section 1.3, the DP algorithm can be written as

J*
k (xk) = min

u∈Uk(xk)
Q*

k(xk, uk),
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and by using this equation, we can write Eq. (3.15) in the following equiv-
alent form that relates Q*

k with Q*
k+1:

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)

+ min
u∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), u
)

}

.
(3.16)

This suggests that in place of the Q-factorsQ*
k(xk, uk), we may use Q-factor

approximations as the basis for suboptimal control.
We can obtain such approximations by using methods that are similar

to the ones we have considered so far. Parametric Q-factor approximations
Q̃k(xk, uk, rk) may involve a neural network, or a feature-based linear ar-
chitecture. The feature vector may depend on just the state, or on both
the state and the control. In the former case, the architecture has the form

Q̃k(xk, uk, rk) = rk(uk)′φk(xk), (3.17)

where rk(uk) is a separate weight vector for each control uk. In the latter
case, the architecture has the form

Q̃k(xk, uk, rk) = r′kφk(xk, uk), (3.18)

where rk is a weight vector that is independent of uk. The architecture
(3.17) is suitable for problems with a relatively small number of control
options at each stage. In what follows, we will focus on the architecture
(3.18), but the discussion, with few modifications, also applies to the ar-
chitecture (3.17) and to nonlinear architectures as well.

We may adapt the fitted value iteration approach of the preceding
section to compute sequentially the parameter vectors rk in Q-factor para-
metric approximations, starting from k = N − 1. This algorithm is based
on Eq. (3.16), with rk obtained by solving least squares problems similar
to the ones of the cost function approximation case [cf. Eq. (3.14)]. As
an example, the parameters rk of the architecture (3.18) are computed se-
quentially by collecting sample state-control pairs (xs

k, u
s
k), s = 1, . . . , q,

and solving the linear least squares problems

rk ∈ argmin
r

q
∑

s=1

(

r′φk(xs
k, u

s
k)− βs

k

)2
, (3.19)

where

βs
k = E

{

gk(xs
k, u

s
k, wk) + min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk+1

(

fk(xs
k, u

s
k, wk), u

)

}

.

(3.20)
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Thus, having obtained rk+1, we obtain rk through a least squares fit that
aims to minimize the sum of the squared errors in satisfying Eq. (3.16).
Note that the solution of the least squares problem (3.19) can be obtained
in closed form as

rk =

(

q
∑

s=1

φk(xs
k, u

s
k)φk(xs

k, u
s
k)

′

)−1 q
∑

s=1

βs
kφk(xs

k, u
s
k);

[cf. Eq. (3.7)]. Once rk has been computed, the one-step lookahead control
µ̃k(xk) is obtained on-line as

µ̃k(xk) ∈ arg min
u∈Uk(xk)

Q̃k(xk, u, rk), (3.21)

without the need to calculate any expected value. This latter property is a
primary incentive for using Q-factors in approximate DP, particularly when
there are tight constraints on the amount of on-line computation that is
possible in the given practical setting.

The samples βs
k of Eq. (3.20) involve the exact computation of an

expected value. In an alternative implementation, we may replace βs
k with

an average of just a few samples (even a single sample) of the random
variable

gk(xs
k, u

s
k, wk) + min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk+1

(

fk(xs
k, u

s
k, wk), u

)

, (3.22)

collected according to the probability distribution of wk. This distribution
may either be known explicitly, or in a model-free situation, through a
computer simulator. In particular, to implement this scheme, we only need
a simulator that for any pair (xk, uk) generates a sample of the stage cost
gk(xk, uk, wk) and the next state fk(xk, uk, wk) according to the distribution
of wk.

Note that the samples of the random variable (3.22) do not require
the computation of an expected value like the samples (3.13) in the cost
approximation method of the preceding chapter. Moreover the samples of
(3.22) involve a simpler minimization than the samples (3.13). This is an
important advantage of working with Q-factors rather than state costs.

Having obtained the weight vectors r0, . . . , rN−1, and hence the one-
step lookahead policy π̃ = {µ̃0, . . . , µ̃N−1} through Eq. (3.21), a further
possibility is to approximate this policy with a parametric architecture.
This is approximation in policy space built on top of approximation in value
space. The idea here is to simplify even further the on-line computation of
the suboptimal controls by avoiding the minimization of Eq. (3.21).
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3.3.3 Parametric Approximation in Infinite Horizon Problems
- Approximate Policy Iteration

In this section we will briefly discuss parametric approximation methods
for infinite horizon problems, based on the policy iteration (PI) method.
We will focus on the finite-state version of the α-discounted problem of
Section 1.4.1, and adopt notation that is more convenient for such prob-
lems. In particular, states and successor states will be denoted by i and j,
respectively. Moreover the system equation will be represented by control-
dependent transition probabilities pij(u) (the probability that the system
will move to state j, given that it starts at state i and control u is ap-
plied). For a state-control pair (i, u), the average cost per stage is denoted
by g(i, u, j).

We recall that the PI algorithm in its exact form produces a sequence
of stationary policies whose cost functions are progressively improving and
converge in a finite number of iterations to the optimal. The corresponding
convergence proof relies on the generic cost improvement property of PI,
and depends on the finiteness of the state and control spaces. This proof,
together with other PI-related convergence proofs, can be found in the
author’s textbooks [Ber17a] or [Ber19a].

Let us state the exact form of the PI algorithm in terms of Q-factors,
and in a form that is suitable for the use of approximations and simulation-
based implementations. Given any policy µ, it generates the next policy µ̃
with a two-step process as follows (cf. Section 1.4.1):

(a) Policy evaluation: We compute the cost function Jµ of µ and its
associated Q-factors, which are given by

Qµ(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

, i = 1, . . . , n, u ∈ U(i).

Thus Qµ(i, u) is the cost of starting at i, using u at the first stage,
and then using µ for the remaining stages.

(b) Policy improvement : We compute the new policy µ̃ according to

µ̃(i) ∈ arg min
u∈U(i)

Qµ(i, u), i = 1, . . . , n.

Let us now describe one way to approximate the two steps of the
preceding process.

(a) Approximate policy evaluation: Here we introduce a parametric ar-
chitecture Q̃µ(i, u, r) for the Q-factors of µ. We determine the value
of the parameter vector r by generating (using a simulator of the sys-
tem) a large number of training triplets (is, us,βs), s = 1, . . . , q, and
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by using a least squares fit:

r ∈ argmin
r

q
∑

s=1

(

Q̃µ(is, us, r)− βs
)2
. (3.23)

In particular, for a given pair (is, us), the scalar βs is generated by
starting at is, using us at the first stage, and simulating a trajectory
of states and controls using µ for some number k of subsequent stages.
Thus, βs is a sample of Qk

µ(is, us), the k-stage Q-factor of µ, which
in the limit as k → ∞ yields the infinite horizon Q-factor of µ. The
number of stages k may be either large, or fairly small. However,
in the latter case some terminal cost function approximation should
be added at the end of the k-stage trajectory, to compensate for the
difference

∣

∣Qµ(i, u)−Qk
µ(i, u)

∣

∣, which decreases in proportion to αk,
and may be large when k is small. Such a function may be obtained
with additional training or from a previous iteration.

(b) Approximate policy improvement : Here we compute the new policy
µ̃ according to

µ̃(i) ∈ arg min
u∈U(i)

Q̃µ(i, u, r), i = 1, . . . , n, (3.24)

where r is the parameter vector obtained from the policy evaluation
formula (3.23).

An important alternative for approximate policy improvement, is to
compute a set of pairs

(

is, µ̃(is)
)

, s = 1, . . . , q, using Eq. (3.24), and fit
these pairs with a policy approximation architecture (see the next section
on approximation in policy space). The overall scheme then becomes policy
iteration that is based on approximation in both value and policy spaces.

At the end of the last policy evaluation step of PI, we have obtained
a final Q-factor approximation Q̃(i, u, r̃). Then, in on-line play mode, we
may apply the policy

µ̃(i) ∈ arg min
u∈U(i)

Q̃(i, u, r̃),

i.e., use the (would be) next policy iterate. Alternatively, we may apply
the one-step lookahead policy

µ̃(i) ∈ arg min
u∈U(i)





n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q̃(j, u′, r̃)

)



 , (3.25)

or its multistep lookahead version. The latter alternative implements a
Newton step and will likely result in substantially better performance.
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However, it is more time consuming, particularly if it is implemented by us-
ing a computer model and model-free simulation. Still another possibility,
which also implements a Newton step, is to replace the function

min
u′∈U(j)

Q̃(j, u′, r̃)

in the preceding Eq. (3.25) with an off-line trained approximation.

Issues Relating to Approximate Policy Iteration

Approximate PI in its various forms has been the subject of extensive re-
search, both theoretical and applied. A more detailed discussion is beyond
our scope, and we refer to the literature, as well as Chapters 6 and 7 of the
DP textbook [Ber12] or the RL textbook [Ber19a] for detailed accounts.
Let us provide a few comments.

(a) Architectural issues : The architecture Q̃µ(i, u, r) may involve the use
of features, and it could be linear, or it could be nonlinear such as a
neural network. A major advantage of a linear feature-based archi-
tecture is that the policy evaluation (3.23) is a linear least squares
problem, which admits a closed-form solution. Moreover, when linear
architectures are used, there is a broader variety of approximate pol-
icy evaluation methods with solid theoretical performance guarantees,
such as TD(λ), LSTD(λ), and LSPE(λ), which are not described in
these notes, but are discussed extensively in the literature, including
the DP textbook [Ber12] and the RL textbook [Ber19a].

(b) Exploration issues : Generating an appropriate set of training triplets
(is, us,βs) at the policy evaluation step poses considerable challenges,
and the literature contains several related proposals. A generic diffi-
culty has to do with inadequate exploration. In particular, to evaluate
a policy µ, we may need to generate Q-factor samples of µ starting
from states frequently visited by µ, but this may bias the simulation
by underrepresenting states that are unlikely to occur under µ. As
a result, the Q-factor estimates of these underrepresented states may
be highly inaccurate, causing potentially serious errors in the calcu-
lation of the improved control policy µ̃ via the policy improvement
Eq. (3.24).

One possibility to improve the exploration of the state space is to
use a large number of initial states to form a rich and representative
subset. It may then be necessary to use relatively short trajectories
to keep the cost of the simulation low. However, when using short
trajectories it may be important to introduce a terminal cost function
approximation in the policy evaluation step in order to make the cost
sample βs more accurate. There have been other related approaches
to improve exploration, such as using a so-called off-policy, i.e., a
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policy µ′ other than the currently evaluated policy µ, to visit states
that are unlikely to be visited using µ. See the discussions in Section
6.4 of the DP textbook [Ber12].

(c) Oscillation issues : Contrary to exact PI, which is guaranteed to yield
an optimal policy, approximate PI produces a sequence of policies,
which are only guaranteed to lie asymptotically within a certain error
bound from the optimal; see the books [BeT96], Section 6.2.2, and
[Ber12], Section 2.5. Moreover, the generated policies may oscillate.
By this we mean that after a few iterations, policies tend to repeat
in cycles.

The associated parameter vectors r may also tend to oscillate, al-
though it is possible that there is convergence in parameter space and
oscillation in policy space. This phenomenon, known as chattering,
is explained in the author’s survey paper [Ber11b], and book [Ber12]
(Section 6.4.3), and can be particularly damaging, because there is
no guarantee that the policies involved in the oscillation are “good”
policies, and there is often no way to verify how well they perform
relative to the optimal. We note, however, that oscillations can be
avoided and approximate PI can be shown to converge under special
conditions, which arise in particular when an aggregation approach is
used; see the approximate PI survey [Ber11b].

We refer to the literature for further discussion of the preceding issues,
as well as a variety of other approximate PI methods.

3.3.4 Optimistic Policy Iteration with Parametric Q-Factor
Approximation - SARSA and DQN

There are also “optimistic” approximate PI methods with Q-factor ap-
proximation, and/or a few samples in between policy updates. Because of
the use of Q-factors and the limited number of samples between policy up-
dates, these schemes have the potential of on-line play implementation, but
a number of difficulties must be overcome in this case, as we will explain
later in this section.

As an example, let us consider an extreme version of Q-factor para-
metric approximation that uses a single sample between policy updates.
At the start of iteration k, we have the current parameter vector rk, we
are at some state ik, and we have chosen a control uk. Then:

(1) We simulate the next transition (ik, ik+1) using the transition proba-
bilities pikj(uk).

(2) We generate the control uk+1 with the minimization

uk+1 ∈ arg min
u∈U(ik+1)

Q̃(ik+1, u, rk). (3.26)
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[In some schemes, to enhance exploration, uk+1 is chosen with a
small probability to be a random element of U(ik+1) or one that
is “ε-greedy,” i.e., attains within some ε the minimum above. This is
commonly referred to as the use of an off-policy.]

