
MACHINE LEARNING
A First Course for Engineers and Scientists

Andreas Lindholm, Niklas Wahlström,
Fredrik Lindsten, Thomas B. Schön

This version: July 8, 2022

This material is published by Cambridge University Press.
Printed copies can be ordered via
http://www.cambridge.org.

This pre-publication version is free to view and download for
personal use only. Not for re-distribution, re-sale or use in

derivative works. © The authors, 2022.

http://www.cambridge.org

Contents

Acknowledgements ix

Notation xi

1 Introduction 1
1.1 Machine Learning Exemplified 2
1.2 About This Book . 10
1.3 Further Reading . 12

2 Supervised Learning: A First Approach 13
2.1 Supervised Machine Learning 13
2.2 A Distance-Based Method: k-NN 19
2.3 A Rule-Based Method: Decision Trees 25
2.4 Further Reading . 36

3 Basic Parametric Models and a Statistical Perspective on Learning 37
3.1 Linear Regression . 37
3.2 Classification and Logistic Regression 45
3.3 Polynomial Regression and Regularisation 54
3.4 Generalised Linear Models . 57
3.5 Further Reading . 60
3.A Derivation of the Normal Equations 60

4 Understanding, Evaluating, and Improving Performance 63
4.1 Expected New Data Error 𝐸new: Performance in Production 63
4.2 Estimating 𝐸new . 66
4.3 The Training Error–Generalisation Gap Decomposition of 𝐸new . . 71
4.4 The Bias–Variance Decomposition of 𝐸new 79
4.5 Additional Tools for Evaluating Binary Classifiers 86
4.6 Further Reading . 90

5 Learning Parametric Models 91
5.1 Principles of Parametric Modelling 91
5.2 Loss Functions and Likelihood-Based Models 96
5.3 Regularisation . 109
5.4 Parameter Optimisation . 112
5.5 Optimisation with Large Datasets 124

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
v

Contents

5.6 Hyperparameter Optimisation 129
5.7 Further Reading . 131

6 Neural Networks and Deep Learning 133
6.1 The Neural Network Model . 133
6.2 Training a Neural Network . 140
6.3 Convolutional Neural Networks 147
6.4 Dropout . 155
6.5 Further Reading . 159
6.A Derivation of the Backpropagation Equations 160

7 Ensemble Methods: Bagging and Boosting 163
7.1 Bagging . 164
7.2 Random Forests . 171
7.3 Boosting and AdaBoost . 174
7.4 Gradient Boosting . 182
7.5 Further Reading . 187

8 Non-linear Input Transformations and Kernels 189
8.1 Creating Features by Non-linear Input Transformations 189
8.2 Kernel Ridge Regression . 192
8.3 Support Vector Regression . 197
8.4 Kernel Theory . 202
8.5 Support Vector Classification . 208
8.6 Further Reading . 213
8.A The Representer Theorem . 213
8.B Derivation of Support Vector Classification 214

9 The Bayesian Approach and Gaussian Processes 217
9.1 The Bayesian Idea . 217
9.2 Bayesian Linear Regression . 220
9.3 The Gaussian Process . 226
9.4 Practical Aspects of the Gaussian Process 237
9.5 Other Bayesian Methods in Machine Learning 242
9.6 Further Reading . 242
9.A The Multivariate Gaussian Distribution 243

10 Generative Models and Learning from Unlabelled Data 247
10.1 The Gaussian Mixture Model and Discriminant Analysis 248
10.2 Cluster Analysis . 259
10.3 Deep Generative Models . 268
10.4 Representation Learning and Dimensionality Reduction 275
10.5 Further Reading . 285

vi
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

Contents

11 User Aspects of Machine Learning 287
11.1 Defining the Machine Learning Problem 287
11.2 Improving a Machine Learning Model 291
11.3 What If We Cannot Collect More Data? 299
11.4 Practical Data Issues . 303
11.5 Can I Trust my Machine Learning Model? 307
11.6 Further Reading . 308

12 Ethics in Machine Learning 309
12.1 Fairness and Error Functions . 309
12.2 Misleading Claims about Performance 314
12.3 Limitations of Training Data . 322
12.4 Further Reading . 326

Bibliography 327

Index 335

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
vii

Acknowledgements

Many people have helped us throughout the writing of this book. First of all, we
want to mention David Sumpter, who, in addition to giving feedback from using the
material for teaching, contributed the entire Chapter 12 on ethical aspects. We have
also received valuable feedback from many students and other teacher colleagues.
We are, of course, very grateful for each and every comment we have received; in
particular, we want to mention David Widmann, Adrian Wills, Johannes Hendricks,
Mattias Villani, Dmitrĳs Kass, and Joel Oskarsson. We have also received useful
feedback on the technical content of the book, including the practical insights in
Chapter 11, from Agrin Hilmkil (at Peltarion), Salla Franzén and Alla Tarighati
(at SEB), Lawrence Murray (at Uber), James Hensman and Alexis Boukouvalas
(at Secondmind), Joel Kronander and Nand Dalal (at Nines), and Peter Lindskog
and Jacob Roll (at Arriver). We also received valuable comments from Arno
Solin on Chapter 8 and 9, and Joakim Lindblad on Chapter 6. Several people
helped us with the figures illustrating the examples in Chapter 1, namely Antônio
Ribeiro (Figure 1.1), Fredrik K. Gustafsson (Figure 1.4), and Theodoros Damoulas
(Figure 1.5). Thank you all for your help!

During the writing of this book, we enjoyed financial support from AI Competence
for Sweden, the Swedish Research Council (projects: 2016-04278, 2016-06079,
2017-03807, 2020-04122), the Swedish Foundation for Strategic Research (projects:
ICA16-0015, RIT12-0012), the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation, ELLIIT,
and the Kjell och Märta Beĳer Foundation.

Finally, we are thankful to Lauren Cowles at Cambridge University Press for
helpful advice and guidance through the publishing process and to Chris Cartwright
for careful and helpful copyediting.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
ix

Notation

Symbol Meaning

General mathematics

𝑏 a scalar
b a vector
B a matrix
T transpose

sign(𝑥) the sign operator; +1 if 𝑥 > 0, −1 if 𝑥 < 0
∇ del operator; ∇ 𝑓 is the gradient of 𝑓

‖b‖2 Euclidean norm of b
‖b‖1 taxicab norm of b
𝑝(𝑧) probability density (if 𝑧 is a continuous random variable)

or probability mass (if 𝑧 is a discrete random variable)
𝑝(𝑧 |𝑥) the probability density (or mass) for 𝑧 conditioned on 𝑥

N(𝑧;𝑚, 𝜎2) the normal probability distribution for the random variable
𝑧 with mean 𝑚 and variance 𝜎2

The supervised learning problem

x input
𝑦 output

x★ test input
𝑦★ test output

�̂�(x★) a prediction of 𝑦★
𝜀 noise
𝑛 number of data points in training data
T training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1
𝐿 loss function
𝐽 cost function

Supervised methods

𝜽 parameters to be learned from training data
𝑔(x) model of 𝑝(𝑦 | x) (most classification methods)

𝜆 regularisation parameter
𝜙 link function (generalised linear models)
ℎ activation function (neural networks)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
xi

Notation

W weight matrix (neural networks)
b offset vector (neural networks)
𝛾 learning rate
𝐵 number of members in an ensemble method
𝜅 kernel
𝝓 nonlinear feature transformation (kernel methods)
𝑑 dimension of 𝝓; number of features (kernel methods)

Evaluation of supervised methods

𝐸 error function
𝐸new new data error
𝐸train training data error

𝐸𝑘-fold estimate of 𝐸new from 𝑘-fold cross validation
𝐸hold-out estimate of 𝐸new from hold-out validation data

xii
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1 Introduction

Machine learning is about learning, reasoning, and acting based on data. This
is done by constructing computer programs that process the data, extract useful
information, make predictions regarding unknown properties, and suggest actions to
take or decisions to make. What turns data analysis into machine learning is that the
process is automated and that the computer program is learnt from data. This means
that generic computer programs are used, which are adapted to application-specific
circumstances by automatically adjusting the settings of the program based on
observed, so-called training data. It can therefore be said that machine learning
is a way of programming by example. The beauty of machine learning is that it is
quite arbitrary what the data represents, and we can design general methods that are
useful for a wide range of practical applications in different domains. We illustrate
this via a range of examples below.

The ‘generic computer program’ referred to above corresponds to a mathematical
model of the data. That is, when we develop and describe different machine
learning methods, we do this using the language of mathematics. The mathematical
model describes a relationship between the quantities involved, or variables, that
correspond to the observed data and the properties of interest (such as predictions,
actions, etc.) Hence, the model is a compact representation of the data that, in a
precise mathematical form, captures the key properties of the phenomenon we are
studying. Which model to make use of is typically guided by the machine learning
engineer’s insights generated when looking at the available data and the practitioner’s
general understanding of the problem. When implementing the method in practice,
this mathematical model is translated into code that can be executed on a computer.
However, to understand what the computer program actually does, it is important
also to understand the underlying mathematics.

As mentioned above, the model (or computer program) is learnt based on the
available training data. This is accomplished by using a learning algorithm which
is capable of automatically adjusting the settings, or parameters, of the model to
agree with the data. In summary, the three cornerstones of machine learning are:

1. The data 2. The mathematical model 3. The learning algorithm.

In this introductory chapter, we will give a taste of the machine learning problem
by illustrating these cornerstones with a few examples. They come from different
application domains and have different properties, but nevertheless, they can all
be addressed using similar techniques from machine learning. We also give some

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
1

1 Introduction

advice on how to proceed through the rest of the book and, at the end, provide
references to good books on machine learning for the interested reader who wants
to dig further into this topic.

1.1 Machine Learning Exemplified

Machine learning is a multifaceted subject. We gave a brief and high-level description
of what it entails above, but this will become much more concrete as we proceed
throughout this book and introduce specific methods and techniques for solving
various machine learning problems. However, before digging into the details, we
will try to give an intuitive answer to the question ‘What is machine learning?’, by
discussing a few application examples of where it can (and has) been used.

We start with an example related to medicine, more precisely cardiology.

Example 1.1 Automatically diagnosing heart abnormalities

The leading cause of death globally is conditions that affect the heart and blood
vessels, collectively referred to as cardiovascular diseases. Heart problems often
influence the electrical activity of the heart, which can be measured using electrodes
attached to the body. The electrical signals are reported in an electrocardiogram
(ECG). In Figure 1.1 we show examples of (parts of) the measured signals from
three different hearts. The measurements stem from a healthy heart (top), a heart
suffering from atrial fibrillation (middle), and a heart suffering from right bundle
branch block (bottom). Atrial fibrillation makes the heart beat without rhythm,
making it hard for the heart to pump blood in a normal way. Right bundle branch
block corresponds to a delay or blockage in the electrical pathways of the heart.

Fig.
1.1

By analysing the ECG signal, a cardiologist gains valuable information about
the condition of the heart, which can be used to diagnose the patient and plan the
treatment.

2
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1.1 Machine Learning Exemplified

To improve the diagnostic accuracy, as well as to save time for the cardiologists,
we can ask ourselves if this process can be automated to some extent. That is, can
we construct a computer program which reads in the ECG signals, analyses the data,
and returns a prediction regarding the normality or abnormality of the heart? Such
models, capable of accurately interpreting an ECG examination in an automated
fashion, will find applications globally, but the needs are most acute in low- and
middle-income countries. An important reason for this is that the population in these
countries often do not have easy and direct access to highly skilled cardiologists
capable of accurately carrying out ECG diagnoses. Furthermore, cardiovascular
diseases in these countries are linked to more than 75% of deaths.

The key challenge in building such a computer program is that it is far from
obvious which computations are needed to turn the raw ECG signal into a predication
about the heart condition. Even if an experienced cardiologist were to try to explain
to a software developer which patterns in the data to look for, translating the
cardiologist’s experience into a reliable computer program would be extremely
challenging.

To tackle this difficulty, the machine learning approach is to instead teach the
computer program through examples. Specifically, instead of asking the cardiologist
to specify a set of rules for how to classify an ECG signal as normal or abnormal,
we simply ask the cardiologist (or a group of cardiologists) to label a large number
of recorded ECG signals with labels corresponding to the the underlying heart
condition. This is a much easier (albeit possibly tedious) way for the cardiologists
to communicate their experience and encode it in a way that is interpretable by a
computer.

The task of the learning algorithm is then to automatically adapt the computer
program so that its predictions agree with the cardiologists’ labels on the labelled
training data. The hope is that, if it succeeds on the training data (where we already
know the answer), then it should be possible to use the predictions made the by
program on previously unseen data (where we do not know the answer) as well.

This is the approach taken by Ribeiro et al. (2020), who developed a machine
learning model for ECG prediction. In their study, the training data consists of
more than 2 300 000 ECG records from almost 1 700 000 different patients from the
state of Minas Gerais in Brazil. More specifically, each ECG corresponds to 12
time series (one from each of the 12 electrodes that were used in conducting the
exam) of a duration between 7 to 10 seconds each, sampled at frequencies ranging
from 300 Hz to 600 Hz. These ECGs can be used to provide a full evaluation of
the electrical activity of the heart, and it is indeed the most commonly used test
in evaluating the heart. Importantly, each ECG in the dataset also comes with a
label sorting it into different classes – no abnormalities, atrial fibrillation, right
bundle branch block, etc. – according to the status of the heart. Based on this data,
a machine learning model is trained to automatically classify a new ECG recording
without requiring a human doctor to be involved. The model used is a deep neural
network, more specifically a so-called residual network, which is commonly used
for images. The researchers adapted this to work for the ECG signals of relevance
for this study. In Chapter 6, we introduce deep learning models and their training
algorithms.

Evaluating how a model like this will perform in practice is not straightforward.
The approach taken in this study was to ask three different cardiologists with

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
3

1 Introduction

experience in electrocardiography to examine and classify 827 ECG recordings
from distinct patients. This dataset was then evaluated by the algorithm, two 4th
year cardiology residents, two 3rd year emergency residents, and two 5th year
medical students. The average performance was then compared. The result was
that the algorithm achieved better or the same result when compared to the human
performance on classifying six types of abnormalities.

Before we move on, let us pause and reflect on the example introduced above. In
fact, many concepts that are central to machine learning can be recognised in this
example.

As we mentioned above, the first cornerstone of machine learning is the data.
Taking a closer look at what the data actually is, we note that it comes in different
forms. First, we have the training data which is used to train the model. Each
training data point consists of both the ECG signal, which we refer to as the input,
and its label corresponding to the type of heart condition seen in this signal, which
we refer to as the output. To train the model, we need access to both the inputs
and the outputs, where the latter had to be manually assigned by domain experts
(or possibly some auxiliary examination). Training a model from lableled data
points is therefore referred to as supervised learning. We think of the learning
as being supervised by the domain expert, and the learning objective is to obtain
a computer program that can mimic the labelling done by the expert. Second,
we have the (unlabelled) ECG signals that will be fed to the program when it is
used ‘in production’. It is important to remember that the ultimate goal of the
model is to obtain accurate predictions in this second phase. We say that the
predictions made by the model must generalise beyond the training data. How to
train models that are capable of generalising, and how to evaluate to what extent
they do so, is a central theoretical question studied throughout this book (see in
particular Chapter 4).

We illustrate the training of the ECG prediction model in Figure 1.2. The general
structure of the training procedure is, however, the same (or at least very similar)
for all supervised machine learning problems.

Another key concept that we encountered in the ECG example is the notion of a
classification problem. Classification is a supervised machine learning task which
amounts to predicting a certain class, or label, for each data point. Specifically, for
classification problems, there are only a finite number of possible output values.
In the ECG example, the classes correspond to the type of heart condition. For
instance, the classes could be ‘normal’ or ‘abnormal’, in which case we refer to
it as a binary classification problem (only two possible classes). More generally,
we could design a model for classifying each signal as either ‘normal’, or assign it
to one of a predetermined set of abnormalities. We then face a (more ambitious)
multi-class classification problem.

Classification is, however, not the only application of supervised machine learning
that we will encounter. Specifically, we will also study another type of problem
referred to as regression problems. Regression differs from classification in that the

4
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1.1 Machine Learning Exemplified

Labels e.g. healty,

art. fib., RBBB

Training data

Model Learning
algorithmprediction

update model

?

Unseen data

Model prediction

Figure 1.2: Illustrating the supervised machine learning process with training to the left and
then the use of the trained model to the right. Left: Values for the unknown parameters of
the model are set by the learning algorithm such that the model best describes the available
training data. Right: The learned model is used on new, previously unseen data, where we
hope to obtain a correct classification. It is thus essential that the model is able to generalise
to new data that is not present in the training data.
output (that is, the quantity that we want the model to predict) is a numerical value.
We illustrate with an example from material science.

Example 1.2 Formation energy of crystals

Much of our technological development is driven by the discovery of new materials
with unique properties. Indeed, technologies such as touch screens and batteries for
electric vehicles have emerged due to advances in materials science. Traditionally,
materials discovery was largely done through experiments, but this is both time
consuming and costly, which limited the number of new materials that could be
found. Over the past few decades, computational methods have therefore played an
increasingly important role. The basic idea behind computational materials science
is to screen a very large number of hypothetical materials, predict various properties
of interest by computational methods, and then attempt to experimentally synthesise
the most promising candidates.

Crystalline solids (or, simply, crystals) are a central type of inorganic material.
In a crystal, the atoms are arranged in a highly ordered microscopic structure.
Hence, to understand the properties of such a material, it is not enough to know the
proportion of each element in the material, but we also need to know how these
elements (or atoms) are arranged into a crystal. A basic property of interest when
considering a hypothetical material is therefore the formation energy of the crystal.
The formation energy can be thought of as the energy that nature needs to spend to
form the crystal from the individual elements. Nature strives to find a minimum
energy configuration. Hence, if a certain crystal structure is predicted to have a
formation energy that is significantly larger than alternative crystals composed of
the same elements, then it is unlikely that it can be synthesised in a stable way in
practice.

A classical method (going back to the 1960s) that can be used for computing the
formation energy is so-called density functional theory (DFT). The DFT method,
which is based on quantum mechanical modelling, paved the way for the first break-

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
5

1 Introduction

through in computational materials science, enabling high throughput screening
for materials discovery. That being said, the DFT method is computationally very
expensive, and even with modern supercomputers, only a small fraction of all
potentially interesting materials have been analysed.

To handle this limitation, there has been much recent interest in using machine
learning for materials discovery, with the potential to result in a second computational
revolution. By training a machine learning model to, for instance, predict the
formation energy – but in a fraction of the computational time required by DFT – a
much larger range of candidate materials can be investigated.

As a concrete example, Faber et al. (2016) used a machine learning method
referred to as kernel ridge regression (see Chapter 8) to predict the formation energy
of around 2 million so-called elpasolite crystals. The machine learning model is a
computer program which takes a candidate crystal as input (essentially, a description
of the positions and elemental types of the atoms in the crystal) and is asked to
return a prediction of the formation energy. To train the model, 10 000 crystals
were randomly selected, and their formation energies were computed using DFT.
The model was then trained to predict formation energies to agree as closely as
possible with the DFT output on the training set. Once trained, the model was used
to predict the energy on the remaining ∼99.5% of the potential elpasolites. Among
these, 128 new crystal structures were found to have a favorable energy, thereby
being potentially stable in nature.

Comparing the two examples discussed above, we can make a few interesting
observations. As already pointed out, one difference is that the ECG model is asked
to predict a certain class (say, normal or abnormal), whereas the materials discovery
model is asked to predict a numerical value (the formation energy of a crystal).
These are the two main types of prediction problems that we will study in this book,
referred to as classification and regression, respectively. While conceptually similar,
we often use slight variations of the underpinning mathematical models, depending
on the problem type. It is therefore instructive to treat them separately.

Both types are supervised learning problems, though. That is, we train a predictive
model to mimic the predictions made by a ‘supervisor’. However, it is interesting to
note that the supervision is not necessarily done by a human domain expert. Indeed,
for the formation energy model, the training data was obtained by running automated
(but costly) density functional theory computations. In other situations, we might
obtain the output values naturally when collecting the training data. For instance,
assume that you want to build a model for predicting the outcome of a soccer match
based on data about the players in the two teams. This is a classification problem
(the output is ‘win’, ‘lose’, or ‘tie’), but the training data does not have to be manually
labelled, since we get the labels directly from historical matches. Similarly, if you
want to build a regression model for predicting the price of an apartment based
on its size, location, condition, etc., then the output (the price) is obtained directly
from historical sales.

Finally, it is worth noting that, although the examples discussed above correspond
to very different application domains, the problems are quite similar from a machine
learning perspective. Indeed, the general procedure outlined in Figure 1.2 is also

6
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1.1 Machine Learning Exemplified

applicable, with minor modifications, to the materials discovery problem. This
generality and versatility of the machine learning methodology is one of its main
strengths and beauties.

In this book, we will make use of statistics and probability theory to describe
the models used for making predictions. Using probabilistic models allows us to
systematically represent and cope with the uncertainty in the predictions. In the
examples above, it is perhaps not obvious why this is needed. It could (perhaps) be
argued that there is a ‘correct answer’ both in the ECG problem and the formation
energy problem. Therefore, we might expect that the machine learning model
should be able to provide a definite answer in its prediction. However, even in
situations when there is a correct answer, machine learning models rely on various
assumptions, and they are trained from data using computational learning algorithms.
With probabilistic models, we are able to represent the uncertainty in the model’s
predictions, whether it originates from the data, the modelling assumptions, or the
computation. Furthermore, in many applications of machine learning, the output is
uncertain in itself, and there is no such thing as a definite answer. To highlight the
need for probabilistic predictions, let us consider an example from sports analytics.

Example 1.3 Probability of scoring a goal in soccer

Soccer is a sport where a great deal of data has been collected on how individual
players act throughout a match, how teams collaborate, how they perform over time,
etc. All this data is used to better understand the game and to help players reach
their full potential.

Consider the problem of predicting whether or not a shot results in a goal. To this
end, we will use a rather simple model, where the prediction is based only on the
player’s position on the field when taking the shot. Specifically, the input is given by
the distance from the goal and the angle between two lines drawn from the player’s
position to the goal posts; see Figure 1.3. The output corresponds to whether or not
the shot results in a goal, meaning that this is a binary classification problem.

𝝋

𝝋

𝝋

Fr
eq

ue
nc

y
of

go
al

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig.
1.3

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
7

1 Introduction

Clearly, knowing the player’s position is not enough to definitely say if the shot
will be successful. Still, it is reasonable to assume that it provides some information
about the chance of scoring a goal. Indeed, a shot close to the goal line with a large
angle is intuitively more likely to result in a goal than one made from a position
close to the sideline. To acknowledge this fact when constructing a machine learning
model, we will not ask the model to predict the outcome of the shot but rather to
predict the probability of a goal. This is accomplished by using a probabilistic
model which is trained by maximising the total probability of the observed training
data with respect to the probabilistic predictions. For instance, using a so-called
logistic regression model (see Chapter 3) we obtain a predicted probability of
scoring a goal from any position, illustrated using a heat map in the right panel in
Figure 1.3.

The supervised learning problems mentioned above were categorised as either
classification or regression problems, depending on the type of output. These
problem categories are the most common and typical instances of supervised
machine learning, and they will constitute the foundation for most methods discussed
in this book. However, machine learning is in fact much more general and can be
used to build complex predictive models that do not naturally fit into either the
classification or the regression category. To whet the appetite for further exploration
of the field of machine learning, we provide two such examples below. These
examples go beyond the specific problem formulations that we explicitly study in
this book, but they nevertheless build on the same core methodology.

In the first of these two examples, we illustrate a computer vision capability,
namely how to classify each individual pixel of an image into a class describing the
object that the pixel belongs to. This has important applications in, for example,
autonomous driving and medical imaging. When compared to the earlier examples,
this introduces an additional level of complexity, in that the model needs to be able
to handle spatial dependencies across the image in its classifications.