(3) We update the parameter vector via

rk+1 = rk − γk ∇Q̃(ik, uk, rk)

·
(

Q̃(ik, uk, rk)− g(ik, uk, ik+1)− αQ̃(ik+1, uk+1, rk)
)

,
(3.27)

where γk is a positive stepsize, and∇(·) denotes gradient with respect
to r evaluated at the current parameter vector rk. To get a sense
for the rationale of this iteration, note that if Q̃ is a linear feature-
based architecture, Q̃(i, u, r) = φ(i, u)′r, then ∇Q̃(ik, uk, rk) is just
the feature vector φ(ik, uk), and iteration (3.27) becomes

rk+1 = rk − γkφ(ik, uk)
(

φ(ik, uk)′rk − g(ik, uk, ik+1)− αφ(ik+1, uk+1)′rk
)

.

Thus rk is changed in an incremental gradient direction: the one
opposite to the gradient (with respect to r) of the incremental error

(

φ(ik, uk)′r − g(ik, uk, ik+1)− αφ(ik+1, uk+1)′rk
)2
,

evaluated at the current iterate rk.

The process is now repeated with rk+1, ik+1, and uk+1 replacing rk, ik,
and uk, respectively.

Extreme optimistic schemes of the type just described have received
a lot of attention, in part because they admit a model-free implementation
[i.e., the use of a computer simulator, which provides for each pair (ik, uk),
the next state ik+1 and corresponding cost g(ik, uk, ik+1) that are needed in
Eq. (3.27)]. They are often referred to as SARSA (State-Action-Reward-
State-Action); see e.g., the books [BeT96], [BBD10], [SuB18]. When Q-
factor approximation is used, their behavior is very complex, their theoret-
ical convergence properties are unclear, and there are no associated per-
formance bounds in the literature. In practice, SARSA is more commonly
used in a less extreme/optimistic form, whereby several (perhaps many)
state-control-transition cost-next state samples are batched together and
suitably averaged before updating the vector rk.

Other variants of the method attempt to save in sampling effort by
storing the generated samples in a buffer and reusing them in some ran-
domized fashion in subsequent iterations (cf. our earlier discussion of ex-
ploration. This is also called sometimes experience replay, an idea that has
been used since the early days of RL, both to save in sampling effort and
to enhance exploration. The DQN (Deep Q Network) scheme, championed
by DeepMind (see Mnih et al. [MKS15]), is based on this idea (the term
“Deep” is a reference to DeepMind’s affinity for deep neural networks, but
experience replay does not depend on the use of a deep neural network
architecture).
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Q-Learning Algorithns and On-Line Play

Algorithms that approximate Q-factors, including SARSA and DQN, are
fundamentally off-line training algorithms, primarily because their training
process is long and requires the collection of many samples before reaching a
stage that resembles parameter convergence. It can therefore be unreliable
to use the interim approximate Q-factors for on-line decision making, par-
ticularly in an adaptive context that involves changing system parameters,
thereby requiring on-line replanning.

On the other hand, compared to the approximate PI method of Sec-
tion 3.3.3, SARSA and DQN are far better suited for on-line implementa-
tion, because the control generation process of Eq. (3.26) can also be used
to select controls on-line, thereby facilitating the combination of training
and on-line control selection. To this end, it is important, among others, to
make sure that the parameters rk stay at reasonable levels during the on-
line control process, which can be a challenge. Still, even if this difficulty
can be overcome, there are a number of other difficulties that SARSA and
DQN can encounter during on-line play.

(a) On-line exploration issues : The need to occasionally select controls
using an off-policy in order to enhance exploration. Finding an off-
line policy that adequately deals with exploration in a given practical
context can be a challenge. Moreover, an additional concern is that
the off-policy controls may improve exploration, but may be of poor
quality, and in some contexts, may induce instability.

(b) Robustness and replanning issues : In an adaptive control context
where the problem parameters are changing, the algorithm may be
too slow to adapt to the changes.

(c) Performance degradation issues : Similar to our earlier discussion [cf.
the comparison of Eqs. (3.24) and (3.25)], the minimization of Eq.
(3.26) does not implement a Newton step, thereby resulting in per-
formance loss. The alternative implementation

uk+1 ∈ arg min
u∈U(ik+1)

[

n
∑

j=1

pik+1j(u)
(

g(ik+1, u, j)

+ α min
u′∈U(j)

Q̃(j, u′, rk)
)

]

,

which is patterned after Eq. (3.26), is better in this regard, but is
computationally more costly, and thus less suitable for on-line imple-
mentation.

Generally speaking, the combination of off-line training and on-line
play with the use of SARSA and DQN involves serious challenges. However,
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in some specific contexts encouraging results have been obtained. More-
over, the methods have received a lot of attention, thanks in part to the
availability of publicly available software, which also allow for a model-free
implementation.

3.3.5 Approximate Policy Iteration for Infinite Horizon POMDP

In this section, we consider partial observation Markovian decision prob-
lems (POMDP) with a finite number of states and controls, and discounted
additive cost over an infinite horizon. As discussed in Section 1.6.4, the op-
timal solution is typically intractable, so approximate DP/RL approaches
must be used. In this section we focus on PI methods that are based on roll-
out, and approximations in policy and value space. They update a policy
by using truncated rollout with that policy and a terminal cost function
approximation. We focus on cost function approximation schemes, but
Q-factor approximation is also possible.

Because of its simulation-based rollout character, the methodology of
this section depends critically on the finiteness of the control space. It can
be extended to POMDP with infinite state space but finite control space,
although we will not consider this possibility in this section. In particular,
we assume that there are n states denoted by i ∈ {1, . . . , n} and a finite
set of controls U at each state. We denote by

pij(u) and g(i, u, j)

the transition probabilities and corresponding transition costs, from i to
j under u ∈ U . The cost is accumulated over an infinite horizon and is
discounted by α ∈ (0, 1). At each new generated state j, an observation
z from a finite set Z is obtained with known probability p(z | j, u) that
depends on j and the control u that was applied prior to the generation
of j. The objective is to select each control optimally as a function of the
prior history of observations and controls.

A classical approach to this problem is to convert it to a perfect
state information problem whose state is the current belief b = (b1, . . . , bn),
where bi is the conditional distribution of the state i given the prior history.
As noted in Section 1.6.4, b is a sufficient statistic, which can serve as a
substitute for the set of available observations, in the sense that optimal
control can be achieved with knowledge of just b.

In this section, we consider a more general form of sufficient statis-
tic, which we call the feature state and we denote by y. We require that
the feature state y subsumes the belief state b. By this we mean that b
can be computed exactly knowing y. One possibility is for y to be the
union of b and some identifiable characteristics of the belief state, or some
compact representation of the measurement history up to the current time
(such as a number of most recent measurements, or the state of a finite-
state controller). We also make the additional assumption that y can be
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sequentially generated using a known feature estimator F (y, u, z). By this
we mean that given that the current feature state is y, control u is applied,
and observation z is obtained, the next feature can be exactly predicted as
F (y, u, z).

Clearly, since b is a sufficient statistic, the same is true for y. Thus the
optimal costs achievable by the policies that depend on y and on b are the
same. However, specific suboptimal schemes may become more effective
with the use of the feature state y instead of just the belief state b.

The optimal cost J*(y), as a function of the sufficient statistic/feature
state y, is the unique solution of the corresponding Bellman equation

J*(y) = min
u∈U

[

ĝ(y, u) + α
∑

z∈Z

p̂(z | by, u)J*
(

F (y, u, z)
)

]

.

Here we use the following notation:

by is the belief state that corresponds to feature state y, with compo-
nents denoted by by,i, i = 1, . . . , n.

ĝ(y, u) is the expected cost per stage

ĝ(y, u) =
n
∑

i=1

by,i

n
∑

j=1

pij(u)g(i, u, j).

p̂(z | by, u) is the conditional probability that the next observation will
be z given the current belief state by and control u

F is the feature state estimator. In particular, F (y, u, z) is the next
feature vector, when the current feature state is y, control u is applied,
and observation z is obtained.

The feature space reformulation of the problem can serve as the ba-
sis for approximation in value space, whereby J* is replaced in Bellman’s
equation by some function J̃ after one-step or multistep lookahead. For
example a one-step lookahead scheme yields the suboptimal policy µ̃ given
by

µ̃(y) ∈ argmin
u∈U

[

ĝ(y, u) + α
∑

z∈Z

p̂(z | by, u)J̃
(

F (y, u, z)
)

]

.

In #-step lookahead schemes, J̃ is used as terminal cost function in an #-step
horizon version of the original infinite horizon problem. In the standard
form of a rollout algorithm, J̃ is the cost function of some base policy. We
will next discuss a rollout scheme with #-step lookahead, which involves
rollout truncation and terminal cost approximation.
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Figure 3.3.1 Composite system simulator for POMDP for a given policy. The
starting state ik at stage k of a trajectory is generated randomly using the belief
state bk, which is in turn computed from the feature state yk.

Truncated Rollout with Terminal Cost Function Approximation

In the pure form of the rollout algorithm, the cost function approximation J̃
is the cost function Jµ of a known base policy µ, and its value J̃(y) = Jµ(y)
at any y is obtained by first extracting b from y, and then running a sim-
ulator starting from b, and using the system model, the feature generator,
and µ. In the truncated form of rollout, J̃(y) is obtained by running the
simulator of µ for a given number of steps m, and then adding a terminal
cost approximation Ĵ(ȳ) for each terminal feature state ȳ that is obtained
at the end of the m steps of the simulation with µ (see Fig. 3.3.1).

Thus the rollout policy is defined by the base policy µ, the terminal
cost function approximation Ĵ , the number of steps m after which the
simulated trajectory with µ is truncated, as well as the lookahead size
#. The choices of m and # are typically made by trial and error, based
on computational tractability among other considerations, while Ĵ may be
chosen on the basis of problem-dependent insight or through the use of some
off-line approximation method. In variants of the method, the multistep
lookahead may be implemented approximately using a Monte Carlo tree
search or adaptive sampling scheme.

Using m-step rollout between the #-step lookahead and the terminal
cost approximation gives the method the character of a single PI. We will
use repeated truncated rollout as the basis for constructing a PI algorithm,
which we will discuss next.

Supervised Learning of Rollout Policies and Cost Functions -
Approximate Policy Iteration

The rollout algorithm uses multistep lookahead and on-line simulation of
the base policy to generate the rollout control at any feature state of inter-
est. To avoid the cost of on-line simulation, we can approximate the rollout
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policy off-line by using some approximation architecture, which may involve
a neural network. This is policy approximation built on top of the rollout
scheme.

To this end, we may introduce a parametric family/architecture of
policies of the form µ̂(y, r), where r is a parameter vector. We then con-
struct a training set that consists of a large number of sample feature
state-control pairs (ys, us), s = 1, . . . , q, such that for each s, us is the roll-
out control at feature state ys. We use this data set to obtain a parameter
r̄ by solving a corresponding classification problem, which associates each
feature state y with a control µ̂(y, r̄). The parameter r̄ defines a classifier,
which given a feature state y, classifies y as requiring control µ̂(y, r̄) (see
Section 3.4).

We can also apply the rollout policy approximation to the context of
PI. The idea is to view rollout as a single policy improvement, and to view
the PI algorithm as a perpetual rollout process , which performs multiple
policy improvements, using at each iteration the current policy as the base
policy, and the next policy as the corresponding rollout policy.

In particular, we consider a PI algorithm where at the typical iter-
ation we have a policy µ, which we use as the base policy to generate
many feature state-control sample pairs (ys, us), s = 1, . . . , q, where us is
the rollout control corresponding to feature state ys. We then obtain an
“improved” policy µ̂(y, r) with an approximation architecture and a classi-
fication algorithm, as described above. The “improved” policy is then used
as a base policy to generate samples of the corresponding rollout policy,
which is approximated in policy space, etc.

To use truncated rollout in this PI scheme, we must also provide a
terminal cost approximation, which may take a variety of forms. Using zero
is a simple possibility, which may work well if either the size # of multistep
lookahead or the length m of the rollout is relatively large. Another possi-
bility is to use as terminal cost in the truncated rollout an approximation
of the cost function of some base policy, which may be obtained with a
neural network-based approximation architecture.

In particular, at any policy iteration with a given base policy, once
the rollout data is collected, one or two neural networks are constructed:
A policy network that approximates the rollout policy, and (in the case of
rollout with truncation) a value network that constructs a cost function
approximation for that rollout policy. Thus, we may consider two types of
methods:

(a) Approximate rollout and PI with truncation, where each generated
policy as well as its cost function are approximated by a policy and
a value network, respectively. The cost function approximation of
the current policy is used to truncate the rollout trajectories that are
used to train the next policy.

(b) Approximate rollout and PI without truncation, where each gener-
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ated policy is approximated using a policy network, but the rollout
trajectories are continued up to a large maximum number of stages
(enough to make the cost of the remaining stages insignificant due to
discounting) or upon reaching a termination state. The advantage of
this scheme is that only a policy network is needed; a value network
is unnecessary since there is no rollout truncation with cost function
approximation at the end.

Note that as in all approximate PI schemes, the sampling of feature
states used for training is subject to exploration concerns. In particular,
for each policy approximation, it is important to include in the sample set
{ys | s = 1, . . . , q}, a subset of feature states that are “favored” by the
rollout trajectories; e.g., start from some initial subset of feature states
ys and selectively add to this subset feature states that are encountered
along the rollout trajectories. This is a challenging issue, which must be
approached with care.

An extensive case study of the methodology of this section was given
in the paper by Bhattacharya et al. [BBW20], for the case of a pipeline
repair problem. The implementation used there also includes the use of a
partitioned state space architecture and an asynchronous distributed algo-
rithm for off-line training; see Section 3.4.2.

3.3.6 Advantage Updating - Approximating Q-Factor Differences

Let us now focus on an important alternative to computing Q-factor ap-
proximations. It is motivated by the potential benefit of approximating
Q-factor differences rather than Q-factors. In this method, called ad-
vantage updating, instead of computing and comparing Q*

k(xk, uk) for all
uk ∈ Uk(xk), we compute

Ak(xk, uk) = Q*
k(xk, uk)− min

u∈Uk(xk)
Q*

k(xk, u).

The function Ak(xk, uk) can serve to compare controls, i.e., at state xk

select
µ̃k(xk) ∈ arg min

u∈Uk(xk)
Ak(xk, u),

and this can also be done when Ak(xk, uk) is approximated with a value
network.

Note that in the absence of approximations, selecting controls by
advantage updating is clearly equivalent to selecting controls by comparing
their Q-factors. By contrast, when approximation is involved, comparing
advantages instead of Q-factors can be important, because the former may
have a much smaller range of values than the latter. In particular, Q*

k may
embody sizable quantities that depend on xk but are independent of uk,
and which may interfere with algorithms such as the fitted value iteration
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(3.19)-(3.20). Thus, when training an architecture to approximate Q*
k, the

training algorithm may naturally try to capture the large scale behavior of
Q*

k, which may be irrelevant because it may not be reflected in the Q-factor
differences Ak. However, with advantage updating, we may instead focus
the training process on finer scale variations of Q*

k, which may be all that
matters. Here is an example (first given in the book [BeT96]) of what can
happen when trained approximations of Q-factors are used.

Example 3.3.1

Consider the deterministic scalar linear system

xk+1 = xk + δuk,

and the quadratic cost per stage

g(xk, uk) = δ(x2
k + u2

k),

where δ is a very small positive constant [think of δ-discretization of a continuous-
time problem involving the differential equation dx(t)/dt = u(t)]. Let us focus
on the stationary policy π, which applies at state x the control

µ(x) = −2x,

and view it as the base policy of a rollout algorithm. The Q-factors of π over
an infinite number of stages can be calculated to be

Qπ(x, u) =
5x2

4
+ δ

(

9x2

4
+ u2 +

5
2
xu

)

+O(δ2).

(We omit the details of this calculation, which is based on the classical analysis
of linear-quadratic optimal control problems; see e.g., Section 1.5, or [Ber17a],
Section 3.1.) Thus the important part of Qπ(x, u) for the purpose of rollout
policy computation is

δ
(

u2 +
5
2
xu
)

. (3.28)

However, when a value network is trained to approximate Qπ(x, u), the ap-

proximation will be dominated by 5x2

4 , and the important part (3.28) will
be “lost” when δ is very small. By contract, the advantage function can be
calculated to be

Aµ(x, u) = Qπ(x, u)−min
v

Qπ(x, v) +O(δ2)

= δ
(

u2 +
5
2
xu−min

v

(

v2 +
5
2
xv
))

+O(δ2)

= δ

(

u2 +
5
2
xu+

52

4
x2

)

+O(δ2),

and when approximated with a value network, the approximation will be
essentially unaffected by δ.
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Figure 3.3.2 Illustration of the idea of subtracting a baseline constant from a
cost or Q-factor approximation. Here we have samples h(u1), . . . , h(uq) of a scalar
function h(u) at sample points u1, . . . , uq , and we want to approximate h(u) with
a linear function h̃(u, r) = ru, where r is a scalar tunable weight. We subtract a
baseline constant b from the samples, and we solve the problem

r̄ ∈ argmin
r

q
∑

s=1

(

(

h(us)− b
)

− rus
)2

.

By properly adjusting b, we can improve the quality of the approximation, which
after subtracting b from all the sample values, takes the form h̃(u, b, r) = b+ ru.
Conceptually, b serves as an additional weight (multiplying the basis function 1),
which enriches the approximation architecture.

The Use of a Baseline

The idea of advantage updating is also related to the useful technique of
subtracting a suitable constant (often called a baseline) from a quantity
that is estimated; see Fig. 3.3.2 (in the case of advantage updating, the
baselines depend on xk, but the same general idea applies). This idea can
also be used in the context of the fitted value iteration method given earlier,
as well as in conjunction with other simulation-based methods in RL.

Example 3.1.1 also points to the connection between the ideas un-
derlying advantage updating and the rollout methods for small stage costs
relative to the cost function approximation, which we discussed in Section
2.6. In both cases it is necessary to avoid including terms of disproportion-
ate size in the target function that is being approximated. The remedy in
both cases is to subtract from the target function a suitable state-dependent
baseline.
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3.3.7 Differential Training of Cost Differences for Rollout

Let us now consider ways to approximate Q-factor differences (cf. our ad-
vantage updating discussion of the preceding section) by approximating
cost function differences first. We recall here that given a base policy
π = {µ0, . . . , µN−1}, the off-line computation of an approximate rollout
policy π̃ = {µ̃0, . . . , µ̃N−1} consists of two steps:

(1) In a preliminary phase, we compute approximations J̃k to the cost
functions Jk,π of the base policy π, possibly using simulation and a
least squares fit from a parametrized class of functions.

(2) Given J̃k and a state xk at time k, we compute the approximate
Q-factor

Q̃k(xk, u) = E
{

gk(xk, u, wk) + J̃k+1

(

fk(xk, u, wk)
)

}

for all u ∈ Uk(xk), and we obtain the (approximate) rollout control
µ̃k(xk) from the minimization

µ̃k(xk) ∈ arg min
u∈Uk(xk)

Q̃k(xk, u).

Unfortunately, this method also suffers from the error magnification
inherent in the Q-factor differencing operation. This motivates an alter-
native approach, called differential training , which is based on cost-to-go
difference approximations. To this end, we note that to compute the rollout
control µ̃k(xk), it is sufficient to have the differences of costs-to-go

J̃k+1

(

fk(xk, u, wk)
)

− J̃k+1

(

fk(xk, µk(xk), wk)
)

, (3.29)

where µk(xk) is the control applied by the base policy at xk.
We thus consider a function approximation approach, whereby given

any two states xk+1 and x̂k+1, we obtain an approximation G̃k+1(xk+1, x̂k+1)
of the cost difference (3.29). We then compute the rollout control by

µ̃k(xk) ∈ arg min
u∈Uk(xk)

E
{

gk(xk, u, wk)− gk(xk, µk(xk), wk)

+ G̃k+1

(

fk(xk, u, wk), fk(xk, µk(xk), wk)
)

}

,

(3.30)
where µk(xk) is the control applied by the base policy at xk. Note that
the minimization (3.30) aims to simply subtract the approximate Q-factor
of the base policy control µk(xk) from the approximate Q-factor of every
other control u ∈ Uk(xk).

An important point here is that the training of an approximation
architecture to obtain G̃k+1 can be done using any of the standard training



340 Learning Values and Policies Chap. 3

methods, and a “differential” system, whose “states” are pairs (xk, x̂k) and
will be described shortly. To see this, let us denote for all k and pair of
states (xk, x̂k)

Gk(xk, x̂k) = Jk,π(xk)− Jk,π(x̂k)

the cost function differences corresponding to the base policy π. We con-
sider the DP equations corresponding to π, and to xk and x̂k:

Jk,π(xk) = E
{

gk
(

xk, µk(x), wk

)

+ Jk+1,π

(

fk(xk, µk(x), wk)
)

}

,

Jk,π(x̂k) = E
{

gk
(

x̂k, µk(x̂k), wk

)

+ Jk+1,π

(

fk(x̂k, µk(x̂k), wk)
)

}

,

and we subtract these equations to obtain

Gk(xk, x̂k) = E
{

gk
(

xk, µk(xk), wk

)

− g
(

x̂k, µk(x̂k), wk

)

+Gk+1

(

fk(xk, µk(xk), wk), fk(x̂k, µk(x̂k), wk)
)

}

,

for all (xk, x̂k) and k. Therefore, Gk can be viewed as the cost-to-go func-
tion for a problem involving a fixed policy (the base policy), the state
(xk, x̂k), the cost per stage

gk
(

xk, µk(xk), wk

)

− gk
(

x̂k, µk(x̂k), wk

)

, (3.31)

and the system equation

(xk+1, x̂k+1) =
(

fk
(

xk, µk(xk), wk

)

, fk
(

x̂k, µk(x̂k), wk

)

)

. (3.32)

Thus, it can be seen that any of the standard methods that can be used
to train architectures that approximate Jk,π, can also be used for training
architectures that approximate Gk. For example, one may use simulation-
based methods that generate pairs of trajectories starting at the pair of
initial states (xk, x̂k), and generated according to Eq. (3.32) by using the
base policy π. Note that a single random sequence {w0, . . . , wN−1} may be
used to simultaneously generate samples of Gk(xk, x̂k) for several triples
(xk, x̂k, k), and in fact this may have a substantial beneficial effect.

A special case of interest arises when a linear, feature-based architec-
ture is used for the approximator G̃k. In particular, let φk be a feature
extraction mapping that associates a feature vector φk(xk) with state xk

and time k, and let G̃k be of the form

G̃k(xk, x̂k) = r′k
(

φk(xk)− φk(x̂k)
)

,

where rk is a tunable weight vector of the same dimension as φk(xk) and
prime denotes transposition. The rollout policy is generated by

µ̃k(xk) ∈ arg min
u∈Uk(xk)

E
{

gk(xk, u, wk) + r′k+1φk+1

(

fk(xk, u, wk)
)

}

,
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which corresponds to using r′k+1φk+1(xk+1) (plus an unknown inconsequen-
tial constant) as an approximation to Jk+1,π(xk+1). Thus, in this approach,
we essentially use a linear feature-based architecture to approximate the cost
functions Jk,π of the base policy, but we train this architecture using the
differential system (3.32) and the differential cost per stage of Eq. (3.31).
This is done by selecting pairs of initial states, running in parallel the cor-
responding trajectories using the base policy, and subtracting the resulting
trajectory costs from each other.

3.4 TRAINING OF POLICIES IN APPROXIMATE DP

We have focused so far on approximation in value space using parametric
architectures. In this section we will discuss briefly how the cost function
approximation methods of this chapter can be suitably adapted for the
purpose of approximation in policy space, whereby we select the policy by
using optimization over a parametric family of some form.

In particular, suppose that for a given stage k, we have access to
a dataset of sample state-control pairs (xs

k, u
s
k), s = 1, . . . , q, obtained

through some unspecified process, such as rollout or problem approxima-
tion. We may then wish to “learn” this process by training the parameter
vector rk of a parametric family of policies µ̃k(xk, rk), using least squares
minimization/regression:

rk ∈ argmin
rk

q
∑

s=1

∥

∥us
k − µ̃k(xs

k, rk)
∥

∥

2
; (3.33)

cf. our discussion of approximation in policy space in Section 1.3.3.

3.4.1 The Use of Classifiers for Approximation in Policy Space

As we have noted in Section 3.1, in the case of a continuous control space,
training of a parametric architecture for policy approximation is similar
to training for a cost approximation. In the case where the control space
is finite, however, it is useful to make the connection of approximation in
policy space with classification; cf. Fig. 3.1.2 and the discussion of Section
3.1.

Classification is an important subject in machine learning. The ob-
jective is to construct an algorithm, called a classifier , which assigns a
given “object” to one of a finite number of “categories” based on its “char-
acteristics.” Here we use the term “object” generically. In some cases, the
classification may relate to persons or situations. In other cases, an ob-
ject may represent a hypothesis, and the problem is to decide which of the
hypotheses is true, based on some data. In the context of approximation
in policy space, objects correspond to states, and categories correspond to
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controls to be applied at the different states . Thus in this case, we view
each sample

(

xs
k, u

s
k

)

as an object-category pair.
Generally, in (multiclass) classification we assume that we have a

population of objects, each belonging to one of m categories c = 1, . . . ,m.
We want to be able to assign a category to any object that is presented to
us. Mathematically, we represent an object with a vector x (e.g., some raw
description or a vector of features of the object), and we aim to construct
a rule that assigns to every possible object x a unique category c.