Example 1.4 Pixel-wise class prediction

When it comes to machine vision, an important capability is to be able to associate
each pixel in an image with a corresponding class; see Figure 1.4 for an illustration
in an autonomous driving application. This is referred to as semantic segmentation.
In autonomous driving, it is used to separate cars, road, pedestrians, etc. The output
is then used as input to other algorithms, for instance for collision avoidance. When
it comes to medical imaging, semantic segmentation is used, for instance, to tell
apart different organs and tumors.

To train a semantic segmentation model, the training data consist of a large number
of images (inputs). For each such image, there is a corresponding output image of
the same size, where each pixel has been labelled by hand to belong to a certain class.
The supervised machine learning problem then amounts to using this data to find a
mapping that is capable of taking a new unseen image and produce a corresponding
output in the form of a predicted class for each pixel. Essentially, this is a type of clas-
sification problem, but all pixels need to be classified simultaneously while respecting

8
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1.1 Machine Learning Exemplified

the spatial dependencies across the image to result in a coherent segmentation.

Fig.
1.4

The bottom part of Figure 1.4 shows the prediction generated by such an algorithm,
where the aim is to classify each pixel as either car (blue), traffic sign (yellow),
pavement (purple), or tree (green). The best performing solutions for this task today
rely on cleverly crafted deep neural networks (see Chapter 6).

In the final example, we raise the bar even higher, since here the model needs
to be able to explain dependencies not only over space, but also over time, in a
so-called spatio-temporal problem. These problems are finding more and more
applications as we get access to more and more data. More precisely, we look into
the problem of how to build probabilistic models capable of better estimating and
forecasting air pollution across time and space in a city, in this case London.

Example 1.5 Estimating air pollution levels across London

Roughly 91% of the world’s population lives in places where the air quality levels are
worse than those recommended by the world health organisation. Recent estimates
indicate that 4.2 million people die each year from stroke, heart disease, lung cancer,
and chronic respiratory diseases caused by ambient air pollution.

A natural first step in dealing with this problem is to develop technology to
measure and aggregate information about the air pollution levels across time and
space. Such information enables the development of machine learning models to
better estimate and accurately forecast air pollution, which in turn permits suitable
interventions. The work that we feature here sets out to do this for the city of London,
where more than 9 000 people die early every year as a result of air pollution.

Air quality sensors are now – as opposed to the situation in the recent past –
available at relatively low cost. This, combined with an increasing awareness of the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
9

1 Introduction

problem, has caused interested companies, individuals, non-profit organisations,
and community groups to contribute by setting up sensors and making the data
available. More specifically, the data in this example comes from a sensor network
of ground sensors providing hourly readings of NO2 and hourly satellite data at
a spatial resolution of 7 km × 7 km. The resulting supervised machine learning
problem is to build a model that can deliver forecasts of the air pollution level
across time and space. Since the output – pollution level – is a continuous
variable, this is a type of regression problem. The particularly challenging aspect
here is that the measurements are reported at different spatial resolutions and on
varying timescales.

The technical challenge in this problem amounts to merging the information
from many sensors of different kinds reporting their measurements on different
spatial scales, sometimes referred to as a multi-sensor multi-resolution problem.
Besides the problem under consideration here, problems of this kind find many
different applications. The basis for the solution providing the estimates exemplified
in Figure 1.5 is the Gaussian process (see Chapter 9).

Fig.
1.5

Figure 1.5 illustrates the output from the Gaussian process model in terms of
spatio-temporal estimation and forecasting of NO2 levels in London. To the left,
we have the situation on February 19, 2019 at 11:00 using observations from both
ground sensors providing hourly readings of NO2 and from satellite data. To the
right, we have the situation on 19 February 2019 at 17:00 using only the satellite data.

The Gaussian process is a non-parametric and probabilistic model for nonlinear
functions. Non-parametric means that it does not rely on any particular parametric
functional form to be postulated. The fact that it is a probabilistic model means that
it is capable of representing and manipulating uncertainty in a systematic way.

1.2 About This Book

The aim of this book is to convey the spirit of supervised machine learning,
without requiring any previous experience in the field. We focus on the underlying
mathematics as well as the practical aspects. This book is a textbook; it is not
a reference work or a programming manual. It therefore contains only a careful

10
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

1.2 About This Book

(yet comprehensive) selection of supervised machine learning methods and no
programming code. There are by now many well-written and well-documented
code packages available, and it is our firm belief that with a good understanding of
the mathematics and the inner workings of the methods, the reader will be able to
make the connection between this book and his/her favorite code package in his/her
favorite programming language.

We take a statistical perspective in this book, meaning that we discuss and
motivate methods in terms of their statistical properties. It therefore requires some
previous knowledge in statistics and probability theory, as well as calculus and
linear algebra. We hope that reading the book from start to end will give the reader
a good starting point for working as a machine learning engineer and/or pursuing
further studies within the subject.

The book is written such that it can be read back to back. There are, however,
multiple possible paths through the book that are more selective depending on the
interest of the reader. Figure 1.6 illustrates the major dependencies between the
chapters. In particular, the most fundamental topics are discussed in Chapters 2, 3,
and 4, and we do recommend the reader to read those chapters before proceeding
to the later chapters that contain technically more advanced topics (Chapters 5–9).
Chapter 10 goes beyond the supervised setting of machine learning, and Chapter 11
focuses on some of the more practical aspects of designing a successful machine
learning solution and has a less technical nature than the preceding chapters. Finally,
Chapter 12 (written by David Sumpter) discusses certain ethical aspects of modern
machine learning.

2: Supervised Learning: A
First Approach

3: Basic Parametric Models
and a Statistical Perspective
on Learning

4: Understanding, Evaluating,
and Improving Performance

5: Learning Parametric Models 6: Neural Networks and Deep
Learning

7: Ensemble Methods: Bag-
ging and Boosting

8: Non-linear Input Transfor-
mations and Kernels

9: The Bayesian Approach and
Gaussian Processes

10: Generative Models and
Learning from Unlabelled Data

11: User Aspects of Machine
Learning

12: Ethics in Machine Learn-
ing

Fu
nd

am
en

ta
l

ch
ap

te
rs

A
dv

an
ce

d
ch

ap
te

rs
Sp

ec
ia

l
ch

ap
te

rs

5.2 (for 8.3, 8.5)

5.4,
5.5

8.1,
8.2,
8.4

Figure 1.6: The structure of this book, illustrated by blocks (chapters) and arrows (recom-
mended order in which to read the chapters). We do recommend everyone to read (or at
least skim) the fundamental material in Chapters 2, 3, and 4 first. The path through the
technically more advanced Chapters 5–9, can be chosen to match the particular interest of
the reader. For Chapters 11, 10, and 12, we recommend reading the fundamental chapters
first.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
11

1 Introduction

1.3 Further Reading

There are by now quite a few extensive textbooks available on the topic of machine
learning, which introduce the area in different ways compared to how we do so in this
book. We will only mention a few here. The book of Hastie et al. (2009) introduces
the area of statistical machine learning in a mathematically solid and accessible
manner. A few years later, the authors released a different version of their book
(James et al. 2013), which is mathematically significantly lighter, conveying the main
ideas in an even more accessible manner. These books do not venture long either
into the world of Bayesian methods or the world of neural networks. However, there
are several complementary books that do exactly that – see e.g. Bishop (2006) and
Murphy (2021). MacKay (2003) provides a rather early account drawing interesting
and useful connections to information theory. It is still very much worth looking
into. The book by Shalev-Shwartz and Ben-David (2014) provides an introduction
with a clear focus on the underpinning theoretical constructions, connecting very
deep questions – such as ‘what is learning?’ and ‘how can a machine learn’ – with
mathematics. It is a perfect book for those of our readers who would like to deepen
their understanding of the theoretical background of that area. We also mention the
work of Efron and Hastie (2016), where the authors take a constructive historical
approach to the development of the area, covering the revolution in data analysis
that emerged with computers. Contemporary introductions to the mathematics of
machine learning are provided by Strang (2019) and Deisenroth et al. (2019).

For a full account of the work on automatic diagnosis of heart abnormalities, see
Ribeiro et al. 2020, and for a general introduction to the use of machine learning –
in particular deep learning – in medicine, we point the reader to Topol (2019). The
application of kernel ridge regression to elpasolite crystals was borrowed from
Faber et al. (2016). Other applications of machine learning in materials science are
reviewed in the collection edited by Schütt et al. (2020). The London air pollution
study was published by Hamelĳnck et al. (2019), where the authors introduce
interesting and useful developments of the Gaussian process model that we explain
in Chapter 9. When it comes to semantic segmentation, the ground-breaking work
of Long et al. (2015) has received massive interest. The two main bases for the
current development in semantic segmentation are Zhao et al. (2017) and L.-C. Chen
et al. (2017). A thorough introduction to the mathematics of soccer is provided in
the book by D. Sumpter (2016), and a starting point to recent ideas on how to assess
the impact of player actions is given in Decroos et al. (2019).

12
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2 Supervised Learning: A First
Approach

In this chapter, we will introduce the supervised machine learning problem as well as
two basic machine learning methods for solving it. The methods we will introduce
are called 𝑘-nearest neighbours and decision trees. These two methods are relatively
simple, and we will derive them on intuitive grounds. Still, these methods are useful
in their own right and are therefore a good place to start. Understanding their inner
workings, advantages, and shortcomings also lays a good foundation for the more
advanced methods that are to come in later chapters.

2.1 Supervised Machine Learning

In supervised machine learning, we have some training data that contains examples
of how some input1 variable x relates to an output2 variable 𝑦. By using some
mathematical model or method, which we adapt to the training data, our goal is to
predict the output 𝑦 for a new, previously unseen, set of test data for which only x is
known. We usually say that we learn (or train) a model from the training data, and
that process involves some computations implemented on a computer.

Learning from Labelled Data

In most interesting supervised machine learning applications, the relationship
between input x and output 𝑦 is difficult to describe explicitly. It may be too
cumbersome or complicated to fully unravel from application domain knowledge,
or even unknown. The problem can therefore usually not be solved by writing a
traditional computer program that takes x as input and returns 𝑦 as output from
a set of rules. The supervised machine learning approach is instead to learn the
relationship between x and 𝑦 from data, which contains examples of observed pairs
of input and output values. In other words, supervised machine learning amounts to
learning from examples.

The data used for learning is called training data, and it has to consist of several
input–output data points (samples) (x𝑖 , 𝑦𝑖), in total 𝑛 of them. We will compactly

1The input is commonly also called feature, attribute, predictor, regressor, covariate, explanatory
variable, controlled variable, and independent variable.

2The output is commonly also called response, regressand, label, explained variable, predicted
variable, or dependent variable.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
13

2 Supervised Learning: A First Approach

write the training data as T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1. Each data point in the training data
provides a snapshot of how 𝑦 depends on x, and the goal in supervised machine
learning is to squeeze as much information as possible out of T . In this book, we
will only consider problems where the individual data points are assumed to be
(probabilistically) independent. This excludes, for example, applications in time
series analysis, where it is of interest to model the correlation between x𝑖 and x𝑖+1.

The fact that the training data contains not only input values x𝑖 but also output
values 𝑦𝑖 is the reason for the term ‘supervised’ machine learning. We may say
that each input x𝑖 is accompanied by a label 𝑦𝑖, or simply that we have labelled
data. For some applications, it is only a matter of jointly recording x and 𝑦. In
other applications, the output 𝑦 has to be created by labelling of the training data
inputs x by a domain expert. For instance, to construct a training dataset for the
cardiovascular disease application introduced in Chapter 1, a cardiologist needs to
look at all training data inputs (ECG signals) x𝑖 and label them by assigning to the
variable 𝑦𝑖 to correspond to the heart condition that is seen in the signal. The entire
learning process is thus ‘supervised’ by the domain expert.

We use a vector boldface notation x to denote the input, since we assume it to
be a 𝑝-dimensional vector, x = [𝑥1 𝑥2 · · · 𝑥𝑝]T, where T denotes the transpose.
Each element of the input vector x represents some information that is considered
to be relevant for the application at hand, for example the outdoor temperature or
the unemployment rate. In many applications, the number of inputs 𝑝 is large, or
put differently, the input x is a high-dimensional vector. For instance, in a computer
vision application where the input is a greyscale image, x can be all pixel values in
the image, so 𝑝 = ℎ × 𝑤 where ℎ and 𝑤 denote the height and width of the input
image.3 The output 𝑦, on the other hand, is often of low dimension, and throughout
most of this book, we will assume that it is a scalar value. The type of the output
value, numerical or categorical, turns out to be important and is used to distinguish
between two subtypes of the supervised machine learning problems: regression and
classification. We will discuss this next.

Numerical and Categorical Variables

The variables contained in our data (input as well as output) can be of two different
types: numerical or categorical. A numerical variable has a natural ordering.
We can say that one instance of a numerical variable is larger or smaller than
another instance of the same variable. A numerical variable could, for instance,
be represented by a continuous real number, but it could also be discrete, such
as an integer. Categorical variables, on the other hand, are always discrete, and

3For image-based problems it is often more convenient to represent the input as a matrix of size
ℎ × 𝑤 than as a vector of length 𝑝 = ℎ𝑤, but the dimension is nevertheless the same. We will get
back to this in Chapter 6 when discussing the convolutional neural network, a model structure
tailored to image-type inputs.

14
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.1 Supervised Machine Learning

Table 2.1: Examples of numerical and categorical variables.

Variable type Example Handled as

Number (continuous) 32.23 km/h, 12.50 km/h, 42.85 km/h Numerical
Number (discrete) with natural
ordering

0 children, 1 child, 2 children Numerical

Number (discrete) without natural
ordering

1 = Sweden, 2 = Denmark,
3 = Norway

Categorical

Text string Hello, Goodbye, Welcome Categorical

importantly, they lack a natural ordering. In this book we assume that any categorical
variable can take only a finite number of different values. A few examples are given
in Table 2.1 above.

The distinction between numerical and categorical is sometimes somewhat
arbitrary. We could, for instance, argue that having no children is qualitatively
different from having children, and use the categorical variable ‘children: yes/no’
instead of the numerical ‘0, 1 or 2 children’. It is therefore a decision for the machine
learning engineer whether a certain variable is to be considered as numerical or
categorical.

The notion of categorical vs. numerical applies to both the output variable 𝑦 and
to the 𝑝 elements 𝑥 𝑗 of the input vector x = [𝑥1 𝑥2 · · · 𝑥𝑝]T. All 𝑝 input variables
do not have to be of the same type. It is perfectly fine (and common in practice) to
have a mix of categorical and numerical inputs.

Classification and Regression

We distinguish between different supervised machine learning problems by the type
of the output 𝑦.

Regression means that the output is numerical, and classification means that the
output is categorical.

The reason for this distinction is that the regression and classification problems have
somewhat different properties, and different methods are used for solving them.

Note that the 𝑝 input variables x = [𝑥1 𝑥2 · · · 𝑥𝑝]T can be either numerical or
categorical for both regression and classification problems. It is only the type of the
output that determines whether a problem is a regression or a classification problem.
A method for solving a classification problems is called a classifier.

For classification, the output is categorical and can therefore only take val-
ues in a finite set. We use 𝑀 to denote the number of elements in the set of
possible output values. It could, for instance, be {false, true} (𝑀 = 2) or
{Sweden, Norway, Finland, Denmark} (𝑀 = 4). We will refer to these elements
as classes or labels. The number of classes 𝑀 is assumed to be known in the
classification problem. To prepare for a concise mathematical notation, we use

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
15

2 Supervised Learning: A First Approach

integers 1, 2, . . . , 𝑀 to denote the output classes if 𝑀 > 2. The ordering of the
integers is arbitrary and does not imply any ordering of the classes. When there are
only 𝑀 = 2 classes, we have the important special case of binary classification. In
binary classification we use the labels −1 and 1 (instead of 1 and 2). Occasionally
we will also use the equivalent terms negative and positive class. The only reason for
using a different convention for binary classification is that it gives a more compact
mathematical notation for some of the methods, and it carries no deeper meaning.
Let us now have a look at a classification and a regression problem, both of which
will be used throughout this book.

Example 2.1 Classifying songs

Say that we want to build a ‘song categoriser’ app, where the user records a song,
and the app answers by reporting whether the song has the artistic style of either the
Beatles, Kiss, or Bob Dylan. At the heart of this fictitious app, there has to be a
mechanism that takes an audio recording as an input and returns an artist’s name.

If we first collect some recordings with songs from the three groups/artists
(where we know which artist is behind each song: a labelled dataset), we could use
supervised machine learning to learn the characteristics of their different styles and
therefrom predict the artist of the new user-provided song. In supervised machine
learning terminology, the artist name (the Beatles, Kiss, or Bob Dylan) is the
output 𝑦. In this problem, 𝑦 is categorical, and we are hence facing a classification
problem.

One of the important design choices for a machine learning engineer is a detailed
specification of what the input x really is. It would in principle be possible to consider
the raw audio information as input, but that would give a very high-dimensional x
which (unless an audio-specific machine learning method is used) would most likely
require an unrealistically large amount of training data in order to be successful (we
will discuss this aspect in detail in Chapter 4). A better option could therefore be to
define some summary statistics of audio recordings and use those so-called features
as input x instead. As input features, we could, for example, use the length of the
audio recording and the ‘perceived energy’ of the song. The length of a recording
is easy to measure. Since it can differ quite a lot between different songs, we take
the logarithm of the actual length (in seconds) to get values in the same range for all
songs. Such feature transformations are commonly used in practice to make the
input data more homogeneous.

The energy of a songa is a bit more tricky, and the exact definition may even
be ambiguous. However, we leave that to the audio experts and re-use a piece
of software that they have written for this purposeb without bothering too much
about its inner workings. As long as this piece of software returns a number for
any recording that is fed to it, and always returns the same number for the same
recording, we can use it as an input to a machine learning method.

In Figure 2.1 we have plotted a dataset with 230 songs from the three artists. Each
song is represented by a dot, where the horizontal axis is the logarithm of its length
(measured in seconds) and the vertical axis the energy (on a scale 0–1). When
we later return to this example and apply different supervised machine learning
methods to it, this data will be the training data.

16
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.1 Supervised Machine Learning

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
0

0.2

0.4

0.6

0.8

1

A hard rain’s a-gonna fall

Help!

Rock and roll all nite

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

The Beatles
Kiss
Bob Dylan

Fig.
2.1

aWe use this term to refer to the perceived musical energy, not the signal energy in a strict
sense.

bSpecifically, we use http://api.spotify.com/ here.

Example 2.2 Car stopping distances

Ezekiel and Fox (1959) present a dataset with 62 observations of the distance needed
for various cars at different initial speeds to brake to a full stop.a The dataset has
the following two variables:

- Speed: The speed of the car when the brake signal is given.
- Distance: The distance traveled after the signal is given until the car has

reached a full stop.

0 10 20 30 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

Data

Fig.
2.2

To make a supervised machine learning problem out of this, we interpret Speed as
the input variable 𝑥 and Distance as the output variable 𝑦, as shown in Figure 2.2.
Note that we use a non-bold symbol for the input here since it is a scalar value and
not a vector of inputs in this example. Since 𝑦 is numerical, this is a regression

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
17

http://api.spotify.com/

2 Supervised Learning: A First Approach

problem. We then ask ourselves what the stopping distance would be if the initial
speed were, for example, 33 mph or 45 mph, respectively (two speeds at which
no data has been recorded). Another way to frame this question is to ask for the
prediction �̂�(𝑥★) for 𝑥★ = 33 and 𝑥★ = 45.

aThe data is somewhat dated, so the conclusions are perhaps not applicable to modern cars.

Generalising Beyond Training Data

There are two primary reasons why it can be of interest to mathematically model
the input–output relationships from training data.

(i) To reason about and explore how input and output variables are connected.
An often-encountered task in sciences such as medicine and sociology is
to determine whether a correlation between a pair of variables exists or not
(‘does eating seafood increase life expectancy?’). Such questions can be
addressed by learning a mathematical model and carefully reasoning about
the likelihood that the learned relationships between input x and output 𝑦 are
due only to random effects in the data or if there appears to be some substance
to the proposed relationships.

(ii) To predict the output value 𝑦★ for some new, previously unseen input x★.
By using some mathematical method which generalises the input–output
examples seen in the training data, we can make a prediction �̂�(x★) for a
previously unseen test input x★. The hat ̂ indicates that the prediction is an
estimate of the output.

These two objectives are sometimes used to roughly distinguish between classical
statistics, focusing more on objective (i), and machine learning, where objective
(ii) is more central. However, this is not a clear-cut distinction since predictive
modelling is a topic in classical statistics too, and explainable models are also
studied in machine learning. The primary focus in this book, however, is on making
predictions, objective (ii) above, which is the foundation of supervised machine
learning. Our overall goal is to obtain as accurate predictions �̂�(x★) as possible
(measured in some appropriate way) for a wide range of possible test inputs x★. We
say that we are interested in methods that generalise well beyond the training data.

A method that generalises well for the music example above would be able to
correctly tell the artist of a new song which was not in the training data (assuming
that the artist of the new song is one of the three that was present in the training
data, of course). The ability to generalise to new data is a key concept of machine
learning. It is not difficult to construct models or methods that give very accurate
predictions if they are only evaluated on the training data (we will see an example
in the next section). However, if the model is not able to generalise, meaning that
the predictions are poor when the model is applied to new test data points, then

18
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.2 A Distance-Based Method: k-NN

the model is of little use in practice for making predictions. If this is the case, we
say that the model is overfitting to the training data. We will illustrate the issue
of overfitting for a specific machine learning model in the next section, and in
Chapter 4 we will return to this concept using a more general and mathematical
approach.

2.2 A Distance-Based Method: k-NN

It is now time to encounter our first actual machine learning method. We will start
with the relatively simple 𝑘-nearest neighbours (𝑘-NN) method, which can be used
for both regression and classification. Remember that the setting is that we have
access to training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1, which consists of 𝑛 data points with input x𝑖 and
corresponding output 𝑦𝑖 . From this we want to construct a prediction �̂�(x★) for what
we believe the output 𝑦★ would be for a new x★, which we have not seen previously.

The k-Nearest Neighbours Method

Most methods for supervised machine learning build on the intuition that if the test
data point x★ is close to training data point x𝑖 , then the prediction �̂�(x★) should be
close to 𝑦𝑖 . This is a general idea, but one simple way to implement it in practice is
the following: first, compute the Euclidean distance4 between the test input and all
training inputs, ‖x𝑖 − x★‖2 for 𝑖 = 1, . . . , 𝑛; second, find the data point x 𝑗 with the
shortest distance to x★, and use its output as the prediction, �̂�(x★) = 𝑦 𝑗 .

This simple prediction method is referred to as the 1-nearest neighbour method.
It is not very complicated, but for most machine learning applications of interest it
is too simplistic. In practice we can rarely say for certain what the output value
𝑦 will be. Mathematically, we handle this by describing 𝑦 as a random variable.
That is, we consider the data as noisy, meaning that it is affected by random errors
referred to as noise. From this perspective, the shortcoming of 1-nearest neighbour
is that the prediction relies on only one data point from the training data, which
makes it quite ‘erratic’ and sensitive to noisy training data.

To improve the 1-nearest neighbour method, we can extend it to make use
of the 𝑘 nearest neighbours instead. Formally, we define the set N★ = {𝑖 : x𝑖
is one of the 𝑘 training data points closest to x★} and aggregate the information
from the 𝑘 outputs 𝑦 𝑗 for 𝑗 ∈ N★ to make the prediction. For regression problems,
we take the average of all 𝑦 𝑗 for 𝑗 ∈ N★, and for classification problems, we
use a majority vote.5 We illustrate the 𝑘-nearest neighbours (𝑘-NN) method by
Example 2.3 and summarise it in Method 2.1.