To illustrate a popular classification method, let us assume that if we
draw an object x at random from this population, the conditional probabil-
ity of the object being of category c is p(c |x). If we know the probabilities
p(c |x), we can use a classical statistical approach, whereby we assign x to
the category c∗(x) that has maximal posterior probability, i.e.,

c∗(x) ∈ arg max
c=1,...,m

p(c |x). (3.34)

This is called the Maximum a Posteriori rule (or MAP rule for short; see
for example the book [BeT08], Section 8.2, for a discussion).

When the probabilities p(c |x) are unknown, we may try to estimate
them using a least squares optimization, based on the following property,
whose proof is outlined in Exercise 4.1; see also [Ber19a], Section 3.5.

Proposition 3.4.1: (Least Squares Property of Conditional
Probabilities) Let ξ(x) be any prior distribution of x, so that the
joint distribution of (c, x) is

ζ(c, x) =
∑

x

ξ(x)
m
∑

c=1

p(c |x).

Let z(c, x) be the function of (c, x) defined by

z(c, x) =
{

1 if x is of category c,
0 otherwise.

For any function h(c, x) of (c, x), consider

E
{

(

z(c, x)− h(c, x)
)2
}

,

the expected value with respect to the distribution ζ(c, x) of the ran-

dom variable
(

z(c, x)−h(c, x)
)2
. Then p(c |x) minimizes this expected

value over all functions h(c, x), i.e., for all functions h, we have
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E
{

(

z(c, x)− p(c |x)
)2
}

≤ E
{

(

z(c, x)− h(c, x)
)2
}

. (3.35)

The proposition states that p(c |x) is the function of (c, x) that min-
imizes

E
{

(

z(c, x)− h(c, x)
)2
}

(3.36)

over all functions h of (c, x), independently of the prior distribution of
x. This suggests that we can obtain approximations to the probabilities
p(c |x), c = 1, . . . ,m, by minimizing an empirical/simulation based approx-
imation of the expected value (3.36).

More specifically, let us assume that we have a training set consisting
of q object-category pairs (xs, cs), s = 1, . . . , q, and corresponding vectors

zs(c) =

{

1 if cs = c,
0 otherwise,

c = 1, . . . ,m,

and adopt a parametric approach. In particular, for each category c =
1, . . . ,m, we approximate the probability p(c |x) with a function h̃(c, x, r)
that is parametrized by a vector r, and optimize over r the empirical ap-
proximation to the expected squared error of Eq. (3.36). Thus we can
obtain r by the least squares regression:

r̄ ∈ argmin
r

q
∑

s=1

m
∑

c=1

(

zs(c)− h̃(c, xs, r)
)2
, (3.37)

perhaps with some quadratic regularization added. The functions h̃(c, x, r)
may be provided for example by a feature-based architecture or a neural
network.

Note that each training pair (xs, cs) is used to generate m examples
for use in the regression problem (3.37): m − 1 “negative” examples of
the form (xs, 0), corresponding to the m − 1 categories c ,= cs, and one
“positive” example of the form (xs, 1), corresponding to c = cs. Note also
that the incremental gradient method can be applied to the solution of this
problem.

The regression problem (3.37) approximates the minimization of the
expected value (3.36), so we conclude that its solution h̃(c, x, r̄), c =
1, . . . ,m, approximates the probabilities p(c |x). Once this solution is ob-
tained, we may use it to classify a new object x according to the rule

Estimated Object Category = c̃(x, r̄) ∈ arg max
c=1,...,m

h̃(c, x, r̄), (3.38)

which approximates the MAP rule (3.34); cf. Fig. 3.4.1.
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Figure 3.4.1 Illustration of the MAP classifier c∗(x) for the case where the
probabilities p(c |x) are known [cf. Eq. (3.34)], and its data-trained version c̃(x, r̄)
[cf. Eq. (3.38)]. The classifier may be obtained by using the data set (xs

k, u
s
k), s =

1, . . . , q, and an approximation architecture such as a feature-based architecture
or a neural network.

.
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Next Partial Tours, MAP Classifier Data-Trained Max MAX max
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State xk k Policy µ̃k(xk, rk)
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) h̃(u, xk, rk)
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Figure 3.4.2 Illustration of classification-based approximation in policy space.
The classifier, defined by the parameter rk, is constructed by using the train-
ing set (xs

k , u
s
k), s = 1, . . . , q. It yields a randomized policy that consists of the

probability h̃(u, xk, rk) of using control u ∈ Uk(xk) at state xk. This policy is ap-
proximated by the deterministic policy µ̃k(xk, rk) that uses at state xk the control
that maximizes over u ∈ Uk(xk) the probability h̃(u, xk, rk) [cf. Eq. (3.38)].

Returning to approximation in policy space, for a given training set
(xs

k, u
s
k), s = 1, . . . , q, the classifier just described provides (approximations

to) the “probabilities” of using the controls uk ∈ Uk(xk) at the states xk,
so it yields a “randomized” policy h̃(u, xk, rk) for stage k [once the values
h̃(u, xk, rk) are normalized so that, for any given xk, they add to 1]; cf. Fig.
3.4.2. In practice, this policy is usually approximated by the deterministic
policy µ̃k(xk, rk) that uses at state xk the control of maximal probability
at that state; cf. Eq. (3.38).

For the simpler case of a classification problem with just two cate-
gories, say A and B, a similar formulation is to hypothesize a relation of
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the following form between object x and its category:

Object Category =

{

A if h̃(x, r) = 1,
B if h̃(x, r) = −1,

where h̃ is a given function and r is the unknown parameter vector. Given
a set of q object-category pairs (x1, z1), . . . , (xq, zq) where

zs =

{

1 if x is of category A,
−1 if x is of category B,

we obtain r by the least squares regression:

r̄ ∈ argmin
r

q
∑

s=1

(

zs − h̃(xs, r)
)2
.

The optimal parameter vector r̄ is used to classify a new object with data
vector x according to the rule

Estimated Object Category =

{

A if h̃(x, r̄) > 0,
B if h̃(x, r̄) < 0.

In the context of DP and approximation in policy space, this classifier
may be used, among others, in stopping problems where there are just two
controls available at each state: stopping (i.e., moving to a termination
state) and continuing (i.e., moving to some nontermination state).

There are several variations of the preceding classification schemes,
for which we refer to the specialized literature. Moreover, there are sev-
eral commercially and publicly available software packages for solving the
associated regression problems and their variants. They can be brought
to bear on the problem of parametric approximation in policy space using
any training set of state-control pairs, regardless of how it was obtained.

3.4.2 Policy Iteration with Value and Policy Networks -
Multiprocessor Parallelization

As we have already noted, in contrast to rollout, approximate policy it-
eration (PI) is fundamentally an off-line training algorithm, because for a
large scale problem, it is necessary to represent the successively generated
policies with an approximation architecture. Thus approximate PI involves
the successive use of a value network to implement policy evaluation, and
a policy network to represent policy improvement.

In particular, we can start with a base policy and a terminal cost
approximation, and generate state-control samples of the corresponding
truncated rollout policy. These samples can in turn be used with the
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k Using the
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Figure 3.4.3 Illustration of a truncated rollout scheme with a partitioned archi-
tecture. A local value network is used for terminal cost function approximation.

approximation in policy space scheme of this section to obtain a policy
network that approximates the truncated rollout policy; cf. Fig. 3.4.3.

The cost function of the policy network can in turn be approximated
with a value network using the methodology that we have discussed in this
chapter. The value network can be used in turn as a terminal cost function
approximation in a truncated rollout scheme where the previously obtained
policy network can be used as a base policy. In this way a perpetual rollout
scheme is obtained, which involves a sequence of value and policy networks.

Parallelization and distributed computation can be used in several
different ways in such a scheme, including Q-factor, Monte Carlo, and mul-
tiagent parallelization. Moreover, when feature-based partitioning of the
state space is used (cf. Example 3.1.8), we may consider a multiproces-
sor parallelization scheme, which involves multiple local value and policy
networks, one per subset of the state space partition; see Fig. 3.4.4.

Let us finally note that multiprocessor parallelization leads to the idea
of an approximation architecture that involves a graph. Each node of the
graph consists of a neural network and each arc connecting a pair of nodes
corresponds to data transfer between the corresponding neural networks.
The question of how to train such an architecture is quite complex and
one may think of several alternative possibilities. For example the training
may be collaborative with the exchange of training results and/or training
data communicated periodically or asynchronously; see the book [Ber20a],
Section 5.8.
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Figure 3.4.4 Illustration of a perpetual truncated rollout scheme with a parti-
tioned architecture. A local value network and a local policy network are used for
each subset of the partition. The policy network is used as the base policy and
the value network is used to provide a terminal cost function approximation.

State-control training pairs for the corresponding rollout policy are ob-
tained by starting at an initial state within some subset of the partition, generat-
ing rollout trajectories using the local policy network, which are truncated once
the state enters a different subset of the partition, with the corresponding terminal
cost function approximation supplied by the value network of that subset.

When a separate processor is used for each subset of partition, the cor-
responding value networks are communicated between processors. This can be
done asynchronously, with each processor sharing its value network as soon it be-
comes available. In a variation of this scheme, the local policy networks may also
be shared selectively among processors for selective use in the truncated rollout
process.

3.4.3 Why Use On-Line Play and not Just Train a Policy
Network to Emulate the Lookahead Minimization?

This is a sensible and common question, which stems from the mindset that
neural networks have extraordinary function approximation properties. In
other words, why go through the arduous on-line process of lookahead min-
imization, if we can do the same thing off-line and represent the lookahead
policy with a trained policy network? In particular, we can select the pol-
icy from a suitably restricted class of policies, such as a parametric class of
the form µ(x, r), where r is a parameter vector. We may then estimate r
using some type of off-line training process. Then the on-line computation
of controls µ(x, r) can be much faster compared with on-line lookahead
minimization.
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Figure 3.4.5 Illustration of the performance enhancement obtained by rollout
with an off-line trained base policy for the linear quadratic problem.

On the negative side, because parametrized approximations often in-
volve substantial calculations, they are not well suited for on-line replan-
ning. From our point of view in these notes, there is another important
reason why approximation in value space is needed on top of approxima-
tion in policy space: the off-line trained policy may not perform nearly as
well as the corresponding one-step or multistep lookahead/rollout policy,
because it lacks the extra power of the associated exact Newton step (cf.
our discussion of AlphaZero and TD-Gammon in Section 1.1, and linear
quadratic problems in Section 1.5).

Figure 3.4.5 illustrates this fact with a one-dimensional linear-quadratic
example, and compares the performance of a linear policy with its corre-
sponding one-step lookahead policy. In this example the system equation
is

xk+1 = xk + 2uk,

and the quadratic cost function parameters are q = 1, r = 0.5. The optimal
policy for this system and cost parameter values is

µ∗(x) = L∗x,

with L∗ ≈ −0.4, and the optimal cost function is

J*(x) = K∗x2,

where K∗ ≈ 1.1. We want to to explore what happens when we use a
policy of the form

µL(x) = Lx,
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where L ,= L∗ (which may be optimal for another system equation or cost
function parameters). The cost function of µL has the form

Jµ(x) = KLx2,

where KL is obtained by using the formulas given in Section 1.5. The figure
shows the quadratic cost coefficient differences KL −K∗ and KL̃ −K∗ as
a function of L, where KL and KL̃ are the quadratic cost coefficients of µ
(without one-step lookahead/Newton step) and the corresponding one-step
lookahead policy µ̃ (with one-step lookahead/Newton step).

3.5 AGGREGATION

In this section we consider approximation in value space using a problem
approximation approach that is based on aggregation. In particular, we
construct a simpler and more tractable “aggregate” problem by creating
special subsets of states, which we view as “aggregate states.” We then solve
the aggregate problem exactly by DP. This is the off-line training part of
the aggregation approach, and it may be carried out with a variety of DP
methods, including simulation-based value and policy iteration; we refer to
the RL book [Ber19a] for a detailed account. Finally, we use the optimal
cost-to-go function of the aggregate problem to construct a terminal cost
approximation in a one-step or multistep lookahead approximation scheme
for the original problem. Additionally, we may also use the optimal policy
of the aggregate problem to construct a base policy for a truncated rollout
scheme.

In addition to problem approximation, aggregation is related to fea-
ture-based parametric approximation. In particular, it often produces a
piecewise constant cost function approximation, which may be viewed as a
linear feature-based parametrization, where the features are 0-1 member-
ship functions; see Example 3.1.1. Aggregation can also be combined with
other approximation schemes, to add a local correction to a cost function
approximation J̃ , which is already available, possibly through the use of
a neural network; see the discussion of biased aggregation later in Section
3.5.7.

Aggregation can be applied to both finite horizon and infinite horizon
problems. In this section, we will focus primarily on the discounted infinite
horizon problem. We will introduce aggregation in a simple intuitive form
in Section 3.5.1, and generalize later to a more sophisticated form of feature-
based aggregation, which we also discussed briefly in Example 3.1.7.

3.5.1 Aggregation with Representative States

In this section we focus on a relatively simple form of aggregation, which
involves a special subset of states, called representative. Our approach is to
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States i (fine grid)

(fine grid) Representative states x
x (coarse grid)

Figure 3.5.1 Illustration of aggregation with representative states; cf. Example
3.5.1. A relatively small number of states are viewed as representative. We define
transition probabilities between pairs of aggregate states and we also define the
associated expected transition costs. These specify a smaller DP problem, called
the aggregate problem, which is solved exactly. The optimal cost function J* of
the original problem is approximated by interpolation from the optimal costs of
the representative states r∗y in the aggregate problem:

J̃(j) =
∑

y∈A

φjyr
∗
y , j = 1, . . . , n,

and is used in a one-step or multistep lookahead scheme.

view these states as the states of a smaller optimal control problem, the ag-
gregate problem, which we will formulate and solve exactly in place of the
original. We will then use the optimal aggregate costs of the representative
states to approximate the optimal costs of the original problem states by
interpolation. In this chapter, whenever we consider a finite-state problem,
we use notation that is more convenient for such a problem. In particular,
states and successor states will be denoted by i and j, respectively, and the
system equation is represented by control-dependent transition probabili-
ties pij(u); cf. Section 1.4.1. Let us describe a classical example.

Example 3.5.1 (Coarse Grid Approximation)

Consider a discounted problem where the state space is a grid of points i =
1, . . . , n on the plane. We introduce a coarser grid that consists of a subset
A of the states/points, which we call representative and denote by x; see
Fig. 3.5.1. We now wish to formulate a lower-dimensional DP problem just
on the coarse grid of states. The difficulty here is that there may be positive
transition probabilities pxj(u) from some representative states x to some non-
representative states j. To deal with this difficulty, we introduce artificial
transition probabilities φjy from non-representative states j to representative
states y, which we call aggregation probabilities. In particular, a transition
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from representative state x to a nonrepresentative state j, is followed by a
transition from j to some other representative state y with probability φjy ;
see Fig. 3.5.2.

This process involves approximation but constructs a transition mech-
anism for an aggregate problem whose states are just the representative ones.
The transition probabilities between representative states x, y under control
u ∈ U(x) and the corresponding expected transition costs are

p̂xy(u) =

n
∑

j=1

pxj(u)φjy , ĝ(x, u) =

n
∑

j=1

pxj(u)g(x, u, j). (3.39)

We can solve the aggregate problem by any suitable exact DP method.
Let A denote the set of representative states and let r∗x denote the corre-
sponding optimal cost of representative state x. We can then approximate
the optimal cost function of the original problem with the interpolation for-
mula

J̃(j) =
∑

y∈A

φjyr
∗
y , j = 1, . . . , n. (3.40)

This function may in turn be used in a one-step or multistep lookahead scheme
for approximation in value space of the original problem.

Note that there is a lot of freedom in selecting the aggregation proba-
bilities φjy . Intuitively, φjy should express a measure of proximity between
j and y, e.g., φjy should be relatively large when y is geometrically close to
j. For example, we could set φjyj = 1 for the representative state yj that
is “closest” to j, and φjyj = 0 for all other representative states y '= yj . In
this case, Eq. (3.40) yields a piecewise constant cost function approximation
J̃ (the constant values are the scalars r∗y of the representative states y).

We will now formalize our framework for aggregation with represen-
tative states by generalizing the preceding example; see Fig. 3.5.3. We first
consider the n-state version of the α-discounted problem of Section 1.4.1.
We refer to this problem as the “original problem,” to distinguish from the
“aggregate problem,” which we define next.

Aggregation Framework with Representative States

We introduce a finite subset A of the original system states, which we
call representative states, and we denote them by symbols such as x
and y. We construct an aggregate problem, with state space A, and
transition probabilities and transition costs defined as follows:

(a) We relate the original system states j to representative states y ∈
A with aggregation probabilities φjy ; these are scalar “weights”
satisfying φjy ≥ 0 for all y ∈ A, and

∑

y∈A φjy = 1.

(b) We define the transition probabilities between representative states
x and y under control u ∈ U(x) by



352 Learning Values and Policies Chap. 3

x j1 j2

j2 j3

x j1

x pxj1(u)
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with Aggregation Probabilities Relate to

i) Original States to

y1 y2

y3

Aggregation Probabilities
Aggregation Probabilities

Representative States Controls
Aggregate States Cost

States (Fine Grid) Original State Space
Original State Space

Figure 3.5.2 Illustration of the use of aggregation probabilities φjy from non-
representative states j to representative states y in Example 3.5.1. A transition
from a state x to a nonrepresentative state j is followed by a transition to ag-
gregate state y with probability φjy . In this figure, from representative state
x, there are three possible transitions, to states j1, j2, and j3, according to
pxj1(u), pxj2(u), pxj3(u), and each of these states is associated with a convex
combination of representative states using the aggregation probabilities. For ex-
ample, the state j1 is associated with

φj1y1y1 + φj1y2y2 + φj1y3y3.

p̂xy(u) =
n
∑

j=1

pxj(u)φjy . (3.41)

(c) We define the expected transition costs at representative states
x under control u ∈ U(x) by

ĝ(x, u) =
n
∑

j=1

pxj(u)g(x, u, j). (3.42)

The optimal costs of the representative states y ∈ A in the aggregate
problem are denoted by r∗y , and they define approximate costs for the
original problem through the interpolation formula

J̃(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n. (3.43)

Aside from the selection of representative states, an important con-
sideration is the choice of the aggregation probabilities. These probabilities
express “similarity” or “proximity” of original to representative states (as
in the case of the coarse grid Example 3.5.1), but in principle they can be



Sec. 3.5 Aggregation 353

, j = 1
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according to pij(u), with cost, g(i, u, j)
Matrix Matrix

ĝ(x, u) =
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j=1

pxj(u)g(x, u, j)

)
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Range of Weighted Projections Original States
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pxj(u)φjy

i Optimal Aggregate Costs r
∗
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One-step Lookahead with J̃(j) =
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y∈A
φjyr∗y

Aggregate Problem Cost Vector

Figure 3.5.3 Illustration of the aggregate problem in the representative states
framework. The transition probabilities p̂xy(u) and transition costs ĝ(x, u) are
shown in the bottom part of the figure. Once the aggregate problem is solved
(exactly) for its optimal costs r∗y , we define approximate costs

J̃(j) =
∑

y∈A

φjyr
∗
y , j = 1, . . . , n,

which are used for one-step lookahead approximation of the original problem.

arbitrary (as long as they are nonnegative and sum to 1 over y). Intuitively,
φjy may be interpreted as some measure of “strength of relation” of j to
y. The vectors {φjy | j = 1, . . . , n} may also be viewed as basis functions
for a linear cost function approximation via Eq. (3.43).

Hard Aggregation and Error Bound

A special case of interest, called hard aggregation, is when for every state j,
we have φjy = 0 for all representative states y, except a single one, denoted
yj , for which we have φjyj = 1. In this case, the one-step lookahead
approximation

J̃(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n,

is piecewise constant ; it is constant and equal to r∗y for all j in the set

Sy = {j | φjy = 1}, y ∈ A,
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Figure 3.5.4 Illustration of the piecewise constant cost approximation

J̃(j) =
∑

y∈A

φjyr
∗
y , j = 1, . . . , n,

in the hard aggregation case where we have φjy = 0 for all representative states
y, except a single one. Here J̃ is constant and equal to r∗y for all j in the footprint
set

Sy = {j | φjy = 1}, y ∈ A.

called the footprint of representative state y; see Fig. 3.5.4. Moreover the
footprints of all the representative states are disjoint and form a partition
of the state space, i.e.,

∪x∈ASx = {1, . . . , n}.

The footprint sets can be used to define a bound for the error (J*−J̃).
In particular, it can be shown that

∣

∣J*(j)− J̃(j)
∣

∣ ≤
ε

1− α
, j = 1, . . . , n,

where
ε = max

y∈A
max
i,j∈Sy

∣

∣J*(i)− J*(j)
∣

∣

is the maximum variation of J* within the footprint sets Sy. This error
bound result can be extended to the more general aggregation framework
that will be given in the next section. Note the primary intuition derived



Sec. 3.5 Aggregation 355

from this bound: the error due to hard aggregation is small if J* varies
little within each Sy.

For a special hard aggregation case of interest, consider the geomet-
rical context of Example 3.5.1. There, aggregation probabilities are often
based on a nearest neighbor approximation scheme, whereby each non-
representative state j takes the cost value of the “closest” representative
state y, i.e.,

φjyj = 1 if yj is the closest representative state to j.

Then all states j for which a given representative state y is the closest to
j (the footprint of y) are assigned equal approximate cost J̃(j) = r∗y .

Methods for Solving the Aggregate Problem

The most straightforward way to solve the aggregate problem is to compute
the aggregate problem transition probabilities p̂xy(u) [cf. Eq. (3.41)] and
transition costs ĝ(x, u) [cf. Eq. (3.42)] by either an algebraic calculation or
by simulation. The aggregate problem may then be solved by any one of
the standard methods, such as VI or PI. This exact calculation is plausible
if the number of representative states is relatively small. An alternative
possibility is to use a simulation-based VI or PI method. We refer to a
discussion of these methods in the author’s books [Ber12], Section 6.5, and
[Ber19a], Section 6.3. The idea is that a simulator for the original problem
can be used to construct a simulator for the aggregate problem; cf. Fig.
3.5.3.

An important observation is that if the original problem is determin-
istic and hard aggregation is used, the aggregate problem is also determin-
istic, and can be solved by shortest-path like methods. This is true for
both discounted problems and for undiscounted shortest path-type prob-
lems. In the latter case, the termination state of the original problem must
be included as a representative state in the aggregate problem. However, if
hard aggregation is not used, the aggregate problem will be stochastic, be-
cause of the introduction of the aggregation probabilities. Of course, once
the aggregate problem is solved and the lookahead approximation J̃ is ob-
tained, a deterministic structure in the original problem can be exploited
to facilitate the lookahead minimizations.

3.5.2 Continuous Control Space Discretization

Aggregation with representative states extends without difficulty to prob-
lems with a continuous state space, as long as the control space is finite.
Then once the representative states and the aggregation probabilities have
been defined, the corresponding aggregate problem is a discounted problem
with finite state and control spaces, which can be solved with the standard
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Figure 3.5.5 Illustration of discretization issues for problems with infinite state
and control spaces.

methods. The only potential difficulty arises when the disturbance space
is also infinite, in which case the calculation of the transition probabilities
and expected stage costs of the aggregate problem must be obtained by
some form of integration process.

The case where both the state and the control spaces are continu-
ous is somewhat more complicated, because both of these spaces must be
discretized using representative state-control pairs, instead of just repre-
sentative states. The following example illustrates what may happen if we
use representative state discretization only.

Example 3.5.2 (Continuous Shortest Path Discretization)

Suppose that we want to find the fastest route for a car to travel between two
points A and B located at the opposite ends of a square with side 1000 meters,
while avoiding some known obstacles. We assume a constant car speed of 1
meter per second and that the car can drive in any direction; cf. Fig. 3.5.5.

Let us consider discretizing the space with a square grid (a set of rep-
resentative states), and restrict the directions of motion to horizontal and
vertical, so that at each stage the car moves from a grid point to one of the
four closest grid points. Thus in the discretized version of the problem the car
travels with a sequence of horizontal and vertical moves as indicated in the
right side of Fig. 3.5.5. Is it possible to approximate the fastest route arbi-
trarily closely with the optimal solution of the discretized problem, assuming
a sufficiently fine grid?

The answer is no! To see this note that in the discretized problem
the optimal travel time is 2000 secs, regardless of how fine the discretization
is. On the other hand, in the continuous space/nondiscretized problem the
optimal travel time can be as little as

√
2 · 1000 secs (this corresponds to the

favorable case where the straight line from A to B does not meet an obstacle).
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The difficulty in the preceding example is that the state space is dis-
cretized finely but the control space is not . What is needed is to introduce
a fine discretization of the control space as well, through some set of “rep-
resentative controls.” We can deal with this situation with a suitable form
of discretized aggregate problem, which when solved provides an appropri-
ate form of cost function approximation for use with one-step lookahead.
The discretized problem is a stochastic infinite horizon problem, even if
the original problem is deterministic. Further discussion of this approach
is outside our scope, and we refer to the sources cited at the end of the
chapter. Under reasonable assumptions it is possible to show consistency,
i.e., that the optimal cost function of the discretized problem converges to
the optimal cost function of the original continuous spaces problem as the
discretization of both the state and the control spaces becomes increasingly
fine.