4The Euclidean distance between a test point x★ and a training data point x𝑖 is ‖x𝑖 − x★‖2 =√︁
(𝑥𝑖1 − 𝑥★1)2 + (𝑥𝑖2 − 𝑥★2)2. Other distance functions can also be used and will be discussed in

Chapter 8. Categorical input variables can be handled, as we will discuss in Chapter 3.
5Ties can be handled in different ways, for instance by a coin-flip, or by reporting the actual vote

count to the end user, who gets to decide what to do with it.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
19

2 Supervised Learning: A First Approach

Methods that explicitly use the training data when making predictions are referred
to as nonparametric, and the 𝑘-NN method is one example of this. This is in contrast
with parametric methods, where the prediction is given by some function (a model)
governed by a fixed number of parameters. For parametric methods, the training
data is used to learn the parameters in an initial training phase, but once the model
has been learned, the training data can be discarded since it is not used explicitly
when making predictions. We will introduce parametric modelling in Chapter 3.

Data: Training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1 and test input x★
Result: Predicted test output �̂�(x★)

1 Compute the distances ‖x𝑖 − x★‖2 for all training data points 𝑖 = 1, . . . , 𝑛
2 Let N★ = {𝑖 : x𝑖 is one of the 𝑘 data points closest to x★}
3 Compute the prediction �̂�(x★) as

�̂�(x★) =
{

Average{𝑦 𝑗 : 𝑗 ∈ N★} (Regression problems)
MajorityVote{𝑦 𝑗 : 𝑗 ∈ N★} (Classification problems)

Method 2.1: 𝑘-nearest neighbour, 𝑘-NN

Example 2.3 Predicting colours with 𝑘-NN

We consider a synthetic binary classification problem (𝑀 = 2). We are given a
training dataset with 𝑛 = 6 observations of 𝑝 = 2 input variables 𝑥1, 𝑥2 and one
categorical output 𝑦, the colour Red or Blue,

𝑖 𝑥1 𝑥2 𝑦

1 −1 3 Red
2 2 1 Blue
3 −2 2 Red
4 −1 2 Blue
5 −1 0 Blue
6 1 1 Red

and we are interested in predicting the output for x★ = [1 2]T. For this purpose we
will explore two different 𝑘-NN classifiers, one using 𝑘 = 1 and one using 𝑘 = 3.

First, we compute the Euclidean distance ‖x𝑖 − x★‖2 between each training data
point x𝑖 (red and blue dots) and the test data point x★ (black dot), and then sort
them in ascending order.

Since the closest training data point to x★ is the data point 𝑖 = 6 (Red), this
means that for 𝑘-NN with 𝑘 = 1, we get the prediction �̂�(x★) = Red. For 𝑘 = 3,
the three nearest neighbours are 𝑖 = 6 (Red), 𝑖 = 2 (Blue), and 𝑖 = 4 (Blue).
Taking a majority vote among these three training data points, Blue wins with 2
votes against 1, so our prediction becomes �̂�(x★) = Blue. In Figure 2.3, 𝑘 = 1 is

20
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.2 A Distance-Based Method: k-NN

represented by the inner circle and 𝑘 = 3 by the outer circle.

𝑖 ‖x𝑖 − x★‖2 𝑦𝑖

6
√

1 Red

2
√

2 Blue

4
√

4 Blue

1
√

5 Red

5
√

8 Blue

3
√

9 Red
−2 0 2

0

2

4

𝑖 =
1

𝑖 = 3
𝑖 = 6

𝑖 = 2

𝑖 =
4

𝑖 = 5

𝑘 = 1

𝑘 = 3

𝑥1

𝑥 2

Fig.
2.3

Decision Boundaries for a Classifier

In Example 2.3 we only computed a prediction for one single test data point x★.
That prediction might indeed be the ultimate goal of the application, but in order to
visualise and better understand a classifier, we can also study its decision boundary,
which illustrates the prediction for all possible test inputs. We introduce the decision
boundary using Example 2.4. It is a general concept for classifiers, not only 𝑘-NN,
but it is only possible to visualise easily when the dimension of x is 𝑝 = 2.

Example 2.4 Decision boundaries for the colour example

In Example 2.3 we computed the prediction for x★ = [1 2]T. If we were to shift that
test point by one unit to the left at xalt

★ = [0 2]T, the three closest training data points
would still include 𝑖 = 6 and 𝑖 = 4, but now 𝑖 = 2 is exchanged for 𝑖 = 1. For 𝑘 = 3
this would give two votes for Red and one vote for Blue, and we would therefore
predict �̂� = Red. In between these two test data points x★ and xalt

★ , at [0.5 2]T, it
is equally far to 𝑖 = 1 as to 𝑖 = 2, and it is undecided if the 3-NN classifier should
predict Red or Blue. (In practice this is most often not a problem, since the test
data points rarely end up exactly at the decision boundary. If they do, this can be
handled by a coin-flip.) For all classifiers, we always end up with points in the input
space where the class prediction abruptly changes from one class to another. These
points are said to be on the decision boundary of the classifier.

Continuing in a similar way, changing the location of the test input across the
entire input space and recording the class prediction, we can compute the complete
decision boundaries for Example 2.3. We plot the decision boundaries for 𝑘 = 1
and 𝑘 = 3 in Figure 2.4.

In Figure 2.4 the decision boundaries are the points in input space where the class
prediction changes, that is, the borders between red and blue. This type of figure
gives a concise summary of a classifier. However, it is only possible to draw such a
plot in the simple case when the problem has a 2-dimensional input x. As we can
see, the decision boundaries of 𝑘-NN are not linear. In the terminology we will

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
21

2 Supervised Learning: A First Approach

introduce later, 𝑘-NN is thereby a non-linear classifier.

−2 0 2

0

2

4
�̂� = red

�̂� = blue

𝑥1

𝑥 2

𝑘 = 1

−2 0 2

0

2

4

�̂� = red

�̂� = blue

𝑥1

𝑥 2

𝑘 = 3

Fig.
2.4

Choosing k

The number of neighbours 𝑘 that are considered when making a prediction with
𝑘-NN is an important choice the user has to make. Since 𝑘 is not learned by
𝑘-NN itself, but is design choice left to the user, we refer to it as a hyperparameter.
Throughout the book, we will use the term ‘hyperparameter’ for similar tuning
parameters for other methods.

The choice of the hyperparameter 𝑘 has a big impact on the predictions made by
𝑘-NN. To understand the impact of 𝑘 , we study how the decision boundary changes
as 𝑘 changes in Figure 2.5, where 𝑘-NN is applied to the music classification
Example 2.1 and the car stopping distance Example 2.2, both with 𝑘 = 1 and 𝑘 = 20.

With 𝑘 = 1, all training data points will, by construction, be correctly predicted,
and the model is adapted to the exact x and 𝑦 values of the training data. In the
classification problem there are, for instance, small green (Bob Dylan) regions
within the red (the Beatles) area that are most likely misleading when it comes to
accurately predicting the artist of a new song. In order to make good predictions, it
would probably be better to instead predict red (the Beatles) for a new song in the
entire middle-left region since the vast majority of training data points in that area
are red. For the regression problem, 𝑘 = 1 gives quite shaky behaviour, and also for
this problem, it is intuitively clear that this does not describe an actual effect, but
rather that the prediction is adapting to the noise in the data.

The drawbacks of using 𝑘 = 1 are not specific to these two examples. In most
real world problems there is a certain amount of randomness in the data, or at
least insufficient information, which can be thought of as a random effect. In the
music example, the 𝑛 = 230 songs were selected from all songs ever recorded
from these artists, and since we do not know how this selection was made, we may
consider it random. Furthermore, and more importantly, if we want our classifier to
generalise to completely new data, like new releases from the artists in our example
(overlooking the obvious complication for now), then it is not reasonable to assume
that the length and energy of a song will give a complete picture of the artistic
styles. Hence, even with the best possible model, there is some ambiguity about

22
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.2 A Distance-Based Method: k-NN

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

𝑘 = 1

Beatles
Kiss
Bob Dylan

(a) Decision boundaries for the music classifi-
cation problem using 𝑘 = 1. This is a typical
example of overfitting, meaning that the model
has adapted too much to the training data so that it
does not generalise well to new previously unseen
data.

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

𝑘 = 20

Beatles
Kiss
Bob Dylan

(b) The music classification problem again, now
using 𝑘 = 20. A higher value of 𝑘 gives a
smoother behaviour which, hopefully, predicts
the artist of new songs more accurately.

20 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

𝑘 = 1

𝑘-NN, 𝑘 = 1
Data

(c) The black dots are the car stopping distance
data, and the blue line shows the prediction for
𝑘-NN with 𝑘 = 1 for any 𝑥. As for the classifica-
tion problem above, 𝑘-NN with 𝑘 = 1 overfits to
the training data.

20 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

𝑘 = 20

𝑘-NN, 𝑘 = 20
Data

(d) The car stopping distance, this time with
𝑘 = 20. Except for the boundary effect at the
right, this seems like a much more useful model
which captures the interesting effects of the data
and ignores the noise.

Figure 2.5: 𝑘-NN applied to the music classification Example 2.1 (a and b) and the car
stopping distance Example 2.2 (c and d). For both problems 𝑘-NN is applied with 𝑘 = 1
and 𝑘 = 20.

which artist has recorded a song if we only look at these two input variables. This
ambiguity is modelled as random noise. Also for the car stopping distance, there
appear to be a certain amount of random effects, not only in 𝑥 but also in 𝑦. By
using 𝑘 = 1 and thereby adapting very closely to the training data, the predictions
will depend not only on the interesting patterns in the problem but also on the (more
or less) random effects that have shaped the training data. Typically we are not
interested in capturing these effects, and we refer to this as overfitting.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
23

2 Supervised Learning: A First Approach

With the 𝑘-NN classifier, we can mitigate overfitting by increasing the region
of the neighbourhood used to compute the prediction, that is, increasing the
hyperparameter 𝑘 . With, for example, 𝑘 = 20, the predictions are no longer based
only on the closest neighbour but are instead a majority vote among the 20 closest
neighbours. As a consequence, all training data points are no longer perfectly
classified, but some of the songs end up in the wrong region in Figure 2.5b. The
predictions are, however, less adapted to the peculiarities of the training data and
thereby less overfitted, and Figure 2.5b and d are indeed less ‘noisy’ than Figure 2.5a
and c. However, if we make 𝑘 too large, then the averaging effect will wash out
all interesting patterns in the data as well. Indeed, for sufficiently large 𝑘 the
neihbourhood will include all training data points, and the model will reduce to
predicting the mean of the data for any input.

Selecting 𝑘 is thus a trade-off between flexibility and rigidity. Since selecting
𝑘 either too big or too small will lead to a meaningless classifiers, there must
exist a sweet spot for some moderate 𝑘 (possibly 20, but it could be less or more)
where the classifier generalises the best. Unfortunately, there is no general answer
to the 𝑘 for which this happens, and this is different for different problems. In
the music classification problem, it seems reasonable that 𝑘 = 20 will predict new
test data points better than 𝑘 = 1, but there might very well be an even better
choice of 𝑘 . For the car stopping problem, the behaviour is also more reasonable
for 𝑘 = 20 than 𝑘 = 1, except for the boundary effect for large 𝑥, where 𝑘-NN is
unable to capture the trend in the data as 𝑥 increases (simply because the 20 nearest
neighbours are the same for all test points 𝑥★ around and above 35). A systematic
way of choosing a good value for 𝑘 is to use cross-validation, which we will discuss
in Chapter 4.

Time to reflect 2.1 The prediction �̂�(x★) obtained using the 𝑘-NN method is
a piecewise constant function of the input x★. For a classification problem,
this is natural, since the output is categorical (see, for example, Figure 2.5
where the coloured regions correspond to areas of the input space where
the prediction is constant according to the colour of that region). However,
𝑘-NN will also have piecewise constant predictions for regression problems.
Why?

Input Normalisation

A final important practical aspect when using 𝑘-NN is the importance of normal-
isation of the input data. Imagine a training dataset with 𝑝 = 2 input variables
x = [𝑥1 𝑥2]T where all values of 𝑥1 are in the range [100, 1100] and the values
for 𝑥2 are in the much smaller range [0, 1]. It could, for example, be that 𝑥1 and
𝑥2 are measured in different units. The Euclidean distance between a test point
x★ and a training data point x𝑖 is ‖x𝑖 − x★‖2 =

√︁
(𝑥𝑖1 − 𝑥★1)2 + (𝑥𝑖2 − 𝑥★2)2. This

24
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

expression will typically be dominated by the first term (𝑥𝑖1 − 𝑥★1)2, whereas the
second term (𝑥𝑖2 − 𝑥★2)2 tends to have a much smaller effect, simply due to the
different magnitude of 𝑥1 and 𝑥2. That is, the different ranges lead to 𝑥1 being
considered much more important than 𝑥2 by 𝑘-NN.

To avoid this undesired effect, we can re-scale the input variables. One option, in
the mentioned example, could be to subtract 100 from 𝑥1 and thereafter divide it by
1 000 and create 𝑥new

𝑖1 = 𝑥𝑖1−100
1 000 such that 𝑥new

1 and 𝑥2 both are in the range [0, 1].
More generally, this normalisation procedure for the input data can be written as

𝑥new
𝑖 𝑗 =

𝑥𝑖 𝑗 −minℓ (𝑥ℓ 𝑗)
maxℓ (𝑥ℓ 𝑗) −minℓ (𝑥ℓ 𝑗) , for all 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛. (2.1)

Another common normalisation approach (sometimes called standardising) is by
using the mean and standard deviation in the training data:

𝑥new
𝑖 𝑗 =

𝑥𝑖 𝑗 − 𝑥 𝑗

𝜎𝑗
, ∀ 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛, (2.2)

where 𝑥 𝑗 and 𝜎𝑗 are the mean and standard deviation for each input variable,
respectively.

It is crucial for 𝑘-NN to apply some type of input normalisation (as was indeed
done in Figure 2.5), but it is a good practice to apply this also when using other
methods, for numerical stability if nothing else. It is, however, important to compute
the scaling factors (minℓ (𝑥ℓ 𝑗), 𝑥 𝑗 , etc.) using training data only and to also apply
that scaling to future test data points. Failing to do this, for example by performing
normalisation before setting test data aside (which we will discuss more in Chapter 4),
might lead to wrong conclusions on how well the method will perform in predicting
future (not yet seen) data points.

2.3 A Rule-Based Method: Decision Trees

The 𝑘-NN method results in a prediction �̂�(x★) that is a piecewise constant function
of the input x★. That is, the method partitions the input space into disjoint regions,
and each region is associated with a certain (constant) prediction. For 𝑘-NN, these
regions are given implicitly by the 𝑘-neighbourhood of each possible test input. An
alternative approach, that we will study in this section, is to come up with a set of
rules that defines the regions explicitly. For instance, considering the music data in
Example 2.1, a simple set of high-level rules for constructing a classifier would be:
inputs to the right in Figure 2.1 are classified as green (Bob Dylan), in the left as
red (The Beatles), and in the upper part as blue (Kiss). We will now see how such
rules can be learned systematically from the training data.

The rule-based models that we consider here are referred to as decision trees.
The reason is that the rules used to define the model can be organised in a graph
structure referred to as a binary tree. The decision tree effectively divides the input
space into multiple disjoint regions, and in each region, a constant value is used for
the prediction �̂�(x★). We illustrate this with an example.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
25

2 Supervised Learning: A First Approach

Example 2.5 Predicting colours with a decision tree

We consider a classification problem with two numerical input variables x = [𝑥1 𝑥2]T
and one categorical output 𝑦, the colour Red or Blue. For now, we do not consider
any training data or how to actually learn the tree but only how an already existing
decision tree can be used to predict �̂�(x★).

The rules defining the model are organised in the graph in Figure 2.6, which
is referred to as a binary tree. To use this tree to predict a label for the test input
x★ = [𝑥★1 𝑥★2]T, we start at the top, referred to as the root node of the tree (in the
metaphor, the tree is growing upside down, with the root at the top and the leaves at
the bottom). If the condition stated at the root is true, that is, if 𝑥★2 < 3.0, then we
proceed down the left branch, otherwise along the right branch. If we reach a new
internal node of the tree, we check the rule associated with that node and pick the
left or the right branch accordingly. We continue and work our way down until we
reach the end of a branch, called a leaf node. Each such final node corresponds to a
constant prediction �̂�𝑚, in this case one of the two classes Red or Blue.

𝑥2 < 3.0

𝑥1 < 5.0

𝑅3
�̂�3 = Red

𝑅2
�̂�2 = Blue

𝑅1
�̂�1 = Blue

Fig.
2.6

A classification tree. At each internal
node, a rule of the form 𝑥 𝑗 < 𝑠𝑘 indicates
the left branch coming from that split,
and the right branch then consequently
corresponds to 𝑥 𝑗 ≥ 𝑠𝑘 . This tree has
two internal nodes (including the root)
and three leaf nodes.

3.0

5.0

𝑥1

𝑥 2

𝑅1

𝑅2 𝑅3

Fig.
2.7
A region partition, where each region cor-
responds to a leaf node in the tree. Each
border between regions corresponds to a
split in the tree. Each region is coloured
with the prediction corresponding to that
region, and the boundary between red
and blue is therefore the decision bound-
ary.

The decision tree partitions the input space into axis-aligned ‘boxes’, as shown in
Figure 2.7. By increasing the depth of the tree (the number of steps from the root to
the leaves), the partitioning can be made finer and finer and thereby describes more
complicated functions of the input variable.

Pseudo-code for predicting a test input with the tree in Figure 2.6 would look like:

if x_2 < 3.0 then
return Blue

else
if x_1 < 5.0 then

26
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

return Blue
else

return Red
end

end

As an example, if we have x★ = [2.5 3.5]T, in the first split we would take
the right branch since 𝑥★2 = 3.5 ≥ 3.0, and in the second split we would take
the left branch since 𝑥★1 = 2.5 < 5.0. The prediction for this test point would be
�̂�(x★) = Blue.

To set the terminology, the endpoint of each branch 𝑅1, 𝑅2, and 𝑅3 in Example 2.5
are called leaf nodes, and the internal splits, 𝑥2 < 3.0 and 𝑥1 < 5.0, are known
as internal nodes. The lines that connect the nodes are referred to as branches.
The tree is referred to as binary since each internal node splits into exactly two
branches.

With more than two input variables, it is difficult to illustrate the partitioning
of the input space into regions (Figure 2.7), but the tree representation can still be
used in the very same way. Each internal node corresponds to a rule where one of
the 𝑝 input variables 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑝, is compared to a threshold 𝑠. If 𝑥 𝑗 < 𝑠, we
continue along the left branch, and if 𝑥 𝑗 ≥ 𝑠, we continue along the right branch.

The constant predictions that we associate with the leaf nodes can be either
categorical (as in Example 2.5 above) or numerical. Decision trees can thus be used
to address both classification and regression problems.

Example 2.5 illustrated how a decision tree can be used to make a prediction. We
will now turn to the question of how a tree can be learned from training data.

Learning a Regression Tree

We will start by discussing how to learn (or, equivalently, train) a decision tree for a
regression problem. The classification problem is conceptually similar and will be
explained later.

As mentioned above, the prediction �̂�(x★) from a regression tree is a piecewise
constant function of the input x★. We can write this mathematically as,

�̂�(x★) =
𝐿∑︁

ℓ=1
�̂�ℓI{x★ ∈ 𝑅ℓ}, (2.3)

where 𝐿 is the total number of regions (leaf nodes) in the tree, 𝑅ℓ is the ℓth region,
and �̂�ℓ is the constant prediction for the ℓth region. Note that in the regression
setting, �̂�ℓ is a numerical variable, and we will consider it to be a real number for
simplicity. In the equation above, we have used the indicator function, I{x ∈ 𝑅ℓ} = 1
if x ∈ 𝑅ℓ and I{x ∈ 𝑅ℓ} = 0 otherwise.

Learning the tree from data corresponds to finding suitable values for the
parameters defining the function (2.3), namely the regions 𝑅ℓ and the constant

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
27

2 Supervised Learning: A First Approach

predictions �̂�ℓ , ℓ = 1, . . . , 𝐿, as well as the total size of the tree 𝐿. If we start by
assuming that the shape of the tree, the partition (𝐿, {𝑅ℓ}𝐿ℓ=1), is known, then we
can compute the constants {�̂�ℓ}𝐿ℓ=1 in a natural way, simply as the average of the
training data points falling in each region:

�̂�ℓ = Average{𝑦𝑖 : x𝑖 ∈ 𝑅ℓ}.

It remains to find the shape of the tree, the regions 𝑅ℓ , which requires a bit more
work. The basic idea is, of course, to select the regions so that the tree fits the
training data. This means that the output predictions from the tree should match the
output values in the training data. Unfortunately, even when restricting ourselves
to seemingly simple regions such as the ‘boxes’ obtained from a decision tree,
finding the tree (a collection of splitting rules) that optimally partitions the input
space to fit the training data as well as possible turns out to be computationally
infeasible. The problem is that there is a combinatorial explosion in the number
of ways in which we can partition the input space. Searching through all possible
binary trees is not possible in practice unless the tree size is so small that it is not of
practical use.

To handle this situation, we use a heuristic algorithm known as recursive binary
splitting for learning the tree. The word recursive means that we will determine
the splitting rules one after the other, starting with the first split at the root and
then building the tree from top to bottom. The algorithm is greedy, in the sense
that the tree is constructed one split at a time, without having the complete tree ‘in
mind’. That is, when determining the splitting rule at the root node, the objective is
to obtain a model that explains the training data as well as possible after a single
split, without taking into consideration that additional splits may be added before
arriving at the final model. When we have decided on the first split of the input
space (corresponding to the root node of the tree), this split is kept fixed, and we
continue in a similar way for the two resulting half-spaces (corresponding to the
two branches of the tree), etc.

To see in detail how one step of this algorithm works, consider the situation when
we are about to do our very first split at the root of the tree. Hence, we want to
select one of the 𝑝 input variables 𝑥1, . . . , 𝑥𝑝 and a corresponding cutpoint 𝑠 which
divide the input space into two half-spaces,

𝑅1(𝑗 , 𝑠) = {x | 𝑥 𝑗 < 𝑠} and 𝑅2(𝑗 , 𝑠) = {x | 𝑥 𝑗 ≥ 𝑠}. (2.4)

Note that the regions depend on the index 𝑗 of the splitting variable as well as the
value of the cutpoint 𝑠, which is why we write them as functions of 𝑗 and 𝑠. This is
the case also for the predictions associated with the two regions,

�̂�1(𝑗 , 𝑠) = Average{𝑦𝑖 : x𝑖 ∈ 𝑅1(𝑗 , 𝑠)} and �̂�2(𝑗 , 𝑠) = Average{𝑦𝑖 : x𝑖 ∈ 𝑅2(𝑗 , 𝑠)},

since the averages in these expressions range over different data points depending
on the regions.

28
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

For each training data point (x𝑖 , 𝑦𝑖),we can compute a prediction error by first
determining which region the data point falls in and then computing the difference
between 𝑦𝑖 and the constant prediction associated with that region. Doing this for
all training data points, the sum of squared errors can be written as∑︁

𝑖:x𝑖 ∈𝑅1 (𝑗 ,𝑠)
(𝑦𝑖 − �̂�1(𝑗 , 𝑠))2 +

∑︁
𝑖:x𝑖 ∈𝑅2 (𝑗 ,𝑠)

(𝑦𝑖 − �̂�2(𝑗 , 𝑠))2 . (2.5)

The square is added to ensure that the expression above is non-negative and that both
positive and negative errors are counted equally. The squared error is a common
loss function used for measuring the closeness of a prediction to the training data,
but other loss functions can also be used. We will discuss the choice of loss function
in more detail in later chapters.

To find the optimal split, we select the values for 𝑗 and 𝑠 that minimise the squared
error (2.5). This minimisation problem can be solved easily by looping through
all possible values for 𝑗 = 1, . . . , 𝑝. For each 𝑗 , we can scan through the finite
number of possible splits and pick the pair (𝑗 , 𝑠) for which the expression above
is minimised. As pointed out above, when we have found the optimal split at the
root node, this splitting rule is fixed. We then continue in the same way for the left
and right branches independently. Each branch (corresponding to a half-space) is
split again by minimising the squared prediction error over all training data points
following that branch.