The type of difficulty illustrated in Example 3.5.2 does not arise if
the state space is continuous but the control space is finite. In particular,
this is true in partially observed finite spaces Markov decision problems
(POMDP), which are defined over their belief space (the space of proba-
bility distributions over their states). We briefly discuss this case next.

3.5.3 Continuous State Space - POMDP Discretization

Let us consider any α-discounted DP problem, where the state space is a
bounded convex subset B of a Euclidean space, such as the unit simplex,
but the control space U is finite. We use b to denote the states, to emphasize
the connection with belief states in POMDP and to distinguish them from
x, which we will use to denote representative states. Bellman’s equation is
J = TJ with the Bellman operator T defined by

(TJ)(b) = min
u∈U

E
w

{

g(b, u, w) + αJ
(

f(b, u, w)
)}

, b ∈ B.

We introduce a set of representative states {x1, . . . , xm} ⊂ B. We
assume that the convex hull of {x1, . . . , xm} is equal to B, so each state
b ∈ B can be expressed as

b =
m
∑

i=1

φbxixi,

where {φbxi | i = 1, . . . ,m} is a probability distribution:

φbxi ≥ 0, i = 1, . . . ,m,
m
∑

i=1

φbxi = 1, for all b ∈ B.

We view φbxi as aggregation probabilities.
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Consider the operator T̂ that transforms a vector r = (rx1 , . . . , rxm)
into the vector T̂ r with components (T̂ r)(x1), . . . , (T̂ r)(xm) defined by

(T̂ r)(xi) = min
u∈U

E
w







g(xi, u, w) + α
m
∑

j=1

φf(xi,u,w)xj rxj







, i = 1, . . . ,m,

where φf(xi,u,w)xj are the aggregation probabilities of the state f(xi, u, w).

It can then be shown that T̂ is a contraction mapping with respect to the
maximum norm (we give the proof for a similar result in the next section).
Bellman’s equation for an aggregate finite-state discounted DP problem
whose states are x1, . . . , xm has the form

rxi = (T̂ r)(xi), i = 1, . . . ,m,

and has a unique solution.
The transitions in this problem occur as follows: from state xi under

control u, we first move to f(xi, u, w) at cost g(xi, u, w), and then we move
to a state xj , j = 1, . . . ,m, according to the probabilities φf(xi,u,w)xj . The
optimal costs r∗xi , i = 1, . . . ,m, of this problem can often be obtained by
standard VI and PI methods that may or may not use simulation. We may
then approximate the optimal cost function of the original problem by

J̃(b) =
m
∑

i=1

φbxir
∗
xi , for all b ∈ B,

and reasonably expect that the optimal discretized solution converges to
the optimal as the number of representative states increases.

In the case where B is the belief space of an α-discounted POMDP,
the representative states/beliefs and the aggregation probabilities define
an aggregate problem, which is a finite-state α-discounted problem with a
perfect state information structure. This problem can be solved with exact
DP methods if either the aggregate transition probabilities and transition
costs can be obtained analytically (in favorable cases) or if the number
of representative states is small enough to allow their calculation by sim-
ulation. The aggregate problem can also be addressed with approximate
DP method that we have discussed earlier, such as problem approxima-
tion/certainty equivalence approaches. It can also be addressed with a
rollout method, which is suitable for an on-line implementation.

3.5.4 General Aggregation

We will now discuss a more general aggregation framework for the infinite
horizon n-state α-discounted problem, by using subsets of states as aggre-
gate states. In particular, we define our general aggregation framework by
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essentially replacing the representative states x with subsets Ix ⊂ {1, . . . , n}
of the original state space as follows. These subsets are often constructed
by using features, however, it is helpful to formulate our aggregation frame-
work in a general form, and introduce features later.

General Aggregation Framework

We introduce a finite subset A of aggregate states, which we denote
by symbols such as x and y. We define:

(a) A collection of disjoint subsets Ix ⊂ {1, . . . , n}, x ∈ A.

(b) A probability distribution over {1, . . . , n} for each x ∈ A, de-
noted by {dxi | i = 1, . . . , n}, and referred to the disaggregation
probabilities of x. We require that the distribution corresponding
to x is concentrated on the subset Ix:

dxi = 0, for all i /∈ Ix, x ∈ A. (3.44)

(c) For each original system state j ∈ {1, . . . , n}, a probability dis-
tribution over A, denoted by {φjy | y ∈ A}, and referred to as
the aggregation probabilities of j. We require that

φjy = 1, for all j ∈ Iy, y ∈ A. (3.45)

The aggregation and disaggregation probabilities specify a dynamic
system involving both aggregate and original system states; cf. Fig.
3.5.6. In this system:

(i) From aggregate state x, we generate an original system state
i ∈ Ix according to dxi.

(ii) We generate transitions between original system states i and j
according to pij(u), with cost g(i, u, j).

(iii) From original system state j, we generate aggregate state y ac-
cording to φjy . [Note that in view of Eq. (3.45), all states j
within a set Iy , are aggregated onto y with φjy = 1.]

The optimal costs of the aggregate states y ∈ A in the aggregate
problem are denoted by r∗y , and they define approximate costs for the
original problem through the interpolation formula

J̃(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n. (3.46)
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Figure 3.5.6 Illustration of the aggregate system, and the transition mechanism
and the costs per stage of the aggregate problem.

Our general aggregation framework is illustrated in Fig. 3.5.6. Note
that if each set Ix consists of a single state, we obtain the representative
states framework of the preceding section. In this case the disaggregation
distribution {dxi | i ∈ Ix} is just the atomic distribution that assigns
probability 1 to the unique state in Ix. Consistent with the special case of
representative states, the disaggregation probability dxi may be interpreted
as a “measure of the relation of x and i.”

The aggregate problem is a DP problem with an enlarged state space
that consists of two copies of the original state space {1, . . . , n} plus the
set of aggregate states A. We introduce the corresponding optimal vectors
J̃0, J̃1, and r∗ = {r∗x | x ∈ A} where:

r∗x is the optimal cost-to-go from aggregate state x.

J̃0(i) is the optimal cost-to-go from original system state i that has
just been generated from an aggregate state (left side of Fig. 3.5.6).

J̃1(j) is the optimal cost-to-go from original system state j that has
just been generated from an original system state (right side of Fig.
3.5.6).

Note that because of the intermediate transitions to aggregate states, J̃0
and J̃1 are different.

These three vectors satisfy the following three Bellman equations:

r∗x =
∑

i∈Ix

dxiJ̃0(i), x ∈ A, (3.47)

J̃0(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃1(j)
)

, i = 1, . . . , n, (3.48)
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J̃1(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n. (3.49)

The objective is to solve for the optimal costs r∗x of the aggregate states
in order to obtain approximate costs for the original problem through the
interpolation formula

J̃(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n;

cf. Eq. (3.46).
By combining the three Bellman equations (3.47)-(3.49), we see that

r∗ satisfies

r∗x =
∑

i∈Ix

dxi min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjy r∗y



 , x ∈ A,

(3.50)
or equivalently r∗ = Hr∗, where H is the operator that maps the vector r
to the vector Hr with components

(Hr)(x) =
∑

i∈Ix

dxi min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjy ry



 , x ∈ A.

(3.51)
It can be shown that H is a contraction mapping with respect to the

maximum norm, and thus the composite Bellman equation (3.50) has r∗

as its unique solution. To see this, we note for any vectors r and r′, we
have

(Hr)(x) =
∑

i∈Ix

dxi min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjy ry





≤
∑

i∈Ix

dxi min
u∈U(i)

n
∑

j=1

pij(u)

(

g(i, u, j) + α
∑

y∈A

φjy
(

r′y + ‖r − r′‖
)

)

= (Hr′)(x) + α‖r − r′‖,

where ‖ · ‖ is the maximum norm, and the equality follows from the defi-
nition of (Hr′)(x), and the fact that dxi, pij(u), and φjy are probabilities.
Thus we have

(Hr)(x) − (Hr′)(x) ≤ α‖r − r′‖, x ∈ A.

By reversing the roles of r and r′, we also have

(Hr′)(x) − (Hr)(x) ≤ α‖r − r′‖, x ∈ A,
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so that
∣

∣(Hr′)(x) − (Hr)(x)
∣

∣ ≤ α‖r − r′‖, x ∈ A.

By taking the maximum over x ∈ A, it follows that

‖Hr −Hr′‖ ≤ α‖r − r′‖,

and that H is a maximum norm contraction.
Note that the composite Bellman equation (3.50) has dimension equal

to the number of aggregate states, which is potentially much smaller than
n. To apply the aggregation framework of this section, we may solve exactly
this equation for the optimal aggregate costs r∗x, x ∈ A, by simulation-based
analogs of the VI and PI methods, and obtain a cost function approximation
for the original problem through the interpolation formula (3.46). We will
develop these methods later, but before doing so, we discuss various ways
to formulate the aggregation framework, and in particular, how features
can be used for this purpose.

3.5.5 Hard Aggregation and Error Bounds

Let us consider the special case of hard aggregation, where for every state
j, we have φjy = 0 for all aggregate states y, except a single one, denoted
yj , for which we have φjyj = 1. In this case, the one-step lookahead
approximation

J̃(j) =
∑

y∈A

φjyr∗y , j = 1, . . . , n,

is piecewise constant; it is constant and equal to r∗y for all j in the set

Sy = {j | φjy = 1}, y ∈ A, (3.52)

called the footprint of aggregate state y; see Fig. 3.5.4. Note that the
footprints of all the aggregate states are disjoint and form a partition of
the state space, i.e.,

∪x∈ASx = {1, . . . , n}.

We can show the following error bound, due to Tsitsiklis and Van
Roy [TsV96]; a generalization of this error bound will be given later in this
section.
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Proposition 3.5.1: (Error Bound for Hard Aggregation) In
the case of hard aggregation, we have

∣

∣J*(j)− J̃(j)
∣

∣ ≤
ε

1− α
, for all j such that j ∈ Sy, y ∈ A,

where ε is the maximum variation of the optimal cost function J* over
the footprint sets Sy, y ∈ A:

ε = max
y∈A

max
i,j∈Sy

∣

∣J*(i)− J*(j)
∣

∣.

The meaning of the preceding proposition is that if the optimal cost
function J* varies by at most ε within each set Sy, the hard aggregation
scheme yields a piecewise constant approximation to the optimal cost func-
tion that is within ε/(1− α) of the optimal.

Aside from its intuitive nature and error bound properties, hard ag-
gregation provides a connection with another major approch for approxi-
mation in value space, the so called the projected equation approach, which
we have not discussed here; see the books [Ber12] and [Ber19a]. In partic-
ular, it can be shown that for a given policy, the corresponding composite
Bellman equation (3.50) for approximate evaluation of µ can be viewed as
a projected equation, where a projection seminorm is used that is defined
by the disaggregation probabilities; see the paper by Yu and Bertsekas
[YuB12] (Section 5.5), or the book [Ber12] (Exercise 6.10).

Selecting the Aggregate States

Generally, the method to select the aggregate states is an important issue,
for which there is no mathematical theory at present. However, in practical
problems, based on intuition and problem-specific knowledge, there are
usually evident choices, which may be fine-tuned by experimentation. For
example, suppose that the optimal cost function J* is piecewise constant
over a partition {Sy | y ∈ A} of the state space {1, . . . , n}. By this we
mean that for some vector

r∗ =
{

r∗y | y ∈ A
}

,

we have
J*(j) = r∗y for all j ∈ Sy, y ∈ A.

Then from Prop. 3.5.1 it follows that the hard aggregation scheme with
Ix = Sx for all x ∈ A is exact, so r∗x are the optimal costs of the aggregate
states x in the aggregate problem. This suggests that in hard aggregation,



364 Learning Values and Policies Chap. 3

the states in the footprint set Sy corresponding to an aggregate state y
should have roughly equal optimal cost , consistently with the error bound
of Prop. 3.5.1.

As an extension of the preceding argument, suppose that through
some special insight into the problem’s structure or some preliminary cal-
culation, we know some features of the system’s state that can “predict
well” its optimal cost when combined through some approximation archi-
tecture, e.g., one that is linear. Then it seems reasonable to form the set
aggregate states A of a hard aggregation scheme so that the sets Iy and
Sy consist of states with “similar features” for every y ∈ A. This is called
feature-based aggregation, and was suggested in the neuro-dynamic book
[BeT96], Section 3.1.2. The next section considers this possibility, and pro-
vides a way to introduce features and nonlinearities into the aggregation
architecture, without compromising its other favorable aspects.

3.5.6 Aggregation Using Features

Let us consider the guideline for hard aggregation that we just discussed:
states i that belong to the same footprint set Sy should have nearly equal
optimal costs , i.e.,

max
i,j∈Sy

∣

∣J*(i)− J*(j)
∣

∣ ≈ 0, for all y ∈ A.

The question now is how to select the sets Sy according to this guideline.
An idea that comes to mind is to use a feature mapping, i.e., a func-

tion F that maps a state i into an m-dimensional feature vector F (i); cf.
Example 3.1.7. In particular, suppose that F has the property that states
i with nearly equal feature vector have nearly equal optimal cost J*(i).
Then we can form the sets Sy by grouping together states with nearly
equal feature vector. In particular, given F , we introduce a more or less
regular partition of the feature space [the subset of #m that consists of all
possible feature vectors F (i)]. The partition of the feature space induces a
possibly irregular collection of subsets of the original state space. Each of
these subsets is then used as the footprint of a distinct aggregate state; see
Fig. 3.5.7.

Note that in the resulting aggregation scheme the number of aggregate
states may become very large. On the other hand, there is a significant
advantage over the linear feature-based architectures of Section 3.1, which
assign a single weight to each feature: in feature-based hard aggregation we
are assigning a weight to each subset of the feature space partition (possibly
a weight to every possible feature value, in the extreme case where each
feature value is viewed by itself as a distinct set of the partition). In
effect we use aggregation to construct a nonlinear (piecewise constant)
feature-based architecture, which may be much more powerful than the
corresponding linear architecture.
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Figure 3.5.7 Feature-based hard aggregation using a partition of the space of
features. Each aggregate state y has a footprint Sy that consists of states with
“similar” features, i.e., states that map into the same subset of a partition in the
space of features.

The question now arises how to obtain a suitable feature vector when
there is no obvious choice, based on problem-specific considerations. One
possibility, discussed in the book [Ber19a] (Section 6.4), is to obtain “good”
features by using a neural network. In fact any method that automatically
generates features from data may be used. Here we will discuss a simple
possibility.

Using Scoring Functions

Suppose that we have obtained in some way a real-valued scoring function
V (i) of the state i, which serves as an index of undesirability of state i
as a starting state (smaller values of V are assigned to more desirable
states, consistent with the view of V as some form of “cost” function).
One possibility is to use as V an approximation of the cost function of
some “good” (e.g., near-optimal) policy. Another possibility is to obtain
V by problem approximation, i.e., as the cost function of some reasonable
policy applied to an approximation of the original problem. Still another
possibility is to obtain V by training a neural network or other architecture
using samples of state-cost pairs obtained by using a software or human
expert, and some supervised learning technique.

Given the scoring function V , we will construct a feature mapping
that groups together states i with roughly equal scores V (i). In particular,
we let Rx, x = 1, . . . , q, be q disjoint intervals that form a partition of the
range of possible values of V [i.e., are such that for any state i, there is a
unique interval Rx such that V (i) ∈ Rx]. We define a feature vector F (i)
of the state i according to

F (i) = x, for all i such that V (i) ∈ Rx, x = 1, . . . , q. (3.53)

This feature in turn defines a partition of the state space into the sets

Ix =
{

i | F (i) = x
}

=
{

i | V (i) ∈ Rx
}

, x = 1, . . . , q. (3.54)
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Figure 3.5.8. Hard aggregation scheme based on a single scoring function. We
introduce q disjoint intervals R1, . . . , Rq that form a partition of the set of possible
values of V , and we define a feature vector F (i) of the state i according to

F (i) = x, for all i such that V (i) ∈ Rx, x = 1, . . . , q.

This feature vector in turn defines a partition of the state space into the sets

Ix =
{

i | F (i) = x
}

=
{

i | V (i) ∈ Rx

}

, x = 1, . . . , q.

The sets Ix coincide with the footprint sets Sx, and the solution of the aggregate
problem yields a piecewise constant approximation of the optimal cost function
of the original problem.

Assuming that all the sets Ix are nonempty, we thus obtain a hard ag-
gregation scheme, where the aggregate states are x = 1, . . . , q, and the
aggregation probabilities are defined by

φjx =

{

1 if j ∈ Ix,
0 otherwise,

j = 1, . . . , n, x = 1, . . . , q, (3.55)

see Fig. 3.5.8. Note that the sets Ix coincide with the footprint sets Sx.
The following proposition (due to Tsitsiklis and VanRoy [TsV96])

illustrates the important role of the quantization error , defined as

δ = max
x=1,...,q

max
i,j∈Ix

∣

∣V (i)− V (j)
∣

∣. (3.56)

It represents the maximum error that can be incurred by approximating V
within each set Ix with a single value from its range within the subset. Its
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proof with additional discussion can be found in Chapter 6 of the author’s
RL book [Ber19a].

Proposition 3.5.2: Consider the hard aggregation scheme defined by
a scoring function V as described above. Assume that the variations
of J* and V over the sets I1, . . . , Iq are within a factor β ≥ 0 of each
other, i.e., that

∣

∣J*(i)− J*(j)
∣

∣ ≤ β
∣

∣V (i)− V (j)
∣

∣, for all i, j ∈ Ix, x = 1, . . . , q.

(a) We have

∣

∣J*(i)− r∗x
∣

∣ ≤
βδ

1− α
, for all i ∈ Ix, x = 1, . . . , q,

where δ is the quantization error of Eq. (3.56).

(b) Assume that there is no quantization error, i.e., V and J* are
constant within each set Ix. Then the aggregation scheme yields
the optimal cost function J* exactly, i.e.,

J*(i) = r∗x, for all i ∈ Ix, x = 1, . . . , q.

3.5.7 Biased Aggregation

In this section we will introduce an extension of the preceding aggregation
framework. This extension involves a vector

V =
(

V (1), . . . , V (n)
)

called the bias vector or bias function, which affects the cost structure of
the aggregate problem, and biases the values of its optimal cost function
towards their correct levels. When V = 0, we will obtain the aggregation
scheme of Section 3.5.4. When V ,= 0, we will obtain a different aggregation
scheme, which yields an approximation to J* that is equal to V plus a local
correction; see Fig. 3.5.10. In this case the aggregate DP problem aims to
provide a correction/improvement to V , which may itself be a reasonably
good estimate of J*.

An obvious context where biased aggregation can be used is to im-
prove on an approximation to J* obtained using a different method, such
as for example by neural network-based approximate PI, by rollout, or by
problem approximation. Generally, we may speculate that if V captures
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Figure 3.5.10 Schematic illustration of biased aggregation. It provides an ap-
proximation to J* that is equal to the bias function V plus a local correction.
When V = 0, we obtain the classical aggregation framework.

a fair amount of the nonlinearity of J*, we may reduce the number of
aggregate states needed for adequate performance.

Let us now formulate the aggregate problem in biased aggregation.
It is a discounted infinite horizon problem that is similar to the (unbiased)
aggregate problem of Section 3.5.4. It involves three sets of states: two
copies of the original state space, denoted I0 and I1, as well as a finite set
A of aggregate states, as depicted in Fig. 3.5.11. The state transitions in
the aggregate problem go from a state in A to a state in I0, according to
disaggregation probabilities, then to a state in I1, and then back to a state
in A, according to aggregation probabilities, and the process is repeated.
At state i ∈ I0 we must choose a control u ∈ U(i), and then transition to
a state j ∈ I1 at a cost g(i, u, j) according to the original system transition
probabilities pij(u).

The salient new characteristic of the biased aggregation scheme is a
(possibly nonzero) cost −V (i) for transition from any aggregate state to a
state i ∈ I0, and of a cost V (j) from a state j ∈ I1 to any aggregate state;
cf. Fig. 3.5.11. The function V is the bias function, and we will argue
that V should be chosen as close as possible to J*. Moreover, for practical
purposes its values at various states should be easily computable.

A key insight is that biased aggregation can be viewed as unbiased
aggregation applied to a modified DP problem, which is equivalent to the
original DP problem in the sense that it has the same optimal policies. The
modified DP problem is obtained from the original by changing its cost per
stage from g(i, u, j) to

g(i, u, j)− V (i) + αV (j), i, j = 1, . . . , n, u ∈ U(i). (3.57)

In particular, by comparing Figs. 3.5.6 and 3.5.11 it can be seen that un-
biased aggregation applied to the modified DP problem gives the same
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Figure 3.5.11 Illustration of the transition mechanism and the costs per stage
of the aggregate problem in the biased aggregation framework. When the bias
function V is identically zero, we obtain the aggregation framework of Section
3.5.4.

state-control trajectories as biased aggregation applied to the original DP
problem, while the incurred transition costs (from aggregate state to ag-
gregate state) are equal.

Moreover, there is a close connection between the optimal cost func-
tions of the modified DP problem with cost per stage given by Eq. (3.57),
and the original DP problem. In particular, the optimal cost function of the
modified problem, call it J̃ , satisfies the corresponding Bellman equation:

J̃(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)− V (i) + αV (j) + αJ̃(j)
)

, i = 1, . . . , n,

or equivalently

J̃(i) + V (i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + α
(

J̃(j) + V (j)
)

)

, i = 1, . . . , n.

By comparing this equation with the Bellman equation for the original
problem, we see that the optimal cost functions of the modified and the
original problems are related by

J*(i) = J̃(i) + V (i), i = 1, . . . , n,

and that the two problems have the same optimal policies. This of course
assumes that the original and modified problems are solved exactly. If
instead they are solved approximately using aggregation or another ap-
proximation architecture, such as a neural network, the policies obtained
may be substantially different. In particular, the choice of V and the ap-
proximation architecture may affect substantially the quality of suboptimal
policies obtained.
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To summarize, any unbiased aggregation scheme and algorithm, when
applied to the modified DP problem with cost per stage given by Eq. (3.57),
yields a biased aggregation scheme and algorithm for the original DP prob-
lem. Thus, we can straightforwardly transfer results, algorithms, and intu-
ition from our earlier unbiased aggregation analysis to the biased aggrega-
tion framework, by applying them to the unbiased aggregation framework
that corresponds to the modified stage cost (3.57). Moreover, we may use
simulation-based algorithms for policy evaluation, policy improvement, and
Q-learning for the aggregate problem, with the only requirement that the
value V (i) for any state i is available when needed.

3.5.8 Asynchronous Distributed Multiagent Aggregation

Let us now discuss the distributed solution of large-scale discounted DP
problems using cost function approximation, multiple agents/processors,
and hard aggregation. Here we partition the original system states into
aggregate states/subsets x ∈ A = {x1, . . . , xm}, and we envision a network
of processors/agents, each updating asynchronously a detailed/exact local
cost function, defined on a single aggregate state/subset. Each processor
also maintains an aggregate cost for its aggregate state, which is a weighted
average of the detailed cost of the (original system) states in the proces-
sor’s subset, weighted by the corresponding disaggregation probabilities.
These aggregate costs are communicated between processors and are used
to perform the local updates.

In a synchronous VI method of this type, each processor # = 1, . . . ,m,
maintains/updates a (local) cost J(i) for every original system state i ∈ x",
and an aggregate cost

R(#) =
∑

i∈x!

dx!iJ(i),

where dx!i are the corresponding disaggregation probabilities. We generi-
cally denote by J and R the vectors with components J(i), i = 1, . . . , n, and
R(#), # = 1, . . . ,m, respectively. These components are updated according
to

Jk+1(i) = min
u∈U(i)

H"(i, u, Jk, Rk), ∀ i ∈ x", (3.58)

with
Rk(#) =

∑

i∈x!

dx!iJk(i), # = 1, . . . ,m, (3.59)

where the mapping H" is defined for all # = 1, . . . ,m, i ∈ x", u ∈ U(i), and
J ∈ #n, R ∈ #m, by

H"(i, u, J,R) =
n
∑

j=1

pij(u)g(i, u, j)+α
∑

j∈x!

pij(u)J(j)+α
∑

j /∈x!

pij(u)R
(

x(j)
)

,

(3.60)
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and where for each original system state j, we denote by x(j) the subset
to which j belongs [i.e., j ∈ x(j)]. Thus the iteration (3.58) is the same
as ordinary VI, except that instead of J(j), we use the aggregate costs
R
(

x(j)
)

for the states j whose costs are updated by other processors.
It is possible to show that the iteration (3.58)-(3.59) involves a sup-

norm contraction mapping of modulus α, so it converges to the unique
solution of the system of equations in (J,R)

J(i) = min
u∈U(i)

H"(i, u, J,R), R(#) =
∑

i∈x!

dx!iJ(i),

∀ i ∈ x", # = 1, . . . ,m.