In principle, we can continue in this way until there is only a single training data
point in each of the regions – that is, until 𝐿 = 𝑛. Such a fully grown tree will result
in predictions that exactly match the training data points, and the resulting model is
quite similar to 𝑘-NN with 𝑘 = 1. As pointed out above, this will typically result in
too erratic a model that has overfitted to (possibly noisy) training data. To mitigate
this issue, it is common to stop the growth of the tree at an earlier stage using some
stopping criterion, for instance by deciding on 𝐿 beforehand, limiting the maximum
depth (number of splits in any branch), or adding a constraint on the minimum
number of training data points associated with each leaf node. Forcing the model to
have more training data points in each leaf will result in an averaging effect, similar
to increasing the value of 𝑘 in the 𝑘-NN method. Using such a stopping criterion
means that the value of 𝐿 is not set manually but is determined adaptively based on
the result of the learning procedure.

A high-level summary of the method is given in Method 2.2. Note that the
learning in Method 2.2 includes a recursive call, where in each recursion we grow
one branch of the tree one step further.

Classification Trees

Trees can also be used for classification. We use the same procedure of recursive
binary splitting but with two main differences. Firstly, we use a majority vote instead
of an average to compute the prediction associated with each region:

�̂�ℓ = MajorityVote{𝑦𝑖 : x𝑖 ∈ 𝑅ℓ}.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
29

2 Supervised Learning: A First Approach

Learn a decision tree using recursive binary splitting
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Decision tree with regions 𝑅1, . . . , 𝑅𝐿 and corresponding

predictions �̂�1, . . . , �̂�𝐿
1 Let 𝑅 denote the whole input space
2 Compute the regions (𝑅1, . . . , 𝑅𝐿) = Split(𝑅,T)
3 Compute the predictions �̂�ℓ for ℓ = 1, . . . , 𝐿 as

�̂�ℓ =

{
Average{𝑦𝑖 : x𝑖 ∈ 𝑅ℓ} (Regression problems)
MajorityVote{𝑦𝑖 : x𝑖 ∈ 𝑅ℓ} (Classification problems)

4 Function Split(𝑅,T):
5 if stopping criterion fulfilled then
6 return 𝑅
7 else
8 Go through all possible splits 𝑥 𝑗 < 𝑠 for all input variables

𝑗 = 1, . . . , 𝑝.
9 Pick the pair (𝑗 , 𝑠) that minimises (2.5)/(2.6) for

regression/classification problems.
10 Split region 𝑅 into 𝑅1 and 𝑅2 according to (2.4).
11 Split data T into T1 and T2 accordingly.
12 return Split(𝑅1,T1), Split(𝑅2,T2)
13 end
14 end

Predict from a decision tree
Data: Decision tree with regions 𝑅1, . . . , 𝑅𝐿 , training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1,

test data point x★
Result: Predicted test output �̂�(x★)

1 Find the region 𝑅ℓ which x★ belongs to.
2 Return the prediction �̂�(x★) = �̂�ℓ .

Method 2.2: Decision trees

Secondly, when learning the tree, we need a different splitting criterion than the
squared prediction error to take into account the fact that the output is categorical.
To define these criteria, note first that the split at any internal node is computed by
solving an optimisation problem of the form

arg min
𝑗 ,𝑠

𝑛1𝑄1 + 𝑛2𝑄2, (2.6)

30
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

where 𝑛1 and 𝑛2 denote the number of training data points in the left and right nodes
of the current split, respectively, and 𝑄1 and 𝑄2 are the costs (derived form the
prediction errors) associated with these two nodes. The variables 𝑗 and 𝑠 denote the
index of the splitting variable and the cutpoint as before. All of the terms 𝑛1, 𝑛2,
𝑄1, and 𝑄2 depend on these variables, but we have dropped the explicit dependence
from the notation for brevity. Comparing (2.6) with (2.5), we see that we recover
the regression case if 𝑄ℓ corresponds to the mean-squared error in node ℓ.

To generalise this to the classification case, we still solve the optimisation problem
(2.6) to compute the split, but choose 𝑄ℓ in a different way which respects the
categorical nature of a classification problem. To this end, we first introduce

�̂�ℓ𝑚 =
1
𝑛ℓ

∑︁
𝑖:x𝑖 ∈𝑅ℓ

I{𝑦𝑖 = 𝑚}

to be the proportion of training observations in the ℓth region that belong to the
𝑚th class. We can then define the splitting criterion, 𝑄ℓ , based on these class
proportions. One simple alternative is the misclassification rate

𝑄ℓ = 1 −max
𝑚

�̂�ℓ𝑚, (2.7a)

which is simply the proportion of data points in region 𝑅ℓ which do not belong to
the most common class. Other common splitting criteria are the Gini index

𝑄ℓ =
𝑀∑︁
𝑚=1

�̂�ℓ𝑚(1 − �̂�ℓ𝑚) (2.7b)

and the entropy criterion,

𝑄ℓ = −
𝑀∑︁
𝑚=1

�̂�ℓ𝑚 ln �̂�ℓ𝑚. (2.7c)

In Example 2.6 we illustrate how to construct a classification tree using recursive
binary splitting and with the entropy as the splitting criterion.

Example 2.6 Learning a classification tree (continuation of Example 2.5)

We consider the same setup as in Example 2.5, but now with the following dataset:
We want to learn a classification tree by using the entropy criterion in (2.7c) and

growing the tree until there are no regions with more than five data points left.
First split: There are infinitely many possible splits we can make, but all splits

which give the same partition of the data points are equivalent. Hence, in practice
we only have nine different splits to consider in this dataset. The data (dots) and
these possible splits (dashed lines) are visualised in Figure 2.8.

We consider all nine splits in turn. We start with the split at 𝑥1 = 2.5, which splits
the input space into two regions, 𝑅1 = 𝑥1 < 2.5 and 𝑅2 = 𝑥1 ≥ 2.5. In region 𝑅1 we

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
31

2 Supervised Learning: A First Approach

𝑥1 𝑥2 𝑦
9.0 2.0 Blue
1.0 4.0 Blue
4.0 6.0 Blue
4.0 1.0 Blue
1.0 2.0 Blue
1.0 8.0 Red
6.0 4.0 Red
7.0 9.0 Red
9.0 8.0 Red
9.0 6.0 Red

0 2 4 6 8 10
0

2

4

6

8

10

𝑥1
𝑥 2

Fig.
2.8

have two blue data points and one red, in total 𝑛1 = 3 data points. The proportion
of the two classes in region 𝑅1 will therefore be �̂�1B = 2/3 and �̂�1R = 1/3. The
entropy is calculated as

𝑄1 = −�̂�1B ln(�̂�1B) − �̂�1R ln(�̂�1R) = −2
3

ln
(
2
3

)
− 1

3
ln

(
1
3

)
= 0.64.

In region 𝑅2 we have 𝑛2 = 7 data points with the proportions �̂�2B = 3/7 and
�̂�2R = 4/7. The entropy for this region will be

𝑄2 = −�̂�2B ln(�̂�2B) − �̂�2R ln(�̂�2R) = −3
7

ln
(
3
7

)
− 4

7
ln

(
4
7

)
= 0.68,

and inserted in (2.6), the total weighted entropy for this split becomes

𝑛1𝑄1 + 𝑛2𝑄2 = 3 · 0.64 + 7 · 0.68 = 6.69.

We compute the costs for all other splits in the same manner and summarise them
in the table below:

Split (𝑅1) 𝑛1 �̂�1B �̂�1R 𝑄1 𝑛2 �̂�2B �̂�2R 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2
𝑥1 < 2.5 3 2/3 1/3 0.64 7 3/7 4/7 0.68 6.69
𝑥1 < 5.0 5 4/5 1/5 0.50 5 1/5 4/5 0.50 5.00
𝑥1 < 6.5 6 4/6 2/6 0.64 4 1/4 3/4 0.56 6.07
𝑥1 < 8.0 7 4/7 3/7 0.68 3 1/3 2/3 0.64 6.69
𝑥2 < 1.5 1 1/1 0/1 0.00 9 4/9 5/9 0.69 6.18
𝑥2 < 3.0 3 3/3 0/3 0.00 7 2/7 5/7 0.60 4.18
𝑥2 < 5.0 5 4/5 1/5 0.50 5 1/5 4/5 0.06 5.00
𝑥2 < 7.0 7 5/7 2/7 0.60 3 0/3 3/3 0.00 4.18
𝑥2 < 8.5 9 5/9 4/9 0.69 1 0/1 1/1 0.00 6.18

From the table, we can read that the two splits at 𝑥2 < 3.0 and 𝑥2 < 7.0 are both
equally good. We choose to continue with 𝑥2 < 3.0.

32
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

After first split

0 2 4 6 8 10
0

2

4

6

8

10

𝑅1

𝑥1

𝑥 2

After second split

0 2 4 6 8 10
0

2

4

6

8

10

𝑅1

𝑅2 𝑅3

𝑥1

𝑥 2

Fig.
2.9

Second split: We note that only the upper region has more than five data points.
Also, there is no point splitting region 𝑅1 further since it only contains data points
from the same class. In the next step, we therefore split the upper region into two
new regions, 𝑅2 and 𝑅3. All possible splits are displayed in Figure 2.9 to the left
(dashed lines), and we compute their costs in the same manner as before:

Splits (𝑅1) 𝑛2 �̂�2B �̂�2R 𝑄2 𝑛3 �̂�3B �̂�3R 𝑄3 𝑛2𝑄2 + 𝑛3𝑄3
𝑥1 < 2.5 2 1/2 1/2 0.69 5 1/5 4/5 0.50 3.89
𝑥1 < 5.0 3 2/3 1/3 0.63 4 0/4 4/4 0.00 1.91
𝑥1 < 6.5 4 2/4 2/4 0.69 3 0/3 3/3 0.00 2.77
𝑥1 < 8.0 5 2/5 3/5 0.67 2 0/2 2/2 0.00 3.37
𝑥2 < 5.0 2 1/2 1/2 0.69 5 1/5 4/5 0.50 3.88
𝑥2 < 7.0 4 2/4 2/4 0.69 3 0/3 3/3 0.00 2.77
𝑥2 < 8.5 6 2/6 4/6 0.64 1 0/1 1/1 0.00 3.82

The best split is the one at 𝑥1 < 5.0, visualised above to the right. None of the three
regions has more than five data points. Therefore, we terminate the training. The
final tree and its partitions were displayed in Example 2.5. If we want to use the
tree for prediction, we predict blue if x★ ∈ 𝑅1 or x★ ∈ 𝑅2 since the blue training
data points are in the majority in each of these two regions. Similarly, we predict
red if x★ ∈ 𝑅3.

When choosing between the different splitting criteria mentioned above, the
misclassification rate sounds like a reasonable choice since that is typically the
criterion we want the final model to do well on.6 However, one drawback is that it
does not favour pure nodes. By pure nodes we mean nodes where most of the data
points belong to a certain class. It is usually an advantage to favour pure nodes in
the greedy procedure that we use to grow the tree, since this can lead to fewer splits

6This is not always true, for example for imbalanced and asymmetric classification problems; see
Section 4.5.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
33

2 Supervised Learning: A First Approach

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

𝑟

Misclassification rate
Gini index
Entropy

Figure 2.10: Three splitting criteria for classification trees as a function of the proportion
of the first class 𝑟 = 𝜋ℓ1 in a certain region 𝑅ℓ as given in (2.8). The entropy criterion has
been scaled such that it passes through (0.5,0.5).

in total. Both the entropy criterion and the Gini index favour node purity more than
the misclassification rate does.

This advantage can also be illustrated in Example 2.6. Consider the first split in
this example. If we were to use the misclassification rate as the splitting criterion,
both the split 𝑥2 < 5.0 and the split 𝑥2 < 3.0 would provide a total misclassification
rate of 0.2. However, the split at 𝑥2 < 3.0, which the entropy criterion favoured,
provides a pure node 𝑅1. If we now went with the split 𝑥2 < 5.0, the misclassification
after the second split would still be 0.2. If we continued to grow the tree until no
data points were misclassified, we would need three splits if we used the entropy
criterion, whereas we would need five splits if we used the misclassification criterion
and started with the split at 𝑥2 < 5.0.

To generalise this discussion, consider a problem with two classes, where we
denote the proportion of the first class as 𝜋ℓ1 = 𝑟 and hence the proportion of the
second class as 𝜋ℓ2 = 1 − 𝑟 . The three criteria (2.7) can then be expressed in terms
of 𝑟 as

Misclassification rate: 𝑄ℓ = 1 −max(𝑟, 1 − 𝑟),
Gini index: 𝑄ℓ = 2𝑟 (1 − 𝑟), (2.8)

Entropy: 𝑄ℓ = −𝑟 ln 𝑟 − (1 − 𝑟) ln(1 − 𝑟).

These functions are shown in Figure 2.10. All three citeria are similar in the
sense that they provide zero loss if all data points belong to either of the two classes
and maximum loss if the data points are equally divided between the two classes.
However, the Gini index and entropy have a higher loss for all other proportions.
In other words, the gain of having a pure node (𝑟 close to 0 or 1) is higher for the
Gini index and the entropy than for the misclassification rate. As a consequence,
the Gini index and the entropy both tend to favour making one of the two nodes
pure (or close to pure) since that provides a smaller total loss, which can make a
good combination with the greedy nature of the recursive binary splitting.

34
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

2.3 A Rule-Based Method: Decision Trees

4.5 5 5.5 6 6.5 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Fully grown tree

Beatles
Kiss
Bob Dylan

(a) Decision boundaries for the music classifica-
tion problem for a fully grown classification tree
with the Gini index. This model overfits the data.

4.5 5 5.5 6 6.5 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Tree with max depth 4

Beatles
Kiss
Bob Dylan

(b) The same problem and data as in 2.11a for
which a tree restricted to depth 4 has been learned,
again using the Gini index. This models will
hopefully make better predictions for new data.

10 20 30 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

Fully grown tree

Data
Decision tree

(c) The prediction for a fully grown regression
tree. As for the classification problem above, this
model overfits to the training data.

10 20 30 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

Tree with max depth 3

Data
Decision tree (max depth 3)

(d) The same problem and data as in 2.11c for
which a tree restricted to depth 3 has been learned.

Figure 2.11: Decision trees applied to the music classification Example 2.1 (a and b) and
the car stopping distance Example 2.2 (c and d).

How Deep Should a Decision Tree be?

The depth of a decision tree (the maximum distance between the root node and any
leaf node) has a big impact on the final predictions. The tree depth impacts the
predictions in a somewhat similar way to the hyperparameter 𝑘 in 𝑘-NN. We again
use the music classification and car stopping distance problems from Examples 2.1
and 2.2 to study how the decision boundaries change depending on the depth of the
trees. In Figure 2.11, the decision boundaries are illustrated for two different trees.
In Figure 2.11a and c, we have not restricted the depth of the tree and have grown it
until each region contains only data points with the same output value – a so-called
fully grown tree. In Figure 2.11b and d, the maximum depth is restricted to 4 and 3,
respectively.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
35

2 Supervised Learning: A First Approach

Similarly to choosing 𝑘 = 1 in 𝑘-NN, for a fully grown tree, all training data
points will, by construction, be correctly predicted since each region only contains
data points with the same output. As a result, for the music classification problem,
we get thin and small regions adapted to single training data points, and for the car
stopping distance problem, we get a very irregular line passing exactly through the
observations. Even though these trees give excellent performance on the training
data, they are not likely to be the best models for new, as yet unseen data. As we
discussed previously in the context of 𝑘-NN, we refer to this as overfitting.

In decision trees, we can mitigate overfitting by using shallower trees. Conse-
quently, we get fewer and larger regions with an increased averaging effect, resulting
in decision boundaries that are less adapted to the noise in the training data. This is
illustrated in Figure 2.11b and d for the two example problems. As for 𝑘 in 𝑘-NN,
the optimal size of the tree depends on many properties of the problem, and it is
a trade-off between flexibility and rigidity. Similar trade-offs have to be made for
almost all methods presented in this book, and they will be discussed systematically
in Chapter 4.

How can the user control the growth of the tree? Here we have different
strategies. The most straightforward strategy is to adjust the stopping criterion, that
is, the condition that should be fulfilled for not proceeding with further splits in a
certain node. As mentioned earlier, this criterion could be that we do not attempt
further splits if there are less than a certain number of training data points in the
corresponding region, or, as in Figure 2.11, we can stop splitting when we reach a
certain depth. Another strategy to control the depth is to use pruning. In pruning,
we start with a fully grown tree, and then in a second post-processing step, prune it
back to a smaller one. We will, however, not discuss pruning further here.

2.4 Further Reading

The reason why we started this book by 𝑘-NN is that it is perhaps the most intuitive
and straightforward way to solve a classification problem. The idea is at least a
thousand years old and was described already by H. assan Ibn al-Haytham (latinised
as Alhazen) around the year 1030 in Kitāb al-Manāz. ir (Book of Optics) (Pelillo
2014), as an explanation of how the human brain perceives objects. As with many
good ideas, the nearest neighbour idea has been re-invented many times, and a more
modern description of 𝑘-NN can be found in Cover and Hart (1967).

Also, the basic idea of decision trees is relatively simple, but there are many
possible ways to improve and extend them as well as different options for how to
implement them in detail. A somewhat longer introduction to decision trees is found
in Hastie et al. (2009), and a historically oriented overview can be found in Loh
(2014). Of particular significance is perhaps CART (Classification and Regression
Trees, Breiman et al. (1984)), as well as ID3 and C4.5 (Quinlan 1986), Quinlan
(1993).

36
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3 Basic Parametric Models
and a Statistical Perspective
on Learning

In the previous chapter, we introduced the supervised machine learning problem,
as well as two methods for solving it. In this chapter, we will consider a generic
approach to learning referred to as parametric modelling. In particular, we will
introduce linear regression and logistic regression, which are two such parametric
models. The key point of a parametric model is that it contains some parameters 𝜽 ,
which are learned from training data. However, once the parameters are learned,
the training data may be discarded, since the prediction only depends on 𝜽 .

3.1 Linear Regression

Regression is one of the two fundamental tasks of supervised learning (the other one
is classification). We will now introduce the linear regression model, which might
(at least historically) be the most popular method for solving regression problems.
Despite its relative simplicity, it is a surprisingly useful and is an important stepping
stone for more advanced methods, such as deep learning (see Chapter 6).

As discussed in the previous chapter, regression amounts to learning the relation-
ships between some input variables x = [𝑥1 𝑥2 . . . 𝑥𝑝]T and a numerical output
variable 𝑦. The inputs can be either categorical or numerical, but we will start by
assuming that all 𝑝 inputs are numerical as well, and discuss categorical inputs later.
In a more mathematical framework, regression is about learning a model 𝑓 ,

𝑦 = 𝑓 (x) + 𝜀, (3.1)

mapping the input to the output, where 𝜀 is an error term that describes everything
about the input–output relationship that cannot be captured by the model. With a
statistical perspective, we consider 𝜀 as a random variable, referred to as noise, that
is independent of x and has mean value of zero. As a running example of regression,
we will use the car stopping distance regression problem introduced in the previous
chapter as Example 2.2.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
37

3 Basic Parametric Models and a Statistical Perspective on Learning

The Linear Regression Model

The linear regression model assumes that the output variable 𝑦 (a scalar) can be
described as an affine1 combination of the 𝑝 input variables 𝑥1, 𝑥2, . . . , 𝑥𝑝 plus a
noise term 𝜀,

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + · · · + 𝜃𝑝𝑥𝑝 + 𝜀. (3.2)

We refer to the coefficients 𝜃0, 𝜃1, . . . 𝜃𝑝 as the parameters of the model, and we
sometimes refer to 𝜃0 specifically as the intercept (or offset) term. The noise term
𝜀 accounts for random errors in the data not captured by the model. The noise is
assumed to have mean zero and to be independent of x. The zero-mean assumption
is nonrestrictive, since any (constant) non-zero mean can be incorporated in the
offset term 𝜃0.

To have a more compact notation, we introduce the parameter vector 𝜽 =
[𝜃0 𝜃1 . . . 𝜃𝑝]T and extend the vector x with a constant one in its first position,
such that we can write the linear regression model (3.2) compactly as

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + · · · + 𝜃𝑝𝑥𝑝 + 𝜀 =
[
𝜃0 𝜃1 . . . 𝜃𝑝

]

1
𝑥1
...
𝑥𝑝

+ 𝜀 = 𝜽Tx+ 𝜀.

(3.3)
This notation means that the symbol x is used both for the 𝑝+1 and the 𝑝-dimensional
versions of the input vector, with or without the constant one in the leading position,
respectively. This is only a matter of book-keeping for handling the intercept term
𝜃0. Which definition is used will be clear from the context and carries no deeper
meaning.

The linear regression model is a parametric function of the form (3.3). The
parameters 𝜽 can take arbitrary values, and the actual values that we assign to them
will control the input–output relationship described by the model. Learning of the
model therefore amounts to finding suitable values for 𝜽 based on observed training
data. Before discussing how to do this, however, let us first look at how to use the
model for predictions once it has been learned.

The goal in supervised machine learning is making predictions �̂�(x★) for new,
previously unseen, test inputs x★ = [1 𝑥★1 𝑥★2 · · · 𝑥★𝑝]T. Let us assume that
we have already learned some parameter values �̂� for the linear regression model
(how this is done will be described next). We use the symbol ̂ to indicate that
�̂� contains learned values of the unknown parameter vector 𝜽. Since we assume

1An affine function is a linear function plus a constant offset.

38
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.1 Linear Regression

x1 x2 x3 x★

𝑦1
𝑦2

𝑦3

�̂� (x★)

𝜀1

𝜀2

𝜀3

data test input

da
ta

pr
ed

ic
tio

n

Input x

O
ut

pu
t𝑦

Linear regression model
Data
Prediction

Figure 3.1: Linear regression with 𝑝 = 1: The black dots represent 𝑛 = 3 data points, from
which a linear regression model (blue line) is learned. The model does not fit the data
perfectly, so there is a remaining error corresponding to the noise 𝜀 (red). The model can
be used to predict (blue circle) the output �̂�(x★) for a test input x★.

that the noise term 𝜀 is random with zero mean and independent of all observed
variables, it makes sense to replace 𝜀 with 0 in the prediction. That is, a prediction
from the linear regression model takes the form

�̂�(x★) = �̂�0 + �̂�1𝑥★1 + �̂�2𝑥★2 + · · · + �̂�𝑝𝑥★𝑝 = �̂�
Tx★. (3.4)

The noise term 𝜀 is often referred to as an irreducible error or an aleatoric2

uncertainty in the prediction. We illustrate the predictions made by a linear
regression model in Figure 3.1.

Training a Linear Regression Model from Training Data

Let us now discuss how to train a linear regression model, that is to learn 𝜽, from
training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1. We collect the training data, which consists of 𝑛 data
point with inputs x𝑖 and outputs 𝑦𝑖 , in the 𝑛 × (𝑝 + 1) matrix X and 𝑛-dimensional
vector y,

X =

xT
1

xT
2
...

xT
𝑛

, y =

𝑦1
𝑦2
...
𝑦𝑛

, where each x𝑖 =

1
𝑥𝑖1
𝑥𝑖2
...

𝑥𝑖 𝑝

. (3.5)

2From the Latin word aleator, meaning dice-player.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
39

3 Basic Parametric Models and a Statistical Perspective on Learning

Example 3.1 Car stopping distances

We continue Example 2.2 and train a linear regression model for the car stopping
distance data. We start by forming the matrices X and y. Since we only have one
input and one output, both 𝑥𝑖 and 𝑦𝑖 are scalar. We get

X =

1 4.0
1 4.9
1 5.0
1 5.1
1 5.2
...

...
1 39.6
1 39.7

, 𝜽 =

[
𝜃0
𝜃1

]
, and y =

4.0
8.0
8.0
4.0
2.0
...