(3.61)

This follows from the fact that {dx!i | i = 1, . . . , n} is a probability distribu-
tion. We may view the equations (3.61) as a set of Bellman equations for an
“aggregate” DP problem, which similar to our earlier discussion, involves
both the original and the aggregate system states. The difference from the
Bellman equations (3.47)-(3.49) is that the mapping (3.60) involves J(j)
rather than R

(

x(j)
)

for j ∈ x".
In the algorithm (3.58)-(3.59), all processors # must be updating their

local costs J(i) and aggregate costs R(#) synchronously, and communicate
the aggregate costs to the other processors before a new iteration may be-
gin. This is often impractical and time-wasting. In a more practical asyn-
chronous version of the method, the aggregate costs R(#) may be outdated
to account for communication “delays” between processors. Moreover, the
costs J(i) need not be updated for all i; it is sufficient that they are up-
dated by each processor # only for a (possibly empty) subset of I",k of the
aggregate state/set x". In this case, the iteration (3.58)-(3.59) is modified
to take the form

Jk+1(i) = min
u∈U(i)

H"

(

i, u, Jk, Rτ1,k(1), . . . , Rτm,k
(m)

)

, ∀ i ∈ I",k,

(3.62)
with 0 ≤ τ",k ≤ k for # = 1, . . . ,m, and

Rτ (#) =
∑

i∈x!

dx!iJτ (i), ∀ # = 1, . . . ,m.

The differences k − τ",k, # = 1, . . . ,m, in Eq. (3.62) may be viewed as “de-
lays” between the current time k and the times τ",k when the corresponding
aggregate costs were computed at other processors. For convergence, it is
of course essential that every i ∈ x" belongs to I",k for infinitely many k (so
each cost component is updated infinitely often), and limk→∞ τ",k = ∞ for
all # = 1, . . . ,m (so that processors eventually communicate more recently
computed aggregate costs to other processors).

The convergence of this type of method based on the sup-norm con-
traction property of the mapping underlying Eq. (3.61), can be established
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using an asynchronous convergence theory for DP developed by the author
in the paper [Ber82] (see also the books [BeT89], [Ber12]). The monotonic-
ity property is also sufficient to establish convergence, and this is useful
in the convergence analysis of related aggregation algorithms for nondis-
counted DP models (see the paper by Bertsekas and Yu [BeY10]).

3.6 NOTES AND SOURCES

Section 3.1: Our discussion of approximation architectures, neural net-
works, and training has been limited, and aimed just to provide the connec-
tion with approximate DP. The literature on the subject is vast, and some
of the textbooks mentioned in the references to Chapter 1 provide detailed
accounts and many sources, in addition to the ones given in Sections 3.1
and 3.2.

There are two broad directions of inquiry in parametric architectures:

(1) The design of architectures, either in a general or a problem-specific
context.

(2) The training of neural networks, as well as other linear and nonlinear
architectures.

Research along both of these directions has been extensive and is continu-
ing.

Methods for selection of basis functions have received much attention,
particularly in the context of neural network research and deep reinforce-
ment learning (see e.g., the book by Goodfellow, Bengio, and Courville
[GBC16]). For discussions that are focused outside the neural network
area, see Bertsekas and Tsitsiklis [BeT96], Keller, Mannor, and Precup
[KMP06], Jung and Polani [JuP07], Bertsekas and Yu [BeY09], and Bhat-
nagar, Borkar, and Prashanth [BBP13]. Moreover, there has been consid-
erable research on optimal feature selection within given parametric classes
(see Menache, Mannor, and Shimkin [MMS05], Yu and Bertsekas [YuB09],
Busoniu et al. [BBD10a], and Di Castro and Mannor [DiM10]).

Incremental algorithms are the principal methods for training ap-
proximation architectures. They are supported by substantial theoretical
analysis, which addresses issues of convergence, rate of convergence, step-
size selection, and component order selection. Moreover, incremental algo-
rithms have been extended to constrained optimization settings, where the
constraints are also treated incrementally, first by Nedić [Ned11], and then
by several other authors: Bertsekas [Ber11a], Wang and Bertsekas [WaB15],
[WaB16], Bianchi [Bia16], Iusem, Jofre, and Thompson [IJT18]. It is be-
yond our scope to cover this analysis. The author’s surveys [Ber10a] and
[Ber15b], and convex optimization and nonlinear programming textbooks
[Ber15a], [Ber16], collectively contain an extensive account of incremental
methods, including the Kaczmarz, incremental gradient, subgradient, ag-
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gregated gradient, Newton, Gauss-Newton, and extended Kalman filtering
methods, and give many references. The book [BeT96] and paper [BeT00]
by Bertsekas and Tsitsiklis, and the survey by Bottou, Curtis, and Nocedal
[BCN18] provide theoretically oriented treatments.

Section 3.2: The publicly and commercially available neural network
training programs incorporate heuristics for scaling and preprocessing data,
stepsize selection, initialization, etc, which can be very effective in special-
ized problem domains. We refer to books on neural networks such as Bishop
[Bis95], Goodfellow, Bengio, and Courville [GBC16], and Haykin [Hay08].

Deep neural networks have created a lot of excitement in the machine
learning field, in view of some high profile successes in image and speech
recognition, and in RL with the AlphaGo and AlphaZero programs. One
question is whether and for what classes of target functions we can enhance
approximation power by increasing the number of layers while keeping the
number of weights constant. For analysis and speculation around this
question, see Bengio [Ben09], Liang and Srikant [LiS16], Yarotsky [Yar17],
Daubechies et al. [DDF19], and the references quoted there.

Another important research question relates to the role of overparame-
trization in the success of deep neural networks. With more weights than
training data, the training problem has infinitely many solutions, each pro-
viding an architecture that fits the training data perfectly. The question
then is how to select a solution that works well on test data (i.e., data
outside the training set); see Zhang et al. [ZBH16], [ZBH21], Belkin, Ma,
and Mandal [BMM18], Belkin, Rakhlin, and Tsybakov [BRT18], Soltano-
lkotabi, Javanmard, and Lee [SJL18], Bartlett et al. [BLL19], Hastie et
al. [HMR19], Muthukumar, Vodrahalli, and Sahai [MVS19], Su and Yang
[SuY19], Sun [Sun19], Vaswani et al. [VLK21], Zhang et al. [ZBH21] and
the discussion in the book by Hardt and Recht [HaR21].

Section 3.3: Fitted value iteration has a long history; it was mentioned by
Bellman among others. It has interesting properties, and at times exhibits
pathological/unstable behavior due to accumulation of errors over a long
horizon (see [Ber19a], Section 5.2).

The approximate policy iteration method of Section 3.3.3 has been
proposed by Fern, Yoon, and Givan [FYG06], and variants have also been
discussed and analyzed by several other authors. The method (with some
variations) has been used to train a tetris playing computer program that
performs impressively better than programs that are based on other vari-
ants of approximate policy iteration, and various other methods; see Scher-
rer [Sch13], Scherrer et al. [SGG15], and Gabillon, Ghavamzadeh, and
Scherrer [GGS13], who also provide an analysis of the method. The RL and
approximate DP books collectively describe several alternative simulation-
based methods for policy evaluation, including the popular temporal differ-
ence methods; see e.g., [BeT96], [SuB18], [Ber12], Chapters 6 and 7. The
book [Ber20a] describes distributed versions of approximate policy itera-
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tion, which are based on partitioning of the state space.
The original proposal of SARSA (Section 3.3.4) is attributed to Rum-

mery and Niranjan [RuN94], with related work presented in the papers by
Peng and Williams [PeW96], and Wiering and Schmidhuber [WiS98]. The
ideas of the DQN algorithm attracted much attention following the paper
by Mnih et al. [MKS15], which reported impressive test results on a suite
of 49 classic Atari 2600 games.

The rollout and approximate PI methodology for POMDP of Section
3.3.5 was described in the author’s RL book [Ber19a]. It was extended and
tested in the paper by Bhattacharya et al. [BBW20] in the context of a
challenging pipeline repair problem.

Advantage updating (Section 3.3.6) was proposed by Baird [Bai93],
[Bai94], and is discussed further in Section 6.6 of the neuro-dynamic pro-
gramming book [BeT96]. The differential training methodology (Section
3.3.7) was proposed by the author in the paper [Ber97b], and followup work
was presented by Weaver and Baxter [WeB99].

Section 3.4: Classification (sometimes called “pattern classification” or
“pattern recognition”) is a major subject in machine learning, for which
there are many approaches, an extensive literature, and an abundance of
public domain and commercial software; see e.g. the textbooks by Bishop
[Bis95], [Bis06], Duda, Hart, and Stork [DHS12], and Hardt and Recht
[HaR21]. Approximation in policy space was formulated as a classifi-
cation problem in the context of DP by Lagoudakis and Parr [LaP03],
and was followed up by several other authors (see e.g., Dimitrakakis and
Lagoudakis [DiL08], Lazaric, Ghavamzadeh, and Munos [LGM10], Gabil-
lon et al. [GLG11], Liu and Wei [LiW14], Farahmand et al. [FPB15], and
the references quoted there). While we have focused on a classification
approach that makes use of least squares regression and a parametric ar-
chitecture, other classification methods may also be used. For example
the paper [LaP03] discusses the use of nearest neighbor schemes, support
vector machines, as well as neural networks.

Section 3.5: The aggregation approach has a long history in scientific com-
putation and operations research (see for example Bean, Birge, and Smith
[BBS87], Chatelin and Miranker [ChM82], Douglas and Douglas [DoD93],
and Rogers et al. [RPW91]). It was introduced in the simulation-based
approximate DP context, mostly in the form of VI; see Singh, Jaakkola,
and Jordan [SJJ95], Gordon [Gor95], and Tsitsiklis and Van Roy [TsV96].
It was further discussed in the neuro-dynamic programming book [BeT96],
Sections 3.1.2 and 6.7.

The aggregation framework with representative features was intro-
duced in the author’s book [Ber12], was discussed in detail in the RL
textbook [Ber19a] (Chapter 6), and was further developed in the author’s
survey paper [Ber18b], which provides an expanded view of the methodol-
ogy. Biased aggregation (Section 3.5.7) was first proposed in the author’s
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paper [Ber18c], which contains further discussion, connections with rollout
algorithms, and additional methods.

Distributed asynchronous aggregation (Section 3.5.8) was first pro-
posed in the paper by Bertsekas and Yu [BeY10] (Example 2.5); see also
the discussions in author’s DP books [Ber12] (Section 6.5.4) and [Ber22b]
(Example 1.2.11). A recent computational study related to distributed
traffic routing is given by Vertovec and Margellos [VeM23].
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E X E R C I S E S

3.1 (Proof of Prop. 3.4.1)

Complete the details of the following proof of Prop. 3.4.1. Consider for any pair

(c, x) the conditional expected value E
{

(

z(c, x) − y
)2 ∣
∣ c, x

}

, where y is any

scalar. Given (c, x), the random variable z(c, x) takes the value z(c, x) = 1 with
probability p(c |x) and the value z(c, x) = 0 with probability 1 − p(c |x), so we
have

E
{

(

z(c, x)− y
)2 ∣
∣ c, x

}

= p(c |x)(y − 1)2 +
(

1− p(c |x)
)

y2.

We minimize this expression with respect to y, by setting to 0 its derivative, i.e.,

0 = 2p(c |x)(y − 1) + 2
(

1− p(c |x)
)

y = 2
(

− p(c | x) + y
)

.

We thus obtain the minimizing value of y, namely y∗ = p(c |x), so that

E
{

(

z(c, x)− p(c |x)
)2

| c, x
}

≤ E
{

(

z(c, x)− y
)2

| c, x
}

, for all scalars y.

For any function h of (c, x) we set y = h(c, x) in the above expression and obtain

E
{

(

z(c, x)− p(c |x)
)2

| c, x
}

≤ E
{

(

z(c, x)− h(c, x)
)2

| c, x
}

.

Since this is true for all (c, x), we also have

∑

(c,x)

ζ(c, x)E
{

(

z(c, x)−p(c |x)
)2 ∣
∣ c, x

}

≤
∑

(c,x)

ζ(c, x)E
{

(

z(c, x)−h(c, x)
)2 ∣
∣ c, x

}

,

for all functions h. By using the theorem of total probability (see e.g., [BeT08],
Chapter 1), this is equivalent to

E
{

(

z(c, x)− p(c |x)
)2
}

≤ E
{

(

z(c, x)− h(c, x)
)2
}

,

i.e., Eq. (3.35) holds.
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[BeC89] Bertsekas, D. P., and Castañon, D. A., 1989. “The Auction Algorithm for
Transportation Problems,” Annals of Operations Research, Vol. 20, pp. 67-96.
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