134.0
110.0

. (3.6)

Altogether we can use this vector and matrix notation to describe the linear
regression model for all training data points x𝑖, 𝑖 = 1, . . . , 𝑛 in one equation as a
matrix multiplication,

y = X𝜽 + 𝝐 , (3.7)

where 𝝐 is a vector of errors/noise terms. Moreover, we can also define a vector
of predicted outputs for the training data ŷ =

[
�̂�(x1) �̂�(x2) . . . �̂�(x𝑛)

]T, which
also allows a compact matrix formulation,

ŷ = X𝜽 . (3.8)

Note that whereas y is a vector of recorded training data values, ŷ is a vector whose
entries are functions of 𝜽 . Learning the unknown parameters 𝜽 amounts to finding
values such that ŷ is similar to y. That is, the predictions given by the model should
fit the training data well. There are multiple ways to define what ‘similar’ or ‘well’
actually means, but it somehow amounts to finding 𝜽 such that ŷ − y = 𝝐 is small.
We will approach this by formulating a loss function, which gives a mathematical
meaning to ‘fitting the data well’. We will thereafter interpret the loss function
from a statistical perspective, by understanding this as selecting the value of 𝜽
which makes the observed training data y as likely as possible with respect to the
model – the so-called maximum likelihood solution. Later, in Chapter 9, we will
also introduce a conceptually different way of learning 𝜽 .

Loss Functions and Cost Functions

A principled way to define the learning problem is to introduce a loss function
𝐿 (�̂�, 𝑦) which measures how close the model’s prediction �̂� is to the observed data
𝑦. If the model fits the data well, so that �̂� ≈ 𝑦, then the loss function should take
a small value, and vice versa. Based on the chosen loss function, we also define

40
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.1 Linear Regression

the cost function as the average loss over the training data. Training a model then
amounts to finding the parameter values that minimise the cost

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

loss function︷ ︸︸ ︷
𝐿 (�̂�(x𝑖; 𝜽), 𝑦𝑖)

︸ ︷︷ ︸
cost function 𝐽 (𝜽)

. (3.9)

Note that each term in the expression above corresponds to evaluating the loss
function for the prediction �̂�(x𝑖; 𝜽), given by (3.4), for the training point with index
𝑖 and the true output value 𝑦𝑖 at that point. To emphasise that the prediction depends
on the parameters 𝜽 , we have included 𝜽 as an argument to �̂� for clarity. The operator
arg min𝜽 means ‘the value of 𝜽 for which the cost function attains it minimum’. The
relationship between loss and cost functions (3.9) is general for all cost functions in
this book.

Least Squares and the Normal Equations

For regression, a commonly used loss function is the squared error loss

𝐿 (�̂�(x; 𝜽), 𝑦) = (
�̂�(x; 𝜽) − 𝑦

)2
. (3.10)

This loss function is 0 if �̂�(x; 𝜽) = 𝑦 and grows fast (quadratically) as the difference
between 𝑦 and the prediction �̂�(x; 𝜽) = 𝜽Tx increases. The corresponding cost
function for the linear regression model (3.7) can be written with matrix notation as

𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1
(�̂�(x𝑖; 𝜽) − 𝑦𝑖)2 =

1
𝑛
‖ŷ − y‖22 =

1
𝑛
‖X𝜽 − y‖22 =

1
𝑛
‖𝝐 ‖22, (3.11)

where ‖ · ‖2 denotes the usual Euclidean vector norm and ‖ · ‖22 its square. Due to
the square, this particular cost function is also commonly referred to as the least
squares cost. It is illustrated in Figure 3.2. We will discuss other loss functions in
Chapter 5.

When using the squared error loss for learning a linear regression model from T ,
we thus need to solve the problem

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1
(𝜽Tx𝑖 − 𝑦𝑖)2 = arg min

𝜽

1
𝑛
‖X𝜽 − y‖22. (3.12)

From a linear algebra point of view, this can be seen as the problem of finding the
closest vector to y (in an Euclidean sense) in the subspace of R𝑛 spanned by the
columns of X. The solution to this problem is the orthogonal projection of y onto
this subspace, and the corresponding �̂� can be shown (see Section 3.A) to fulfill

XTX�̂� = XTy. (3.13)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
41

3 Basic Parametric Models and a Statistical Perspective on Learning

Input 𝑥

O
ut

pu
t𝑦

Model
Data
𝜀

Figure 3.2: A graphical explanation of the squared error loss function: the goal is to choose
the model (blue line) such that the sum of the squares (light red) of each error 𝜀 is minimised.
That is, the blue line is to be chosen so that the amount of red colour is minimised. This
motivates the name least squares. The black dots, the training data, are fixed.

Equation (3.13) is often referred to as the normal equations and gives the solution
to the least squares problem (3.12). If XTX is invertible, which is often the case,
then �̂� has the closed form expression

�̂� = (XTX)−1XTy. (3.14)

The fact that this closed-form solution exists is important and is probably the reason
for why the linear regression with squared error loss is so extremely common
in practice. Other loss functions lead to optimisation problems that often lack
closed-form solutions.

We now have everything in place for using linear regression, and we summarise
it as Method 3.1 and illustrate it by Example 3.2.

Learn linear regression with squared error loss
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Learned parameter vector �̂�

1 Construct the matrix X and vector y according to (3.5).
2 Compute �̂� by solving (3.13).

Predict with linear regression

Data: Learned parameter vector �̂� and test input x★
Result: Prediction �̂�(x★)

1 Compute �̂�(x★) = �̂�
Tx★.

Method 3.1: Linear regression

42
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.1 Linear Regression

Time to reflect 3.1 What does it mean in practice if XTX is not invertible?

Time to reflect 3.2 If the columns of X are linearly independent, and 𝑝 = 𝑛−1,
X spans the entire R𝑛. If that is the case, X is invertible, and (3.14) reduces
to 𝜽 = X−1y. Hence, a unique solution exists such that y = X𝜽 exactly, that
is, the model fits the training data perfectly. Why would that not be a desired
property in practice?

Example 3.2 Car stopping distances

By inserting the matrices (3.6) from Example 3.1 into the normal equations (3.14),
we obtain �̂�0 = −20.1 and �̂�1 = 3.14. Plotting the resulting model gives us
Figure 3.3.

0 10 20 30 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

Linear regression model
Data

Fig.
3.3

This can be compared to how 𝑘-NN and decision trees solves the same problem
(Figures 2.5 and 2.11). Clearly, the linear regression model behaves differently
than these models; linear regression does not share the ‘local’ nature of 𝑘-NN and
decision trees (only training data points close to x★ affect �̂�(x★)), which is related
to the fact that linear regression is a parametric model.

The Maximum Likelihood Perspective

To get another perspective on the squared error loss, we will now reinterpret the
least squares method above as a maximum likelihood solution. The word ‘likelihood’
refers to the statistical concept of the likelihood function, and maximising the
likelihood function amounts to finding the value of 𝜽 that makes observing y as
likely as possible. That is, instead of (somewhat arbitrarily) selecting a loss function,
we start with the problem

�̂� = arg max
𝜽

𝑝(y |X; 𝜽). (3.15)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
43

3 Basic Parametric Models and a Statistical Perspective on Learning

Here 𝑝(y |X; 𝜽) is the probability density of all observed outputs y in the training
data, given all inputs X and parameters 𝜽. This determines mathematically what
‘likely’ means, but we need to specify it in more detail. We do that by considering
the noise term 𝜀 as a stochastic variable with a certain distribution. A common
assumption is that the noise terms are independent, each with a Gaussian distribution
(also known as a normal distribution) with mean zero and variance 𝜎2

𝜀 ,

𝜀 ∼ N(
0, 𝜎2

𝜀

)
. (3.16)

This implies that the 𝑛 observed training data points are independent, and 𝑝(y |X; 𝜽)
factorises as

𝑝(y |X; 𝜽) =
𝑛∏
𝑖=1

𝑝(𝑦𝑖 | x𝑖 , 𝜽). (3.17)

Considering the linear regression model from (3.3), 𝑦 = 𝜽Tx + 𝜀, together with the
Gaussian noise assumption (3.16), we have

𝑝(𝑦𝑖 | x𝑖 , 𝜽) = N
(
𝑦𝑖; 𝜽Tx𝑖 , 𝜎2

𝜀

)
=

1√︁
2𝜋𝜎2

𝜀

exp
(
− 1

2𝜎2
𝜀

(
𝜽Tx𝑖 − 𝑦𝑖

)2
)
. (3.18)

Recall that we want to maximise the likelihood with respect to 𝜽 . For numerical
reasons, it is usually better to work with the logarithm of 𝑝(y |X; 𝜽),

ln 𝑝(y |X; 𝜽) =
𝑛∑︁
𝑖=1

ln 𝑝(𝑦𝑖 | x𝑖 , 𝜽). (3.19)

Since the logarithm is a monotonically increasing function, maximising the log-
likelihood (3.19) is equivalent to maximising the likelihood itself. Putting (3.18)
and (3.19) together, we get

ln 𝑝(y |X; 𝜽) = −𝑛
2

ln(2𝜋𝜎2
𝜀) −

1
2𝜎2

𝜀

𝑛∑︁
𝑖=1

(
𝜽Tx𝑖 − 𝑦𝑖

)2
. (3.20)

Removing terms and factors independent of 𝜽 does not change the maximising
argument, and we see that we can rewrite (3.15) as

�̂� = arg max
𝜽

𝑝(y |X; 𝜽) = arg max
𝜽
−

𝑛∑︁
𝑖=1

(
𝜽Tx𝑖 − 𝑦𝑖

)2 = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

(
𝜽Tx𝑖 − 𝑦𝑖

)2
.

(3.21)

This is indeed linear regression with the least squares cost (the cost function implied
by the squared error loss function (3.10)). Hence, using the squared error loss is
equivalent to assuming a Gaussian noise distribution in the maximum likelihood
formulation. Other assumptions on 𝜀 lead to other loss functions, as we will discuss
further in Chapter 5.

44
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.2 Classification and Logistic Regression

Categorical Input Variables

The regression problem is characterised by a numerical output 𝑦 and inputs x of
arbitrary type. We have, however, only discussed the case of numerical inputs so far.
To see how we can handle categorical inputs in the linear regression model, assume
that we have an input variable that only takes two different values. We refer to those
two values as A and B. We can then create a dummy variable 𝑥 as

𝑥 =

{
0 if A,
1 if B,

(3.22)

and use this variable in any supervised machine learning method as if it was
numerical. For linear regression, this effectively gives us a model which looks like

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀 =

{
𝜃0 + 𝜀 if A,
𝜃0 + 𝜃1 + 𝜀 if B.

(3.23)

The model is thus able to learn and predict two different values depending on
whether the input is A or B.

If the categorical variable takes more than two values, let us say A, B, C, and D, we
can make a so-called one-hot encoding by constructing a four-dimensional vector

x =
[
𝑥𝐴 𝑥𝐵 𝑥𝐶 𝑥𝐷

]T (3.24)

where 𝑥𝐴 = 1 if A, 𝑥𝐵 = 1 if B, and so on. That is, only one element of x will be
1, the rest are 0. Again, this construction can be used for any supervised machine
learning method and is not restricted to linear regression.

3.2 Classification and Logistic Regression

After presenting a parametric method for solving the regression problem, we now
turn our attention to classification. As we will see, with a modification of the linear
regression model, we can apply it to the classification problem as well; however,
this is the cost of not being able to use the convenient normal equations. Instead, we
have to resort to numerical optimisation for learning the parameters of the model.

A Statistical View of the Classification Problem

Supervised machine learning amounts to predicting the output from the input. From
a statistical perspective, classification amounts to predicting the conditional class
probabilities

𝑝(𝑦 = 𝑚 | x), (3.25)
where 𝑦 is the output (1, 2, . . . , or 𝑀) and x is the input.3 In words, 𝑝(𝑦 = 𝑚 | x)
describes the probability for class 𝑚 given that we know the input x. Talking

3We use the notation 𝑝(𝑦 | x) to denote probability masses (𝑦 discrete) as well as probability densities
(𝑦 continuous).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
45

3 Basic Parametric Models and a Statistical Perspective on Learning

about 𝑝(𝑦 | x) implies that we think about the class label 𝑦 as a random variable.
Why? Because we choose to model the real world, from where the data originates,
as involving a certain amount of randomness (much like the random error 𝜀 in
regression). Let us illustrate this with an example.

Example 3.3 Describing voting behavior using probabilities

We want to construct a model that can predict voting preferences (= 𝑦, the categorical
output) for different population groups (= x, the input). However, we then have to
face the fact that not everyone in a certain population group will vote for the same
political party. We can therefore think of 𝑦 as a random variable which follows a
certain probability distribution. If we know that the vote count in the group of 45
year old women (= x) is 13% for the cerise party, 39% for the turquoise party, and
48% for the purple party (here we have 𝑀 = 3), we could describe it as

𝑝(𝑦 = cerise party | x = 45 year old women) = 0.13,
𝑝(𝑦 = turqoise party | x = 45 year old women) = 0.39,
𝑝(𝑦 = purple party | x = 45 year old women) = 0.48.

In this way, the probabilities 𝑝(𝑦 | x) describe the non-trivial fact that

(a) all 45 year old women do not vote for the same party, but

(b) the choice of party does not appear to be completely random among 45 year
old women either; the purple party is the most popular, and the cerise party
is the least popular.

Thus, it can be useful to have a classifier which predicts not only a class �̂� (one
party) but a distribution over classes 𝑝(𝑦 | x).

We now aim to construct a classifier which can not only predict classes but also
learn the class probabilities 𝑝(𝑦 | x). More specifically, for binary classification
problems (𝑀 = 2, and 𝑦 is either 1 or −1), we train a model 𝑔(x) for which

𝑝(𝑦 = 1 | x) is modelled by 𝑔(x). (3.26a)

By the laws of probabilities, it holds that 𝑝(𝑦 = 1 | x) + 𝑝(𝑦 = −1 | x) = 1, which
means that

𝑝(𝑦 = −1 | x) is modelled by 1 − 𝑔(x). (3.26b)

Since 𝑔(x) is a model for a probability, it is natural to require that 0 ≤ 𝑔(x) ≤ 1 for
any x. We will see how this constraint can be enforced below.

For the multiclass problem, we instead let the classifier return a vector-valued
function g(x), where

𝑝(𝑦 = 1 | x)
𝑝(𝑦 = 2 | x)

...
𝑝(𝑦 = 𝑀 | x)

is modelled by

𝑔1(x)
𝑔2(x)
...

𝑔𝑀 (x)

= g(x). (3.27)

46
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.2 Classification and Logistic Regression

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

𝑧

ℎ
(𝑧)

Figure 3.4: The logistic function ℎ(𝑧) = 𝑒𝑧

1+𝑒𝑧 .

In words, each element 𝑔𝑚(x) of g(x) corresponds to the conditional class probability
𝑝(𝑦 = 𝑚 | x). Since g(x) models a probability vector, we require that each element
𝑔𝑚(x) ≥ 0 and that ‖g(x)‖1 =

∑𝑀
𝑚=1 |𝑔𝑚(x) | = 1 for any x.

The Logistic Regression Model for Binary Classification

We will now introduce the logistic regression model, which is one possible way of
modelling conditional class probabilities. Logistic regression can be viewed as a
modification of the linear regression model so that it fits the classification (instead
of the regression) problem.

Let us start with binary classification. We wish to learn a function 𝑔(x) that
approximates the conditional probability of the positive class, see (3.26). To this
end, we start with the linear regression model which, without the noise term, is
given by

𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + · · · + 𝜃𝑝𝑥𝑝 = 𝜽Tx. (3.28)

This is a mapping which takes x and returns 𝑧, which in this context is called the logit.
Note that 𝑧 takes values on the entire real line, whereas we need a function which
instead returns a value in the interval [0, 1]. The key idea of logistic regression
is to ‘squeeze’ 𝑧 from (3.28) to the interval [0, 1] by using the logistic function
ℎ(𝑧) = 𝑒𝑧

1+𝑒𝑧 , see Figure 3.4. This results in

𝑔(x) = 𝑒𝜽
Tx

1 + 𝑒𝜽Tx
, (3.29a)

which is restricted to [0, 1] and hence can be interpreted as a probability. The
function (3.29a) is the logistic regression model for 𝑝(𝑦 = 1 | x). Note that this
implicitly also gives a model for 𝑝(𝑦 = −1 | x),

1 − 𝑔(x) = 1 − 𝑒𝜽
Tx

1 + 𝑒𝜽Tx
=

1
1 + 𝑒𝜽Tx

=
𝑒−𝜽

Tx

1 + 𝑒−𝜽Tx
. (3.29b)

In a nutshell, the logistic regression model is linear regression appended with the
logistic function. This is the reason for the (somewhat confusing) name, but despite

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
47

3 Basic Parametric Models and a Statistical Perspective on Learning

the name, logistic regression is a method for classification, not regression! The
reason why there is no noise term 𝜀 in (3.28), as we had in the linear regression
model (3.3), is that the randomness in classification is statistically modelled by the
class probability construction 𝑝(𝑦 = 𝑚 | x) instead of an additive noise 𝜀.

As for linear regression, we have a model (3.29) which contains unknown
parameters 𝜽 . Logistic regression is thereby also a parametric model, and we need
to learn the parameters from training data. How this can be done is the topic for the
next section.

Training the Logistic Regression Model by Maximum Likelihood

By using the logistic function, we have transformed linear regression (a model for
regression problems) into logistic regression (a model for classification problems).
The price to pay is that we will not be able to use the convenient normal equations
for learning 𝜽 (as we could for linear regression if we used the squared error loss),
due to the nonlinearity of the logistic function.

In order to derive a principled way of learning 𝜽 in (3.29) from training data
T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1, we start with the maximum likelihood approach. From a maximum
likelihood perspective, learning a classifier amounts to solving

�̂� = arg max
𝜽

𝑝(y |X; 𝜽) = arg max
𝜽

𝑛∑︁
𝑖=1

ln 𝑝(𝑦𝑖 | x𝑖; 𝜽), (3.30)

where similarly to linear regression (3.19), we assume that the training data points
are independent, and we consider the logarithm of the likelihood function for
numerical reasons. We have also added 𝜽 explicitly to the notation to emphasise the
dependence on the model parameters. Remember that our model of 𝑝(𝑦 = 1 | x; 𝜽)
is 𝑔(x; 𝜽), which gives

ln 𝑝(𝑦𝑖 | x𝑖; 𝜽) =
{

ln 𝑔(x𝑖; 𝜽) if 𝑦𝑖 = 1,
ln

(
1 − 𝑔(x𝑖; 𝜽)

)
if 𝑦𝑖 = −1.

(3.31)

It is common to turn the maximisation problem (3.30) into an equivalent min-
imisation problem by using the negative log-likelihood as cost function, 𝐽 (𝜽) =
− 1

𝑛

∑
ln 𝑝(𝑦𝑖 | x𝑖; 𝜽), that is,

𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

{
− ln 𝑔(x𝑖; 𝜽) if 𝑦𝑖 = 1,
− ln

(
1 − 𝑔(x𝑖; 𝜽)

)
if 𝑦𝑖 = −1.︸ ︷︷ ︸

Binary cross-entropy loss 𝐿 (𝑔 (x𝑖 ;𝜽) ,𝑦𝑖)

(3.32)

The loss function in the expression above is called the cross-entropy loss. It is not
specific to logistic regression but can be used for any binary classifier that predicts
class probabilities 𝑔(x; 𝜽).

However, we will now consider specifically the logistic regression model, for
which we can write out the cost function (3.32) in more detail. In doing so, the

48
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.2 Classification and Logistic Regression

particular choice of labelling {−1, 1} turns out to be convenient. For 𝑦𝑖 = 1, we
can write

𝑔(x𝑖; 𝜽) = 𝑒𝜽
Tx𝑖

1 + 𝑒𝜽Tx𝑖
=

𝑒𝑦𝑖𝜽
Tx𝑖

1 + 𝑒𝑦𝑖𝜽Tx𝑖
, (3.33a)

and for 𝑦𝑖 = −1,

1 − 𝑔(x𝑖; 𝜽) = 𝑒−𝜽
Tx𝑖

1 + 𝑒−𝜽Tx𝑖
=

𝑒𝑦𝑖𝜽
Tx𝑖

1 + 𝑒𝑦𝑖𝜽Tx𝑖
. (3.33b)

Hence, we get the same expression in both cases and can write (3.32) compactly as

𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1
− ln

𝑒𝑦𝑖𝜽
Tx𝑖

1 + 𝑒𝑦𝑖𝜽Tx𝑖
=

1
𝑛

𝑛∑︁
𝑖=1
− ln

1
1 + 𝑒−𝑦𝑖𝜽Tx𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

ln
(
1 + 𝑒−𝑦𝑖𝜽Tx𝑖)︸ ︷︷ ︸

Logistic loss 𝐿 (x𝑖 , 𝑦𝑖 , 𝜽)

. (3.34)

The loss function 𝐿 (x, 𝑦𝑖 , 𝜽) above, which is a special case of the cross-entropy loss,
is called the logistic loss (or sometimes binomial deviance). Learning a logistic
regression model thus amounts to solving

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

ln
(
1 + 𝑒−𝑦𝑖𝜽Tx𝑖) . (3.35)

Contrary to linear regression with squared error loss, the problem (3.35) has no
closed-form solution, so we have to use numerical optimisation instead. Solving
nonlinear optimisation problems numerically is central to the training of many
machine learning models, not just logistic regression, and we will come back to this
topic in Chapter 5. For now, however, it is enough to note that there exist efficient
algorithms for solving (3.35) numerically to find �̂� .

Predictions and Decision Boundaries

So far, we have discussed logistic regression as a method for predicting class
probabilities for a test input x★ by first learning 𝜽 from training data and thereafter
computing 𝑔(x★), our model for 𝑝(𝑦 = 1 | x★). However, sometimes we want to
make a ‘hard’ prediction for the test input x★, that is, predicting �̂�(x★) = −1 or
�̂�(x★) = 1 in binary classification, just like with 𝑘-NN or decision trees. We then
have to add a final step to the logistic regression model, in which the predicted
probabilities are turned into a class prediction. The most common approach is to let
�̂�(x★) be the most probable class. For binary classification, we can express this as4

�̂�(x★) =
{

1 if 𝑔(x) > 𝑟

−1 if 𝑔(x) ≤ 𝑟
, (3.36)

4It is arbitrary what happens if 𝑔(x) = 0.5.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
49

3 Basic Parametric Models and a Statistical Perspective on Learning

Learn binary logistic regression
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 (with output classes 𝑦 = {−1, 1})
Result: Learned parameter vector �̂�

1 Compute �̂� by solving (3.35) numerically.

Predict with binary logistic regression

Data: Learned parameter vector �̂� and test input x★
Result: Prediction �̂�(x★)

1 Compute 𝑔(x★) (3.29a).
2 If 𝑔(x★) > 0.5, return �̂�(x★) = 1, otherwise return �̂�(x★) = −1.

Method 3.2: Logistic regression

with decision threshold 𝑟 = 0.5, which is illustrated in Figure 3.5. We now have
everything in place for summarising binary logistic regression in Method 3.2.

In some applications, however, it can be beneficial to explore different thresholds
than 𝑟 = 0.5. It can be shown that if 𝑔(x) = 𝑝(𝑦 = 1 | x), that is, the model provides
a correct description of the real-world class probabilities, then the choice 𝑟 = 0.5 will
give the smallest possible number of misclassifications on average. In other words,
𝑟 = 0.5 minimises the so-called misclassification rate. The misclassification rate is,
however, not always the most important aspect of a classifier. Many classification
problems are asymmetric (it is more important to correctly predict some classes
than others) or imbalanced (the classes occur with very different frequencies). In
a medical diagnosis application, for example, it can be more important not to
falsely predict the negative class (that is, by mistake predict a sick patient being
healthy) than to falsely predict the positive class (by mistake predict a healthy
patient as sick). For such a problem, minimising the misclassification rate might
not lead to the desired performance. Furthermore, the medical diagnosis problem
could be imbalanced if the disorder is very rare, meaning that the vast majority
of the data points (patients) belong to the negative class. By only considering the
misclassification rate in such a situation, we implicitly value accurate predictions
of the negative class higher than accurate predictions of the positive class, simply
because the negative class is more common in the data. We will discuss how we can
evaluate such situations more systematically in Section 4.5. In the end, however, the
decision threshold 𝑟 is a choice that the user has to make.

The decision boundary for binary classification can be computed by solving the
equation

𝑔(x) = 1 − 𝑔(x). (3.37)

The solutions to this equation are points in the input space for which the two classes
are predicted to be equally probable. Therefore, these points lie on the decision
boundary. For binary logistic regression, this means

50
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.2 Classification and Logistic Regression

0

0.25

0.5

0.75

1

𝑥1 𝑥2

𝑔
(x
)

Figure 3.5: In binary classification (𝑦 = −1 or 1), logistic regression predicts 𝑔(x★) (x is
two-dimensional here), which is an attempt to determine 𝑝(𝑦 = 1 | x★). This implicitly also
gives a prediction for 𝑝(𝑦 = −1 | x★) as 1 − 𝑔(x★). To turn these probabilities into actual
class predictions (�̂�(x★) is either −1 or 1), the class which is modelled to have the highest
probability can be taken as the prediction, as in Equation (3.36). The point(s) where the
prediction changes from from one class to another is the decision boundary (grey plane).

𝑒𝜽
Tx

1 + 𝑒𝜽Tx
=

1
1 + 𝑒𝜽Tx

⇔ 𝑒𝜽
Tx = 1⇔ 𝜽Tx = 0. (3.38)

The equation 𝜽Tx = 0 parameterises a (linear) hyperplane. Hence, the decision
boundaries in logistic regression always have the shape of a (linear) hyperplane.

From the derivation above, it can be noted that the sign of the expression 𝜽Tx
determines if we are predicting the positive or the negative class. Hence, we can
compactly write (3.36), with the threshold 𝑟 = 0.5, as

�̂�(x★) = sign(𝜽Tx★). (3.39)

In general we distinguish between different types of classifiers by the shape of
their decision boundaries.

A classifier whose decision boundaries are linear hyperplanes is a linear
classifier.

All other classifiers are non-linear classifiers. Logistic regression is an example
of a linear classifier, whereas 𝑘-NN and decision trees are non-linear classifiers.
Note that the term ‘linear’ is used in a different sense for linear regression: linear
regression is a model which is linear in its parameters, whereas a linear classifier is
a model whose decision boundaries are linear.

The same arguments and constructions as above can be generalised to the
multiclass setting. Predicting according to the most probable class then amounts to
computing the prediction as

�̂�(x★) = arg max
𝑚

𝑔𝑚(x★). (3.40)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
51

3 Basic Parametric Models and a Statistical Perspective on Learning

As in the binary case, it is possible to modify this when working with an asymmetric
or imbalanced problem. The decision boundaries will be given by a combination of
𝑀 − 1 (linear) hyperplanes for a multiclass logistic regression model.

Logistic Regression for More Than Two Classes

Logistic regression can be used also for the multiclass problem when there are more
than two classes, 𝑀 > 2. There are several ways of generalising logistic regression
to this setting. We will follow one path using the so-called softmax function, which
will also be useful later when introducing deep learning models in Chapter 6.

For the binary problem, we used the logistic function to design a model for 𝑔(x),
a scalar-valued function representing 𝑝(𝑦 = 1 | x). For the multiclass problem, we
instead have to design a vector-valued function g(x), whose elements should be
non-negative and sum to one. For this purpose, we first use 𝑀 instances of (3.28),
each denoted 𝑧𝑚 and each with a different set of parameters 𝜽𝑚, 𝑧𝑚 = 𝜽T

𝑚x. We
stack all 𝑧𝑚 into a vector of logits z = [𝑧1 𝑧2 . . . 𝑧𝑀]T and use the softmax function
as a vector-valued generalisation of the logistic function,

softmax(z) , 1∑𝑀
𝑚=1 𝑒

𝑧𝑚

𝑒𝑧1

𝑒𝑧2

...
𝑒𝑧𝑀

. (3.41)

Note that the argument z to the softmax function is an 𝑀-dimensional vector and
that it also returns a vector of the same dimension. By construction, the output
vector from the softmax function always sums to 1, and each element is always ≥ 0.
Similarly to how we combined linear regression and the logistic function for the
binary classification problem (3.29), we have now combined linear regression and
the softmax function to model the class probabilities:

g(x) = softmax(z), where z =

𝜽T
1x

𝜽T
2x
...

𝜽T
𝑀x

. (3.42)

Equivalently, we can write out the individual class probabilities, that is, the elements
of the vector g(x), as

𝑔𝑚(x) = 𝑒𝜽
T
𝑚x∑𝑀

𝑗=1 𝑒
𝜽T
𝑗x
, 𝑚 = 1, . . . , 𝑀. (3.43)

This is the multiclass logistic regression model. Note that this construction uses
𝑀 parameter vectors 𝜽1, . . . , 𝜽𝑀 (one for each class), meaning that the number
of parameters to learn grows with 𝑀. As for binary logistic regression, we can
learn these parameters using the maximum likelihood method. We use 𝜽 to

52
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.2 Classification and Logistic Regression

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

Figure 3.6: Logistic regression applied to the music classification problem from Example 2.1.
The decision boundaries are linear, but unlike trees (Figure 2.11a), they are not perpendicular
to the axes.

denote all model parameters, 𝜽 = {𝜽1, . . . , 𝜽𝑀 }. Since 𝑔𝑚(x𝑖; 𝜽) is our model
for 𝑝(𝑦𝑖 = 𝑚 | x𝑖), the cost function for the cross-entropy (equivalently, negative
log-likelihood) loss for the multiclass problem is

𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

− ln 𝑔𝑦𝑖 (x𝑖; 𝜽)︸ ︷︷ ︸
Multiclass cross-entropy

loss 𝐿 (g(x𝑖 ;𝜽) ,𝑦𝑖)

. (3.44)

Note that we use the training data labels 𝑦𝑖 as index variables to select the correct
conditional probability for the loss function. That is, the 𝑖th term of the sum is
the negative logarithm of the 𝑦𝑖th element of the vector g(x𝑖; 𝜽). We illustrate the
meaning of this in Example 3.4.

Inserting the model (3.43) into the loss function (3.44) gives the cost function to
optimise when learning multiclass logistic regression:

𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

©«
−𝜽T

𝑦𝑖x𝑖 + ln
𝑀∑︁
𝑗=1

𝑒𝜽
T
𝑗x𝑖ª®¬

. (3.45)

We apply this to the music classification problem in Figure 3.6.

Example 3.4 The cross-entropy loss for multiclass problems

Consider the following (very small) data set with 𝑛 = 6 data points, 𝑝 = 2 input
dimensions, and 𝑀 = 3 classes, which we want to use to train a multiclass classifier:

X =

0.20 0.86
0.41 0.18
0.96 −1.84
−0.25 1.57
−0.82 −1.53
−0.31 0.58

, y =

2
3
1
2
1
3

.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
53

3 Basic Parametric Models and a Statistical Perspective on Learning

Multiclass logistic regression with softmax (or any other multiclass classifier which
predicts a vector of conditional class probabilities) return a three-dimensional
probability vector g(x; 𝜽) for any x and 𝜽. If we stack the logarithms of the
transpose of all vectors g(x𝑖; 𝜽) for 𝑖 = 1, . . . , 6, we obtain the matrix

G =

ln 𝑔1 (x1; 𝜽) ln 𝑔2 (x1; 𝜽) ln 𝑔3 (x1; 𝜽)
ln 𝑔1 (x2; 𝜽) ln 𝑔2 (x2; 𝜽) ln 𝑔3 (x2; 𝜽)
ln 𝑔1 (x3; 𝜽) ln 𝑔2 (x3; 𝜽) ln 𝑔3 (x3; 𝜽)
ln 𝑔1 (x4; 𝜽) ln 𝑔2 (x4; 𝜽) ln 𝑔3 (x4; 𝜽)
ln 𝑔1 (x5; 𝜽) ln 𝑔2 (x5; 𝜽) ln 𝑔3 (x5; 𝜽)
ln 𝑔1 (x6; 𝜽) ln 𝑔2 (x6; 𝜽) ln 𝑔3 (x6; 𝜽)

.

Computing the multi-class cross-entropy cost (3.44) now simply amounts to taking
the average of all circled elements and multiplying that by −1. The element that we
have circled in row 𝑖 is given by the training label 𝑦𝑖 . Training the model amounts
to finding 𝜽 such that this negated average is minimised.

Time to reflect 3.3 Can you derive (3.32) as a special case of (3.44)?
Hint: think of the binary classifier as a special case of the multiclass classifier

with g(x) =
[

𝑔(x)
1 − 𝑔(x)

]
.

Time to reflect 3.4 The softmax-based logistic regression is actually over-
parameterised, in the sense that we can construct an equivalent model with
fewer parameters. That is often not a problem in practice, but compare the
multiclass model (3.42) for the case 𝑀 = 2 with binary logistic regression
(3.29), and see if you can spot the over-parametrisation!

3.3 Polynomial Regression and Regularisation

In comparison to 𝑘-NN and decision trees studied in Chapter 2, linear and logistic
regression might appear to be rigid and non-flexible models with their straight
lines (such as Figures 3.1 and 3.5). However, both models are able to adapt to the
training data well if the input dimension 𝑝 is large relative to the number of data
points 𝑛.

A common way of increasing the input dimension in linear and logistic regression,
which we will discuss more thoroughly in Chapter 8, is to make a non-linear
transformation of the input. A simple non-linear transformation is to replace a

54
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.3 Polynomial Regression and Regularisation

one-dimensional input 𝑥 with itself raised to different powers, which makes the
linear regression model a polynomial:

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + 𝜃3𝑥

3 + · · · + 𝜀. (3.46)

This is called polynomial regression. The same polynomial expansion can also be
applied to the expression for the logit in logistic regression. Note that if we let 𝑥1 = 𝑥,
𝑥2 = 𝑥2 and 𝑥3 = 𝑥3, this is still a linear model (3.2) with input x = [1 𝑥 𝑥2 𝑥3], but
we have ‘lifted’ the input from being one-dimensional (𝑝 = 1) to three-dimensional
(𝑝 = 3). Using non-linear input transformations can be very useful in practice,
but it effectively increases 𝑝, and we can easily end up with overfitting the model
to the noise – rather than the interesting patterns – in the training data, as in the
example below.

Example 3.5 Car stopping distances with polynomial regression

We return to Example 2.2, but this time we also add the squared speed as an input
and thereby use a second-order polynomial in linear regression. This gives the new
matrices (compared to Example 3.1)

X =

1 4.0 16.0
1 4.9 24.0
1 5.0 25.0
...

...
...

1 39.6 1568.2
1 39.7 1576.1

, 𝜽 =

𝜃0
𝜃1
𝜃2

, y =

4.0
8.0
8.0
...

134.0
110.0

, (3.47)

and when we insert these into the normal equations (3.13), the new parameter
estimates are �̂�0 = 1.58, �̂�1 = 0.42, and �̂�2 = 0.07. (Note that also �̂�0 and �̂�1 change,
compared to Example 3.2.)

In a completely analogous way, we also learn a 10th order polynomial, and we
illustrate them all in Figure 3.7.

0 5 10 15 20 25 30 35 40 45
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

Linear regression with 𝑥

Linear regression with 𝑥 and 𝑥2

Linear regression with 𝑥, 𝑥2, . . . , 𝑥10

Data

Fig.
3.7

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
55

3 Basic Parametric Models and a Statistical Perspective on Learning

The second-order polynomial (red line) appears sensible, and using a second-order
polynomial seems to give some advantage compared to plain linear regression
(blue line, from Example 3.2). However, using a tenth-order polynomial (green
line) seems to make the model less useful than even plain linear regression due to
overfitting. In conclusion, there is merit to the idea of polynomial regression, but it
has to be applied carefully.

One way to avoid issues with overfitting when augmenting the input with
non-linear transformation is to carefully select which inputs (transformations) to
include. There are various strategies for doing this, for instance by adding inputs
one at a time (forward selection) or by starting with a large number of inputs
and then gradually removing the ones that are considered redundant (backward
elimination). Different candidate models can be evaluated and compared using cross-
validation, as we discuss in Chapter 4. See also Chapter 11, where we discuss input
selection further.

An alternative approach to explicit input selection which can also be used to
mitigate overfitting is regularisation. The idea of regularisation can be described as
‘keeping the parameters �̂� small unless the data really convinces us otherwise’, or
alternatively ‘if a model with small parameter values �̂� fits the data almost as well as
a model with larger parameter values, the one with small parameter values should
be preferred’. There are several ways to implement this idea mathematically, which
lead to different regularisation methods. We will give a more complete treatment of
this in Section 5.3 and only discuss the so-called 𝐿2 regularisation for now. When
paired with regularisation, the idea of using non-linear input transformations can be
very powerful and enables a whole family of supervised machine learning methods
that we will properly introduce and discuss in Chapter 8.

To keep �̂� small, an extra penalty term 𝜆‖𝜽 ‖22 is added to the cost function when
using 𝐿2 regularisation. Here, 𝜆 ≥ 0, referred to as the regularisation parameter, is a
hyperparameter chosen by the user which controls the strength of the regularisation
effect. The purpose of the penalty term is to prevent overfitting. Whereas the
original cost function only rewards the fit to the training data (which encourages
overfitting), the regularisation term prevents overly large parameter values at the
cost of a slightly worse fit. It is therefore important to choose the regularisation
parameter 𝜆 wisely, to obtain the right amount of regularisation. With 𝜆 = 0, the
regularisation has no effect, whereas 𝜆 → ∞ will force all parameters �̂� to 0. A
common approach is to use cross-validation (see Chapter 4) to select 𝜆.

If we add 𝐿2 regularisation to the previously studied linear regression model with
squared error loss (3.12), the resulting optimisation problem becomes5

�̂� = arg min
𝜽

1
𝑛
‖X𝜽 − y‖22 + 𝜆‖𝜽 ‖22. (3.48)

5In practice, it can be wise to exclude 𝜃0, the intercept, from the regularisation.

56
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.4 Generalised Linear Models

It turns out that, just like the non-regularised problem, (3.48) has a closed-form
solution given by a modified version of the normal equations,

(XTX + 𝑛𝜆I𝑝+1)�̂� = XTy, (3.49)

where I𝑝+1 is the identity matrix of size (𝑝+1) × (𝑝+1). This particular application
of 𝐿2 regularisation is referred to as ridge regression.

Regularisation is not restricted to linear regression, however. The same 𝐿2 penalty
can be applied to any method that involves optimising a cost function. For instance,
for logistic regression, we get the optimisation problem

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

ln
(
1 + exp

(
−𝑦𝑖𝜽Tx𝑖

))
+ 𝜆‖𝜽 ‖22. (3.50)

It is common in practice to train logistic regression models using (3.50) instead
of (3.29). One reason is to decrease possible issues with overfitting, as discussed
above. Another reason is that for the non-regularised cost function, (3.29), the
optimal �̂� is not finite if the training data is linearly separable (meaning there exists
a linear decision boundary which separates the classes perfectly). In practice, it this
means that logistic regression training diverges with some datasets unless (3.50)
(with 𝜆 > 0) is used instead of (3.29). Finally, the regularisation term implies
that there is a unique solution to the optimisation problem, despite the fact that the
softmax model is overparameterised as discussed above.

3.4 Generalised Linear Models

In this chapter we have introduced two basic parametric models for regression and
classification: linear regression and logistic regression, respectively. The latter
model was presented as a way of adapting linear regression to the categorical nature
of the output 𝑦 encountered in a classification problem. This was done by passing
the linear regression through a non-linear (in this case, logistic) function, allowing
us to interpret the output as a class probability.

The same principle can be generalised to adapt the linear regression model to
other properties of the output as well, resulting in what are referred to as generalised
linear models. In the discussion above, we have focused on two specific problems
corresponding to two different types of output data: real-valued regression (𝑦 ∈ R)
and classification (𝑦 ∈ {1, . . . , 𝑀}). These are the most common instances of
supervised learning problems, and, indeed, they will be central to most of the
discussion and methods presented in this book.

However, in various applications, we might encounter data with other properties,
not well described by either of the two standard problems. For instance, assume
that the output 𝑦 corresponds to the count of some quantity, such as the number of
earthquakes in a certain area during a fixed time interval, the number of persons
diagnosed with a specific illness in a certain region, or the number of patents granted

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
57

3 Basic Parametric Models and a Statistical Perspective on Learning

to a tech company. In such cases, 𝑦 is a natural number taking one of the values
0, 1, 2, . . . (formally, 𝑦 ∈ N). Such count data, despite being numerical in nature,
is not well described by a linear regression model of the form (3.2).6 The reason
is that linear regression models are not restricted to discrete values or to being
non-negative, even though we know that this is the case for the actual output 𝑦 that
we are trying to model. Neither does this scenario correspond to a classification
setting, since 𝑦 is numerical (that is, the values can be ordered), and there is no
fixed upper limit on how large 𝑦 can be.

To address this issue, we will extend our notion of parametric models to encom-
pass various probability distributions that can be used to model the conditional
output distribution 𝑝(𝑦 | x; 𝜽). The first step is to choose a suitable form for the
conditional distribution 𝑝(𝑦 | x; 𝜽). This is part of the model design, guided by the
properties of the data. Specifically, we should select a distribution with support
corresponding to that of the data (such as the natural numbers). Naturally, we still
want to allow the distribution to depend on the input variable x – modelling the
relationship between the input and the output variables is the fundamental task of
supervised learning after all! However, this can be accomplished by first computing
a linear regression term 𝑧 = 𝜽Tx and then letting the conditional distribution
𝑝(𝑦 | x; 𝜽) depend on 𝑧 in some appropriate way. We illustrate with an example.

Example 3.6 Poisson regression

A simple model for count data is to use a Poisson likelihood. The Poisson distribution
is supported on the natural numbers (including 0) and has the probability mass
function

Pois(𝑦;𝜆) = 𝜆𝑦𝑒−𝜆

𝑦!
, 𝑦 = 0, 1, 2, . . .

The so-called rate parameter 𝜆 controls the shape of the distribution and also
corresponds to its mean value, E[𝑦] = 𝜆. To use this likelihood in a regression
model for count data, we can let 𝜆 depend on the input variable x and the model
parameters 𝜽 through a linear regression 𝑧 = 𝜽Tx. However, the rate parameter 𝜆 is
restricted to being positive. To ensure that this constraint is satisfied, we model 𝜆
according to

𝜆 = exp(𝜽Tx).
The exponential function maps the output from the linear regression component to
the positive real line, resulting in a valid rate parameter for any x and 𝜽 . Thus, we
get the model

𝑝(𝑦 | x; 𝜽) = Pois
(
𝑦; exp(𝜽Tx)

)
,

referred to a Poisson regression model.

6Simply assuming that the distribution of the additive noise 𝜀 is discrete is not enough, since the
regression function itself 𝜽Tx can take arbitrary real values.

58
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.4 Generalised Linear Models

In the Poisson regression model, we can write the conditional mean of the
output as

E[𝑦 | x; 𝜃] = 𝜙−1(𝑧),

where 𝑧 = 𝜽Tx and 𝜙(𝜇) def
= log(𝜇). The idea of providing an explicit link between

the linear regression term and the conditional mean of the output in this way is
what underlies the generic framework of generalised linear models. Specifically, a
generalised linear model consists of:

(i) A choice of output distribution 𝑝(𝑦 | x; 𝜽) from the exponential family of
distributions.7

(ii) A linear regression term 𝑧 = 𝜽Tx.

(iii) A strictly increasing, so-called link function 𝜙, such that E[𝑦 | x; 𝜃] = 𝜙−1(𝑧).

By convention, we map the linear regression output through the inverse of the link
function to obtain the mean of the output. Equivalently, if 𝜇 denotes the mean of
𝑝(𝑦 | x; 𝜽), we can express the model as 𝜙(𝜇) = 𝜽Tx.

Different choices of conditional distributions and link functions result in different
models with varying properties. In fact, as hinted at above, we have already seen
another example of a generalised linear model, namely the logistic regression model.
In binary logistic regression, the output distribution 𝑝(𝑦 | x; 𝜽) is a Bernoulli distribu-
tion,8 the logit is computed as 𝑧 = 𝜽Tx, and the link function 𝜙 is given by the inverse
of the logistic function, 𝜙(𝜇) = log(𝜇/(1 − 𝜇)). Other examples include negative
binomial regression (a more flexible model for count data than Poisson regression)
and exponential regression (for non-negative real-valued outputs). Hence, the gen-
eralised linear model framework can be used to model output variables 𝑦 with many
different properties, and it allows us to describe these models in a common language.

Since generalised linear models are defined in terms of the conditional distribution
𝑝(𝑦 | x; 𝜽), that is, the likelihood, it is natural to adopt the maximum likelihood
formulation for training. That is, we train the model by finding the parameter values
such that the negative log-likelihood of the training data is minimised:

�̂� = arg min
𝜽

[
−1
𝑛

𝑛∑︁
𝑖=1

ln 𝑝(𝑦𝑖 | x𝑖; 𝜽)
]
. (3.51)

7The exponential family is a class of probability distributions that can be written on a particular
exponential form. It includes many of the commonly used probability distributions, such as
Gaussian, Bernoulli, Poisson, exponential, gamma, etc.

8The generalised linear model interpretation of logistic regression is more straightforward if we
encode the classes as 0/1 instead of −1/1, in which case the output is modelled with a Bernoulli
distribution with mean E[𝑦 | 𝑥; 𝜽] = 𝑝(𝑦 = 1 | x; 𝜽) = 𝑔𝜽 (x).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
59

3 Basic Parametric Models and a Statistical Perspective on Learning

A regularisation penalty can be added to the cost function, similarly to (3.50).
Regularisation is discussed in more detail in Section 5.3.

In general, just as for logistic regression, the training objective (3.51) is a nonlinear
optimisation problem without a closed-form solution. However, an important aspect
of generalised linear models is that efficient numerical optimisation algorithms
exist for solving the maximum likelihood problem. Specifically, under certain
assumptions on the link function, the problem becomes convex, and Newton’s
method can be used to compute �̂� , efficiently. These are concepts that we will return
to in Section 5.4 when we discuss numerical optimisation in more detail.

3.5 Further Reading

Compared to the thousand-year-old 𝑘-NN idea (Chapter 2), the linear regression
model with least squares cost is much younger and can ‘only’ be traced back a
little over two hundred years. It was introduced by Adrien-Marie Legendre in his
1805 book Nouvelles méthodes pour la détermination des orbites des cométes (New
methods for the determination of the orbits of comets) as well as Carl Friedrich
Gauss in his 1809 book Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium (Theory of the motion of the heavenly bodies moving about the
sun in conic sections; in that book he claims to have been using it since 1795).
Gauss also made the interpretation of it as the maximum likelihood solution when
the noise was assumed to have a Gaussian distribution (hence the name of the
distribution), although the general maximum likelihood approach was introduced
much later by the work of Ronald Fisher (Fisher 1922). The history of logistic
regression is almost as old as linear regression and is described further by Cramer
(2003). An in-depth account of generalised linear models is given in the classical
textbook by McCullagh and Nelder (2018).

3.A Derivation of the Normal Equations

The normal equations (3.13)

XTX�̂� = XTy

can be derived from (3.12) (the scaling 1
𝑛 does not affect the minimising argument),

�̂� = arg min
𝜽
‖X𝜽 − y‖22,

in different ways. We will present one based on (matrix) calculus and one based on
geometry and linear algebra.

No matter how (3.13) is derived, if XTX is invertible, it (uniquely) gives

�̂� = (XTX)−1XTy.

If XTX is not invertible, then (3.13) has infinitely many solutions �̂�, which are all
equally good solutions to the problem (3.12).

60
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

3.A Derivation of the Normal Equations

A Calculus Approach

Let

𝑉 (𝜽) = ‖X𝜽 − y‖22 = (X𝜽 − y)T (X𝜽 − y) = yTy − 2yTX𝜽 + 𝜽TXTX𝜽 , (3.52)

and differentiate 𝑉 (𝜽) with respect to the vector 𝜽:
𝜕

𝜕𝜽
𝑉 (𝜽) = −2XTy + 2XTX𝜽 . (3.53)

Since𝑉 (𝜽) is a positive quadratic form, its minimum must be attained at 𝜕
𝜕𝜽𝑉 (𝜽) = 0,

which characterises the solution �̂� as
𝜕

𝜕𝜽
𝑉 (�̂�) = 0⇔ −2XTy + 2XTX𝜽 = 0⇔ XTX�̂� = XTy, (3.54)

which are the normal equations.

A Linear Algebra Approach

Denote the 𝑝 + 1 columns of X as 𝑐 𝑗 , 𝑗 = 1, . . . , 𝑝 + 1. We first show that ‖X𝜽 −y‖22
is minimised if 𝜽 is chosen such that X𝜽 is the orthogonal projection of y onto the
(sub)space spanned by the columns 𝑐 𝑗 of X, and then show that the orthogonal
projection is found by the normal equations.

Let us decompose y as y⊥ + y‖ , where y⊥ is orthogonal to the (sub)space spanned
by all columns 𝑐𝑖 , and 𝑦 ‖ is in the (sub)space spanned by all columns 𝑐𝑖 . Since y⊥
is orthogonal to both y‖ and X𝜽 , it follows that

‖X𝜽 − y‖22 = ‖X𝜽 − (y⊥ + y‖)‖22 = ‖(X𝜽 − y‖) − y⊥‖22 ≥ ‖y⊥‖22, (3.55)

and the triangle inequality also gives us

‖X𝜽 − y‖22 = ‖X𝜽 − y⊥ − y‖ ‖22 ≤ ‖y⊥‖22 + ‖X𝜽 − y‖ ‖22. (3.56)

This implies that if we choose 𝜽 such that X𝜽 = y‖ , the criterion ‖X𝜽 − y‖22 must
have reached its minimum. Thus, our solution �̂� must be such that X�̂� − y is
orthogonal to the (sub)space spanned by all columns 𝑐𝑖 , meaning that

(y − X�̂�)T𝑐 𝑗 = 0, 𝑗 = 1, . . . , 𝑝 + 1 (3.57)

(remember that two vectors u, v are, by definition, orthogonal if their scalar product,
uTv, is 0). Since the columns 𝑐 𝑗 together form the matrix X, we can write this
compactly as

(y − X�̂�)TX = 0, (3.58)

where the right hand side is the 𝑝 + 1-dimensional zero vector. This can equivalently
be written as

XTX�̂� = XTy,

which are the normal equations.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
61

4 Understanding, Evaluating, and
Improving Performance

So far, we have encountered four different methods for supervised machine learning,
and more are to come in later chapters. We always train the models by adapting
them to training data and hoping that the models will thereby also give us good
predictions when faced with new, previously unseen data. But can we really expect
that to work? This is a very important question for the practical usefulness of
machine learning. In this chapter, we will discuss this question in a rather general
sense, before diving into more advanced methods in later chapters. By doing so,
we will unveil some interesting concepts and also discover some practical tools for
evaluating, improving, and choosing between different supervised machine learning
methods.

4.1 Expected New Data Error 𝐸new: Performance
in Production

We start by introducing some concepts and notation. First, we define an error
function 𝐸 (�̂�, 𝑦) which encodes the purpose of classification or regression. The error
function compares a prediction �̂�(x) to a measured data point, 𝑦, and returns a small
value (possibly zero) if �̂�(x) is a good prediction of 𝑦 and a larger value otherwise.
Similarly to how we can use different loss functions when training a model, we
can consider many different error functions, depending on what properties of the
prediction are most important for the application at hand. However, unless otherwise
stated, our default choices are misclassification and squared error, respectively:

Misclassification: 𝐸 (�̂�, 𝑦) , I{�̂� ≠ 𝑦} =
{

0 if �̂� = 𝑦

1 if �̂� ≠ 𝑦
(classification) (4.1a)

Squared error: 𝐸 (�̂�, 𝑦) , (�̂� − 𝑦)2 (regression). (4.1b)

When we compute the average misclassification (4.1a), we usually refer to it as the
misclassification rate (or 1 minus the misclassification rate as the accuracy). The
misclassification rate is often a natural quantity to consider in classification, but for
imbalanced or asymmetric problems, other aspects might be more important, as we
discuss in Section 4.5.

The error function 𝐸 (�̂�, 𝑦) has similarities to a loss function 𝐿 (�̂�, 𝑦). However,
they are used differently: A loss function is used when learning (or, equivalently,

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
63

4 Understanding, Evaluating, and Improving Performance

training) a model, whereas we use the error function to analyse performance of
an already learned model. There are reasons for choosing 𝐸 (�̂�, 𝑦) and 𝐿 (�̂�, 𝑦)
differently, which we will come back to soon.

In the end, supervised machine learning amounts to designing a method which
performs well when faced with an endless stream of new, unseen data. Imagine, for
example, all real-time recordings of street views that have to be processed by a vision
system in a self-driving car once it is sold to a customer, or all incoming patients
that have to be classified by a medical diagnosis system once it is implemented in
clinical practice. The performance on fresh unseen data can, in mathematical terms,
be understood as the average of the error function – how often the classifier is right,
or how well the regression method predicts. To be able to mathematically describe
the endless stream of new data, we introduce a distribution over data 𝑝(x, 𝑦). In
most other chapters, we only consider the output 𝑦 as a random variable, whereas
the input x is considered fixed. In this chapter, however, we have to also think of
the input x as a random variable with a certain probability distribution. In any
real-world machine learning scenario, 𝑝(x, 𝑦) can be extremely complicated and
practically impossible to write down. We will nevertheless use 𝑝(x, 𝑦) to reason
about supervised machine learning methods, and the bare notion of 𝑝(x, 𝑦) (even
though it is unknown in practice) will be helpful for that.

No matter which specific classification or regression method we consider, once
it has been learned from training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1, it will return predictions
�̂�(x★) for any new input x★ we feed into it. In this chapter, we will write �̂�(x;T) to
emphasise the fact that the model depends on the training data T . Indeed, if we
were to use a different training data set to learn the same (type of) model, this would
typically result in a different model with different predictions.

In the other chapters, we mostly discuss how a model predicts the output for
one, or a few, test inputs x★. Let us take that to the next level by integrating
(averaging) the error function (4.1) over all possible test data points with respect to
the distribution 𝑝(x, 𝑦). We refer to this as the expected new data error,

𝐸new , E★ [𝐸 (�̂�(x★;T), 𝑦★)] , (4.2)

where the expectation E★ is the expectation over all possible test data points with
respect to the distribution (x★, 𝑦★) ∼ 𝑝(x, 𝑦), that is,

E★ [𝐸 (�̂�(x★;T), 𝑦★)] =
∫

𝐸 (�̂�(x★;T), 𝑦★)𝑝(x★, 𝑦★) 𝑑x★𝑑𝑦★. (4.3)

Remember that the model (regardless of whether it is a linear regression, a
classification tree, an ensemble of trees, a neural network, or something else)
is trained on a given training dataset T and represented by �̂�(·;T). What is
happening in equation (4.2) is an averaging over possible test data points (x★, 𝑦★).
Thus, 𝐸new describes how well the model generalises from the training data T to
new situations.

64
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.1 Expected New Data Error 𝐸new: Performance in Production

We also introduce the training error,

𝐸train ,
1
𝑛

𝑛∑︁
𝑖=1

𝐸 (�̂�(x𝑖;T), 𝑦𝑖), (4.4)

where {x𝑖 , 𝑦𝑖}𝑛𝑖=1 is the training data T . 𝐸train simply describes how well a method
performs on the specific data on which it was trained, but in general this gives no
information on how well the method will perform for new unseen data points.1

Time to reflect 4.1 What is 𝐸train for 𝑘-NN with 𝑘 = 1?

Whereas the training error 𝐸train describes how well the method is able to
‘reproduce’ the data from which it was learned, the expected new data error 𝐸new
tells us how well a method performs when we put it ‘into production’. For instance,
what are the rates of false and missed pedestrian detections that we can expect a
vision system in a self-driving car to make? Or, how large a proportion of all future
patients will a medical diagnosis system get wrong?

The overall goal in supervised machine learning is to achieve as small an 𝐸new as
possible.

This sheds some additional light on the comment we made previously, that the loss
function 𝐿 (�̂�, 𝑦) and the error function 𝐸 (�̂�, 𝑦) do not have to be the same. As we
will discuss thoroughly in this chapter, a model which fits the training data well and
consequently has a small 𝐸train might still have a large 𝐸new when faced with new,
unseen data. The best strategy to achieve a small 𝐸new is therefore not necessarily
to minimise 𝐸train. Besides the fact that the misclassification (4.1a) is unsuitable
for use as an optimisation objective (it is discontinuous and has derivative zero
almost everywhere), it can also, depending on the method, be argued that 𝐸new can
be made smaller by a smarter choice of loss function. Examples of when this is the
case include gradient boosting (Chapter 7) and support vector machines (Chapter 8).
Finally, it is worth noting that not all methods are trained by explicitly minimising a
loss function (𝑘-NN is one such example), but the idea of evaluating the performance
of the model using an error function still applies, no matter how it is trained.

Unfortunately, in practical cases, we can never compute 𝐸new to assess how well
we are doing. The reason is that 𝑝(x, 𝑦) – which we do not know in practice – is
part of the definition of 𝐸new. However, 𝐸new is too important a quantity to be
abandoned just because we cannot compute it exactly. Instead, we will spend quite

1The term ‘risk function’ is used in some literature for the expected loss, which is the same as the
new data error 𝐸new if the loss function and the error function are chosen to be the same. The
training error 𝐸train is then referred to as ‘empirical risk’ and the idea of minimising the cost
function as ‘empirical risk minimisation’.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
65

4 Understanding, Evaluating, and Improving Performance

some time and effort on estimating 𝐸new from data, as well as on analysing how
𝐸new behaves to better understand how we can decrease it.

We emphasise that 𝐸new is a property of a trained model together with a specific
machine learning problem. That is, we cannot talk about ‘𝐸new for logistic regression’
in general, but instead we have to make more specific statements, like ‘𝐸new for the
handwritten digit recognition problem with a logistic regression classifier trained
on the MNIST data’.2

4.2 Estimating 𝐸new

There are multiple reasons for a machine learning engineer to be interested in 𝐸new,
such as:

• judging if the performance is satisfying (whether 𝐸new is small enough), or if
more work should be put into the solution and/or more training data should
be collected;

• choosing between different methods;
• choosing hyperparameters (such as 𝑘 in 𝑘-NN, the regularisation parameter

in ridge regression; or the number of hidden layers in deep learning) in order
to minimise 𝐸new;

• reporting the expected performance to the customer.

As discussed above, we can unfortunately not compute 𝐸new in any practical situation.
We will, therefore, explore various ways of estimating 𝐸new, which will lead us to a
very useful concept known as cross-validation.

𝐸train 0 𝐸new: We Cannot Estimate 𝐸new from Training Data

We have introduced both the expected new data error, 𝐸new, and the training error
𝐸train. In contrast to, 𝐸new, we can always compute 𝐸train.

We assume for now that T consists of samples (data points) from 𝑝(x, 𝑦). This
means that the training data is assumed to have been collected under similar
circumstances to the ones under which the trained model will be used, which is a
common assumption.

When an expected value, such as in the definition of 𝐸new in (4.2), cannot be
computed in closed form, one option is to approximate the expected value by a
sample average. Effectively this means that we approximate the integral (expected
value) by a finite sum. Now, the question is if the integral in 𝐸new can be well
approximated by the sum in 𝐸train, like this:

𝐸new =
∫

𝐸 (�̂�(x;T), 𝑦))𝑝(x, 𝑦)𝑑x𝑑𝑦 ??≈ 1
𝑛

𝑛∑︁
𝑖=1

𝐸 (�̂�(x𝑖;T), 𝑦𝑖) = 𝐸train. (4.5)

2http://yann.lecun.com/exdb/mnist/

66
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://yann.lecun.com/exdb/mnist/
http://smlbook.org

4.2 Estimating 𝐸new

Put differently: Can we expect a method to perform equally well when faced with
new, previously unseen data as it did on the training data?

The answer is, unfortunately, no.

Time to reflect 4.2 Why can we not expect the performance on training data
(𝐸train) to be a good approximation for how a method will perform on new,
previously unseen data (𝐸new), even though the training data is drawn from
the distribution 𝑝(x, 𝑦)?

Equation (4.5) does not hold, and the reason is that the samples used to approximate
the integral are given by the training data points. However, these data points are also
used to train the model and, indeed, there is an explicit dependence on the complete
training data set T in the first factor of the integrand. We can, therefore, not use
these data points to also approximate the integral. Put differently, the expected value
in (4.5) should be computed conditionally on a fixed training data set T .

In fact, as we will discuss more thoroughly later, the typical behavior is that
𝐸train < 𝐸new (although this is not always the case). Hence, a method often performs
worse on new, unseen data than on training data. The performance on training data
𝐸train is therefore not a reliable estimate of 𝐸new.

𝐸hold-out ≈ 𝐸new: We Can Estimate 𝐸new from Hold-Out
Validation Data

We could not use the training data directly to approximate the integral in (4.2) (that
is, estimating 𝐸new by 𝐸train) since this would imply that we effectively use the
training data twice: first, to train the model (�̂� in (4.4)) and second, to evaluate the
error function (the sum in (4.4)). A remedy is to set aside some hold-out validation
data {x′𝑗 , 𝑦′𝑗}𝑛𝑣𝑗=1, which is not in T used for training, and then use this only for
estimating the model performance as the hold-out validation error,

𝐸hold-out ,
1
𝑛𝑣

𝑛𝑣∑︁
𝑗=1

𝐸 (�̂�(x′𝑗 ;T), 𝑦′𝑗). (4.6)

In this way, not all data will be used for training, but some data points will be
saved and used only for computing 𝐸hold-out. This simple procedure for estimating
𝐸new is illustrated in Figure 4.1.
Be aware! When splitting your data, always do it randomly, for instance by
shuffling the data points before the training–validation split! Someone might –
intentionally or unintentionally – have sorted the dataset for you. If you do not split
randomly, your binary classification problem might end up with one class in your
training data and the other class in your hold-out validation data . . .

Assuming that all (training and validation) data points are drawn from 𝑝(x, 𝑦),
it follows that 𝐸hold-out is an unbiased estimate of 𝐸new (meaning that if the entire

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
67

4 Understanding, Evaluating, and Improving Performance

Hold-out validation dataTraining data T

All available data

Figure 4.1: The hold-out validation dataset approach: If we split the available data into two
sets and train the model on the training set, we can compute 𝐸hold-out using the hold-out
validation set. 𝐸hold-out is an unbiased estimate of 𝐸new, and the more data there is in the
hold-out validation dataset, the less variance there will be in 𝐸hold-out, (better estimate) but
the less data is left for training the model (larger 𝐸new).

procedure is repeated multiple times, each time with new data, the average value of
𝐸hold-out will be 𝐸new). That is reassuring, at least on a theoretical level, but it does
not tell us how close 𝐸hold-out will be to 𝐸new in a single experiment. However, the
variance of 𝐸hold-out decreases when the size of the hold-out validation dataset 𝑛𝑣
increases; a small variance of 𝐸hold-out means that we can expect it to be close to
𝐸new. Thus, if we make the hold-out validation dataset large enough, 𝐸hold-out will
be close to 𝐸new. However, setting aside a large validation dataset means that the
dataset left for training becomes small. It is reasonable to assume that the more
training data, the smaller 𝐸new (which we will discuss later in Section 4.3). This is
bad news since achieving a small 𝐸new is our ultimate goal.

Sometimes there is a lot of available data. When we really have a lot of data,
we can often afford to set aside a few percent to create a reasonably large hold-out
validation dataset without sacrificing the size of the training dataset too much. In
such data-rich situations, the hold-out validation data approach is sufficient.

If the amount of available data is more limited, this becomes more of a problem.
We are, in practice, faced with the following dilemma: the better we want to know
𝐸new (more hold-out validation data gives less variance in 𝐸hold-out), the worse we
have to make it (less training data increases 𝐸new). That is not very satisfying, and
we need to look for an alternative to the hold-out validation data approach.

k-Fold Cross-Validation: 𝐸𝑘-fold ≈ 𝐸new Without Setting Aside
Validation Data

To avoid setting aside validation data but still obtaining an estimate of 𝐸new, one
could suggest a two-step procedure of

(i) splitting the available data into one training and one hold-out validation set,
training the model on the training data, and computing 𝐸hold-out using the
hold-out validation data (as in Figure 4.1); and then

(ii) training the model again, this time using the entire dataset.

By such a procedure, we get an estimate of 𝐸new at the same time as a model trained
on the entire dataset. That is not bad, but not perfect either. Why? To achieve a

68
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.2 Estimating 𝐸new

· · ·batch 1 batch 2 batch 3 batch 𝑘

All available data

ℓ = 1 → 𝐸 (1)hold-out
· · ·

Validation data Training data

ℓ = 2 → 𝐸 (2)hold-out
· · ·

...

ℓ = 𝑘 → 𝐸 (𝑘)hold-out
· · ·

Validation dataTraining data

average = 𝐸𝑘-fold

Figure 4.2: Illustration of 𝑘-fold cross-validation. The data is split into 𝑘 batches of similar
sizes. When looping over ℓ = 1, 2, . . . , 𝑘 , batch ℓ is held out as validation data, and the
model is trained on the remaining 𝑘 − 1 data batches. Each time, the trained model is used
to compute the average error 𝐸 (ℓ)𝑘-fold for the validation data. The final model is trained using
all available data, and the estimate of 𝐸new for that model is 𝐸𝑘-fold, the average of all 𝐸 (ℓ)𝑘-fold.

small variance in the estimate, we have to put a lot of data in the hold-out validation
dataset in step (i). Unfortunately, this means that the model trained in (i) will
possibly be quite different from the one obtained in step (ii), and the estimate of
𝐸new concerns the model from step (i), not the possibly very different model from
step (ii). Hence, this will not give us a good estimate of 𝐸new. However, we can
build on this idea to obtain the useful 𝑘-fold cross-validation method.

We would like to use all available data to train a model and at the same time
have a good estimate of 𝐸new for that model. By 𝑘-fold cross-validation, we can
approximately achieve this goal. The idea of 𝑘-fold cross-validation is simply
to repeat the hold-out validation dataset approach multiple times with a different
hold-out dataset each time, in the following way:

(i) split the dataset into 𝑘 batches of similar size (see Figure 4.2), and let ℓ = 1;

(ii) take batch ℓ as the hold-out validation data and the remaining batches as
training data;

(iii) train the model on the training data, and compute 𝐸 (ℓ)hold-out as the average error
on the hold-out validation data, as in (4.6);

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
69

4 Understanding, Evaluating, and Improving Performance

(iv) if ℓ < 𝑘 , set ℓ ← ℓ + 1 and return to (ii). If ℓ = 𝑘 , compute the 𝑘-fold
cross-validation error

𝐸𝑘-fold ,
1
𝑘

𝑘∑︁
ℓ=1

𝐸 (ℓ)hold-out (4.7)

(v) train the model again, this time using the entire dataset.

This procedure is illustrated in Figure 4.2.
With 𝑘-fold cross-validation, we get a model which is trained on all data as

well as an approximation of 𝐸new for that model, namely 𝐸𝑘-fold. Whereas 𝐸hold-out
(Section 4.2) was an unbiased estimate of 𝐸new (at the cost of setting aside hold-out
validation data), this is not the case for 𝐸𝑘-fold. However, with 𝑘 large enough, it
turns out to often be a sufficiently good approximation. Let us try to understand
why 𝑘-fold cross-validation works.

First, we have to distinguish between the final model, which is trained on all
data in step (v), and the intermediate models which are trained on all except a 1/𝑘
fraction of the data in step (iii). The key in 𝑘-fold cross-validation is that if 𝑘 is large
enough, the intermediate models are quite similar to the final model (since they
are trained on almost the same dataset: only a fraction 1/𝑘 of the data is missing).
Furthermore, each intermediate 𝐸 (ℓ)hold-out is an unbiased but high-variance estimate
of 𝐸new for the corresponding ℓth intermediate model. Since all intermediate
models and the final model are similar, 𝐸𝑘-fold (4.7) is approximately the average of
𝑘 high-variance estimates of 𝐸new for the final model. When averaging estimates,
the variance decreases, and 𝐸𝑘-fold will thus become a better estimate of 𝐸new than
the intermediate 𝐸 (ℓ)hold-out.

Be aware! For the same reason as with the hold-out validation data approach,
it is important to always split the data randomly for cross-validation to work! A
simple solution is to first randomly permute the entire dataset, and thereafter split it
into batches.

We usually talk about training (or learning) as a procedure that is executed
once. However, in 𝑘-fold cross-validation, the training is repeated 𝑘 (or even
𝑘 + 1) times. A special case is 𝑘 = 𝑛, which is also called leave-one-out cross-
validation. For methods such as linear regression, the actual training (solving the
normal equations) is usually done within milliseconds on modern computers, and
doing it an extra 𝑛 times might not be a problem in practice. If the training is
computationally demanding (as for deep neural networks, for instance), it becomes
a rather cumbersome procedure, and a choice like 𝑘 = 10 might be more practically
feasible. If there is much data available, it is also an option to use the computationally
less demanding hold-out validation approach.

70
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.3 The Training Error–Generalisation Gap Decomposition of 𝐸new

Using a Test Dataset

A very important use of 𝐸𝑘-fold (or 𝐸hold-out) in practice is to choose between methods
and select different types of hyperparameters such that 𝐸𝑘-fold (or 𝐸hold-out) becomes
as small as possible. Typical hyperparameters to choose in this way are 𝑘 in 𝑘-NN,
tree depths, or regularisation parameters. However, much as we cannot use the
training data error 𝐸train to estimate the new data error 𝐸new, selecting models and
hyperparameters based on 𝐸𝑘-fold (or 𝐸hold-out) will invalidate its use as an estimator
of 𝐸new. Indeed, if hyperparameters are selected to minimise 𝐸𝑘-fold, there is a risk
of overfitting to the validation data, resulting in 𝐸𝑘-fold being an overly optimistic
estimate of the actual new data error. If it is important to have a good estimate of
the final 𝐸new, it is wise to first set aside another hold-out dataset, which we refer
to as a test set. This test set should be used only once (after selecting models and
hyperparameters), to estimate 𝐸new for the final model.

In problems where the training data is expensive, it is common to increase the
training dataset using more or less artificial techniques. Such techniques can be to
duplicate the data and add noise to the duplicated versions, to use simulated data,
or to use data from a different but related problem, as we discuss in more depth
in Chapter 11. With such techniques (which indeed can be very successful), the
training data T is no longer drawn from 𝑝(x, 𝑦). In the worst case (if the artificial
training data is very poor), T might not provide any information about 𝑝(x, 𝑦), and
we cannot really expect the model to learn anything useful. It can therefore be very
useful to have a good estimate of 𝐸new if such techniques were used during training,
but a reliable estimate of 𝐸new can only be achieved from data that we know is
drawn from 𝑝(x, 𝑦) (that is, collected under ‘production-like’ circumstances). If the
training data is extended artificially, it is therefore extra important to set aside a test
dataset before that extension is done.

The error function evaluated on the test data set could indeed be called ‘test
error’. To avoid confusion, however, we do not use the term ‘test error’ since it is
commonly used (ambiguously) both as a name for the error on the test dataset as
well as another name for 𝐸new.

4.3 The Training Error–Generalisation Gap
Decomposition of 𝐸new

Designing a method with small 𝐸new is a central goal in supervised machine
learning, and cross-validation helps in estimating 𝐸new. However, we can gain
valuable insights and better understand the behavior of supervised machine learning
methods by further analysing 𝐸new mathematically. To be able to reason about 𝐸new,
we have to introduce another abstraction level, namely the training-data averaged
versions of 𝐸new and 𝐸train. To make the notation more explicit, we here write

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
71

4 Understanding, Evaluating, and Improving Performance

𝐸new(T) and 𝐸train(T) to emphasise the fact that they both are conditional on a
specific training dataset T . Let us now introduce

�̄�new , ET [𝐸new(T)] , and (4.8a)
�̄�train , ET [𝐸train(T)] . (4.8b)

Here, ET denotes the expected value with respect to the training dataset T =
{x𝑖 , 𝑦𝑖}𝑛𝑖=1 (of a fixed size 𝑛), assuming that this consists of independent draws from
𝑝(x, 𝑦). Thus �̄�new is the average 𝐸new if we were to train the model multiple times
on different training datasets, all of size 𝑛, and similarly for �̄�train. The point of
introducing these quantities is that it is easier to reason about the average behaviour
�̄�new and �̄�train than about the errors 𝐸new and 𝐸train obtained when the model is
trained on one specific training dataset T . Even though we most often care about
𝐸new in the end (the training data is usually fixed), insights from studying �̄�new are
still useful.

Time to reflect 4.3 𝐸new(T) is the new data error when the model is trained
on a specific training dataset T , whereas �̄�new is averaged over all possible
training datasets. Considering the fact that in the procedure of 𝑘-fold
cross-validation, the model is trained each time on an (at least slightly)
different training dataset, does 𝐸𝑘-fold actually estimate 𝐸new, or is it rather
�̄�new? And is that different for different values of 𝑘? How could �̄�train
be estimated?

We have already discussed the fact that 𝐸train cannot be used in estimating 𝐸new.
In fact, it usually holds that

�̄�train < �̄�new. (4.9)

Put into words, this means that on average, a method usually performs worse on
new, unseen data than on training data. A method’s ability to perform well on
unseen data after being trained is often referred to as its ability to generalise from
training data. We consequently call the difference between �̄�new and �̄�train the
generalisation gap:3

generalisation gap , �̄�new − �̄�train. (4.10)

The generalisation gap is the difference between the expected performance on
training data and the expected performance ‘in production’ on new, previously
unseen data.

3With stricter terminology, we should perhaps refer to �̄�new − �̄�train as the expected generalisation
gap, whereas 𝐸new − 𝐸train would be the conditional generalisation gap. We will, however, use
the same term for both.

72
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.3 The Training Error–Generalisation Gap Decomposition of 𝐸new

With the decomposition of �̄�new into

�̄�new = �̄�train + generalisation gap, (4.11)

we also have an opening for digging deeper and trying to understand what affects
�̄�new in practice. We will refer to (4.11) as the training error–generalisation gap
decomposition of �̄�new.

What Affects the Generalisation Gap?

The generalisation gap depends on the method and the problem. Concerning
the method, one can typically say that the more a method adapts to training
data, the larger the generalisation gap. A theoretical framework for how much
a method adapts to training data is given by the so-called Vapnik–Chervonenkis
(VC) dimension. From the VC dimension framework, probabilistic bounds on
the generalisation gap can be derived, but those bounds are unfortunately rather
conservative, and we will not pursue that approach any further. Instead, we only use
the vague terms model complexity or model flexibility (we use them interchangeably),
by which we mean the ability of a method to adapt to patterns in the training data.
A model with high complexity (such as a fully connected deep neural network, deep
trees, or 𝑘-NN with small 𝑘) can describe complicated input–output relationships,
whereas a model with low complexity (such as logistic regression) is less flexible
in what functions it can describe. For parametric models, the model complexity
is somewhat related to the number of learnable parameters, but is also affected
by regularisation techniques. As we will come back to later, the idea of model
complexity is an oversimplification and does not capture the full nature of various
supervised machine learning methods, but it nevertheless carries some useful
intuition.

Typically, higher model complexity implies a larger generalisation gap. Further-
more, �̄�train decreases as the model complexity increases, whereas �̄�new typically
attains a minimum for some intermediate model complexity value: too low and too
high model complexity both raise �̄�new. This is illustrated in Figure 4.3. A too high
model complexity, meaning that �̄�new is higher than it had been with a less complex
model, is called overfitting. The other situation, when the model complexity is too
low, is sometimes called underfitting. In a consistent terminology, the point where
�̄�new attains it minimum could be referred to as a balanced fit. Since the goal is to
minimise �̄�new, we are interested in finding this sweet spot. We also illustrate this
by Example 4.1.

Note that we are discussing the usual behavior of �̄�new, �̄�train, and the generalisa-
tion gap. We use the term ‘usual’ because there are so many supervised machine
learning methods and problems that it is almost impossible to make any claim that
is always true for all possible situations, and pathological counter-examples also
exist. One should also keep in mind that claims about �̄�train and �̄�new are about the
average behavior when the model is retrained and evaluated on (hypothetical) new
training data sets, see Example 4.1.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
73

4 Understanding, Evaluating, and Improving Performance

�̄�new

�̄�trainG
en

er
al

isa
tio

n
ga

p

OverfittingUnderfitting

Model complexity

Er
ro

r

Figure 4.3: Behavior of �̄�train and �̄�new for many supervised machine learning methods, as
a function of model complexity. We have not made a formal definition of complexity, but a
rough proxy is the number of parameters that are learned from the data. The difference
between the two curves is the generalisation gap. The training error �̄�train decreases as the
model complexity increases, whereas the new data error �̄�new typically has a U-shape. If
the model is so complex that �̄�new is larger than it had been with a less complex model,
the term overfit is commonly used. Somewhat less common is the term underfitting, used
for the opposite situation. The level of model complexity which gives the minimum �̄�new
(at the dotted line) could be called a balanced fit. When, for example, we use cross-validation
to select hyperparameters (that is, tuning the model complexity), we are searching for a
balanced fit.

Example 4.1 The training error–generalisation gap decomposition for 𝑘-NN

We consider a simulated binary classification example with a two-dimensional input
x. Contrary to all real world machine learning problems, in a simulated example
like this, we know 𝑝(x, 𝑦). In this example, 𝑝(x) is a uniform distribution on the
square [−1, 1]2, and 𝑝(𝑦 | x) is defined as follows: all points above the dotted curve
in Figure 4.4 are blue with probability 0.8, and points below the curve are red with
probability 0.8. (The optimal classifier, in terms of minimal 𝐸new, would have the
dotted line as its decision boundary and achieve 𝐸new = 0.2.)

−1 0 1
−1

0

1

𝑥1

𝑥 2

Fig.
4.4

74
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.3 The Training Error–Generalisation Gap Decomposition of 𝐸new

We have 𝑛 = 200 in the training data and learn three classifiers: 𝑘-NN with 𝑘 = 70,
𝑘 = 20, and 𝑘 = 2, respectively. In model complexity sense, 𝑘 = 70 gives the least
flexible model and 𝑘 = 2 the most flexible model. We plot their decision boundaries,
together with the training data, in Figure 4.5.

−1 0 1
−1

0

1

𝑥1

𝑥 2
𝑘-NN, 𝑘 = 70

−1 0 1
−1

0

1

𝑥1

𝑥 2

𝑘-NN, 𝑘 = 20

−1 0 1
−1

0

1

𝑥1

𝑥 2

𝑘-NN, 𝑘 = 2

Fig.
4.5

We see in Figure 4.5 that 𝑘 = 2 (right) adapts too much to the data. With 𝑘 = 70
(left), on the other hand, the model is rigid enough not to adapt to the noise,
but appears to possibly be too inflexible to adapt well to the true dotted line in
Figure 4.4.

We can compute 𝐸train by counting the fraction of misclassified training data
points in Figure 4.5. From left to right, we get 𝐸train = 0.27, 0.24, 0.22. Since this is
a simulated example, we can also access 𝐸new (or rather estimate it numerically by
simulating a lot of test data), and from left to right, we get 𝐸new = 0.26, 0.23, 0.33.
This pattern resembles Figure 4.3, except for the fact that 𝐸new is actually smaller
than 𝐸train for some values of 𝑘 . However, this does not contradict the theory. What
we have discussed in the main text is the average �̄�new and �̄�train, not the 𝐸new and
𝐸train for one particular set of training data. To study �̄�new and �̄�train, we therefore
repeat this entire experiment 100 times and compute the average over those 100
experiments:

𝑘-NN with 𝑘 = 70 𝑘-NN with 𝑘 = 20 𝑘-NN with 𝑘 = 2

�̄�train 0.24 0.22 0.17
�̄�new 0.25 0.23 0.30

This table follows Figure 4.3 well: The generalisation gap (difference between �̄�new
and �̄�train) is positive and increases with model complexity (decreasing 𝑘 in 𝑘-NN),
whereas �̄�train decreases with model complexity. Among these values for 𝑘 , �̄�new
has its minimum for 𝑘 = 20. This suggests that 𝑘-NN with 𝑘 = 2 suffers from
overfitting for this problem, whereas 𝑘 = 70 is a case of underfitting.

We have so far been concerned about the relationship between the generalisation
gap and the model complexity. Another very important aspect is the size of the
training dataset, 𝑛. We can in general expect that the more training data, the smaller
the generalisation gap. On the other hand, �̄�train typically increases as 𝑛 increases,
since most models are unable to fit all training data points well if there are too many
of them. A typical behavior of �̄�train and �̄�new is sketched in Figure 4.6.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
75

4 Understanding, Evaluating, and Improving Performance

�̄�new

�̄�train

Size of training data 𝑛

Er
ro

r

(a) Simple model

�̄�new

�̄�train

Size of training data 𝑛

Er
ro

r

(b) Complex model

Figure 4.6: Typical relationship between �̄�new, �̄�train, and the number of data points 𝑛 in
the training dataset for a simple model (low model flexibility, left) and a complex model
(high model flexibility, right). The generalisation gap (difference between �̄�new and �̄�train)
decreases, at the same time as �̄�train increases. Typically, a more complex model (right
panel) will for large enough 𝑛 attain a smaller �̄�new than a simpler model (left panel) would
on the same problem (the figures should be thought of as having the same scales on the
axes). However, the generalisation gap is typically larger for a more complex model, in
particular when the training dataset is small.

Reducing 𝐸new in Practice

Our overall goal is to achieve a small error ‘in production’, that is, a small 𝐸new.
To achieve that, according to the decomposition 𝐸new = 𝐸train + generalisation gap,
we need to have both 𝐸train and the generalisation gap be small. Let us draw two
conclusions from what we have seen so far:

• The new data error 𝐸new will, on average, not be smaller than the training
error 𝐸train. Thus, if 𝐸train is much bigger than the 𝐸new you need for your
model to be successful for the application at hand, you do not even need to
waste time on implementing cross-validation for estimating 𝐸new. Instead,
you should re-think the problem and which method you are using.

• The generalisation gap and 𝐸new typically decrease as 𝑛 increases. Thus,
if possible, increasing the size of the training data may help a lot with
reducing 𝐸new.

Making the model more flexible decreases 𝐸train but often increases the generali-
sation gap. Making the model less flexible, on the other hand, typically decreases
the generalisation gap but increases 𝐸train. The optimal trade-off, in terms of small
𝐸new, is often obtained when neither the generalisation gap nor the training error

76
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.3 The Training Error–Generalisation Gap Decomposition of 𝐸new

𝐸train is zero. Thus, by monitoring 𝐸train and estimating 𝐸new with cross-validation,
we also get the following advice:

• If 𝐸hold-out ≈ 𝐸train (small generalisation gap; possibly underfitting), it might
be beneficial to increase the model flexibility by loosening the regularisation,
increasing the model order (more parameters to learn), etc.

• If 𝐸train is close to zero and 𝐸hold-out is not (possibly overfitting), it might be
beneficial to decrease the model flexibility by tightening the regularisation,
decreasing the order (fewer parameters to learn), etc.

Shortcomings of the Model Complexity Scale

When there is one hyperparameter to choose, the situation sketched in Figure 4.3
is often a relevant picture. However, when there are multiple hyperparameters
(or even competing methods) to choose, it is important to realise that the one-
dimensional model complexity scale in Figure 4.3 does not do justice to the space
of all possible choices. For a given problem, one method can have a smaller
generalisation gap than another method without having a larger training error. Some
methods are simply better for certain problems. The one-dimensional complexity
scale can be particularly misleading for intricate deep learning models, but as we
illustrate in Example 4.2, it is not even sufficient for the relatively simple problem
of jointly choosing the degree of polynomial regression (higher degree means
more flexibility) and the regularisation parameter (more regularisation means less
flexibility).

Example 4.2 Training error and generalisation gap for a regression problem

To illustrate how the training error and generalisation gap can behave, we consider
a simulated problem so that we can compute 𝐸new. We let 𝑛 = 10 data points be
generated as 𝑥 ∼ U[−5, 10], 𝑦 = min(0.1𝑥2, 3) + 𝜀, and 𝜀 ∼ N(0, 1), and consider
the following regression methods:

• Linear regression with 𝐿2 regularisation

• Linear regression with a quadratic polynomial and 𝐿2 regularisation

• Linear regression with a third order polynomial and 𝐿2 regularisation

• Regression tree

• A random forest (Chapter 7) with 10 regression trees

For each of these methods, we try a few different values of the hyperparameters
(regularisation parameter and tree depth, respectively) and compute �̄�train and the
generalisation gap.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
77

4 Understanding, Evaluating, and Improving Performance

0 0.5 1 1.5 2
0

0.5

1

1.5

0.1
1

10

0.1
1

10

100

1,000

0.1
1

10
100

1,000

1

2

3

4

5

1

2

3

4
5

�̄�train

G
en

er
al

isa
tio

n
ga

p

Linear regression, 𝐿2 regularisation
Linear regression, 2rd order polynomial, 𝐿2 regularisation
Linear regression, 3rd order polynomial, 𝐿2 regularisation
Regression tree
Random forest

Fig.
4.7

For each method, the hyperparameter that minimises �̄�new is the value which
is closest (in the 1-norm sense) to the origin in Figure 4.7, since �̄�new =
�̄�train + generalisation gap. Having decided on a certain model and only having one
hyperparameter left to choose, corresponds well to the situation in Figure 4.3.

However, when we compare the different methods, a more complicated situation is
revealed than is described by the one-dimensional model complexity scale. Compare,
for example, the second (red) to the third order polynomial (green) linear regression
in Figure 4.7: for some values of the regularisation parameter, the training error
decreases without increasing the generalisation gap. Similarly, the generalisation
gap is smaller, while the training error remains the same, for the random forest
(purple) than for the tree (black) for a maximum tree depth of 2. The main takeaway
from this is that these relationships are quite intricate, problem-dependent, and
impossible to describe using the simplified picture in Figure 4.3. However, as we
shall see, the picture becomes somewhat clearer when we next introduce another
decomposition of �̄�new, namely the bias–variance decomposition, in particular in
Example 4.4.

In any real problem, we cannot make a plot such as in Example 4.2. This is only
possible for simulated examples where we have full control over the data generating
process. In practice, we instead have to make a decision based on the much more
limited information available. It is good to choose models that are known to work
well for a specific type of data and use experience from similar problems. We
can also use cross-validation for selecting between different models and choosing
hyperparameters. Despite the simplified picture, the intuition about under- and
overfitting from Figure 4.3 can still be very helpful when deciding on what method
or hyperparameter value to explore next with cross-validation.

78
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.4 The Bias–Variance Decomposition of 𝐸new

4.4 The Bias–Variance Decomposition of 𝐸new

We will now introduce another decomposition of �̄�new into a (squared) bias and
a variance term, as well as an unavoidable component of irreducible noise. This
decomposition is somewhat more abstract than the training–generalisation gap but
provides some additional insights into 𝐸new and how different models behave.

Let us first give a short reminder of the general concepts of bias and variance.
Consider an experiment with an unknown constant 𝑧0, which we would like to
estimate. To assist us in estimating 𝑧0, we have a random variable 𝑧. Think, for
example, of 𝑧0 as being the (true) position of an object and 𝑧 of being noisy GPS
measurements of that position. Since 𝑧 is a random variable, it has some mean E[𝑧],
which we denote by 𝑧. We now define

Bias: 𝑧 − 𝑧0 (4.12a)

Variance: E
[(𝑧 − 𝑧)2] = E[𝑧2] − 𝑧2. (4.12b)

The variance describes how much the experiment varies each time we perform
it (the amount of noise in the GPS measurements), whereas the bias describes
the systematic error in 𝑧 that remains no matter how many times we repeat the
experiment (a possible shift or offset in the GPS measurements). If we consider the
expected squared error between 𝑧 and 𝑧0 as a metric of how good the estimator 𝑧 is,
we can re-write it in terms of the variance and the squared bias:

E
[(𝑧 − 𝑧0)2

]
= E

[((𝑧 − 𝑧) + (𝑧 − 𝑧0)
)2

]
=

= E
[(𝑧 − 𝑧)2]︸ ︷︷ ︸
Variance

+2 (E[𝑧] − 𝑧)︸ ︷︷ ︸
0

(𝑧 − 𝑧0) + (𝑧 − 𝑧0)2︸ ︷︷ ︸
bias2

. (4.13)

In words, the average squared error between 𝑧 and 𝑧0 is the sum of the squared bias
and the variance. The main point here is that to obtain a small expected squared
error, we have to consider both the bias and the variance. Only a small bias or little
variance in the estimator is not enough, but both aspects are important.

We will now apply the bias and variance concept to our supervised machine
learning setting. For mathematical simplicity, we will consider the regression
problem with the squared error function. The intuition, however, also carries over
to the classification problem. In this setting, 𝑧0 corresponds to the true relationship
between inputs and output, and the random variable 𝑧 corresponds to the model
learned from training data. Note that, since the training data collection includes
randomness, the model learned from it will also be random.

We first make the assumption that the true relationship between input x and
output 𝑦 can be described as some (possibly very complicated) function 𝑓0(x) plus
independent noise 𝜀:

𝑦 = 𝑓0(x) + 𝜀, with E[𝜀] = 0 and var(𝜀) = 𝜎2. (4.14)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
79

4 Understanding, Evaluating, and Improving Performance

In our notation, �̂�(x;T) represents the model when it is trained on training data T .
This is our random variable, corresponding to 𝑧 above. We now also introduce the
average trained model, corresponding to 𝑧:

𝑓 (x) , ET [�̂�(x;T)] . (4.15)

As before, ET denotes the expected value over 𝑛 training data points drawn from
𝑝(x, 𝑦). Thus, 𝑓 (x) is the (hypothetical) average model we would achieve, if we
could re-train the model an infinite number of times on different training datasets,
each one of size 𝑛, and compute the average.

Remember that the definition of �̄�new (for regression with squared error) is

�̄�new = ET
[
E★

[
(�̂�(x★;T) − 𝑦★)2

]]
. (4.16)

We can change the order of integration and write (4.16) as

�̄�new = E★
[
ET

[
(�̂�(x★;T) − 𝑓0(x★) − 𝜀)2

]]
. (4.17)

With a slight extension of (4.13) to also include the zero-mean noise term 𝜀 (which
is independent of �̂�(x★;T)), we can rewrite the expression inside the expected value
E★ in (4.17) as

ET
[(
�̂�(x★;T)︸ ︷︷ ︸

“𝑧”

− 𝑓0(x★)︸ ︷︷ ︸
“𝑧0”

−𝜀)2
]

=
(
𝑓 (x★) − 𝑓0(x★)

)2 + ET
[(
�̂�(x★;T) − 𝑓 (x★)

)2
]
+ 𝜀2. (4.18)

This is (4.13) applied to supervised machine learning. In �̄�new, which we are
interested in decomposing, we also have the expectation over new data points E★.
By also incorporating that expected value in the expression, we can decompose
�̄�new as

�̄�new = E★
[(
𝑓 (x★) − 𝑓0(x★)

)2
]

︸ ︷︷ ︸
Bias2

+E★
[
ET

[(
�̂�(x★;T) − 𝑓 (x★)

)2
]]

︸ ︷︷ ︸
Variance

+ 𝜎2︸︷︷︸
Irreducible

error

.

(4.19)

The squared bias term E★
[(
𝑓 (x★) − 𝑓0(x★)

)2
]

now describes how much the average
trained model 𝑓 (x★) differs from the true 𝑓0(x★), averaged over all possible test data
points x★. In a similar fashion, the variance term E★

[
ET [

(
�̂�(x★;T) − 𝑓 (x★)

)2]
]

describes how much �̂�(x;T) varies each time the model is trained on a different
training dataset. For the bias term to be small, the model has to be flexible enough
such that 𝑓 (x) can be close to 𝑓0(x), at least in regions where 𝑝(x) is large. If the
variance term is small, the model is not very sensitive to exactly which data points
that happened to be in the training data, and vice versa. The irreducible error 𝜎2 is
simply an effect of the assumption (4.14) – it is not possible to predict 𝜀 since it is
a random error independent of all other variables. There is not much more to say
about the irreducible error, so we will focus on the bias and variance terms.

80
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.4 The Bias–Variance Decomposition of 𝐸new

�̄�new

Irreducible error

Variance

Bias2

OverfittingUnderfitting

Model complexity

Er
ro

r

Figure 4.8: The bias–variance decomposition of �̄�new, instead of the training error–
generalisation gap decomposition in Figure 4.3. Low model complexity means high bias.
The more complicated the model is, the more it adapts to (noise in) the training data, and the
higher the variance. The irreducible error is independent of the particular choice of model
and is therefore constant. The problem of achieving a small 𝐸new by selecting a suitable
model complexity level is often called the bias–variance tradeoff.

What Affects the Bias and Variance?

We have not properly defined model complexity, but we can actually use the bias
and variance concept to give it a more concrete meaning: A high model complexity
means low bias and high variance, and a low model complexity means high bias
and low variance, as illustrated by Figure 4.8.

This resonates well with intuition. The more flexible a model is, the more it
will adapt to the training data T – not only to the interesting patterns but also to
the actual data points and noise that happened to be in T . That is exactly what is
described by the variance term. On the other hand, a model with low flexibility can
be too rigid to capture the true relationship 𝑓0(x) between inputs and outputs well.
This effect is described by the squared bias term.

Figure 4.8 can be compared to Figure 4.3, which builds on the training error–
generalisation gap decomposition of �̄�new instead. From Figure 4.8, we can also talk
about the challenge of finding the right model complexity level as the bias–variance
tradeoff. We give an example of this in Example 4.3.

The squared bias term is more a property of the model than of the training dataset,
and we may think of the bias term as independent of the number of data points 𝑛
in the training data. The variance term, on the other hand, varies highly with 𝑛.4
As we know, �̄�new typically decreases as 𝑛 increases, and the reduction in �̄�new is

4This is not exactly true. The average model 𝑓 might indeed be different if all training datasets
(which we average over) contain 𝑛 = 2 or 𝑛 = 100 000 data points, but we neglect that effect here.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
81

4 Understanding, Evaluating, and Improving Performance

�̄�new
Irreducible error

Bias2

Variance

Size of training data 𝑛

Er
ro

r

(a) Simple model

�̄�new

Irreducible
error

Bias2

Variance

Size of training data 𝑛

Er
ro

r

(b) Complex model

Figure 4.9: The typical relationship between bias, variance, and the size 𝑛 of the training
dataset. The bias is (approximately) constant, whereas the variance decreases as the size of
the training dataset increases. This figure can be compared with Figure 4.6.

largely because of the reduction of the variance. Intuitively, the more data, the more
information we have about the parameters, resulting in a smaller variance. This is
summarised by Figure 4.9, which can be compared to Figure 4.6.

Example 4.3 The bias–variance tradeoff for 𝐿2 regularised linear regression

Let us consider a simulated regression example. We let 𝑝(𝑥, 𝑦) follow from
𝑥 ∼ U[0, 1] and

𝑦 = 5 − 2𝑥 + 𝑥3 + 𝜀, 𝜀 ∼ N(0, 1) . (4.20)

We let the training data consist of only 𝑛 = 10 data points. We now try to model the
data using linear regression with a 4th order polynomial,

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 + 𝛽4𝑥
4 + 𝜀. (4.21)

Since (4.20) is a special case of (4.21), and the squared error loss corresponds
to Gaussian noise, we actually have zero bias for this model if we train it using
squared error loss. However, learning 5 parameters from only 10 data points leads
to very high variance, so we decide to train the model with squared error loss and
𝐿2 regularisation, which will decrease the variance (but increase the bias). The
more regularisation (bigger 𝜆), the more bias and less variance.

Since this is a simulated example, we can repeat the experiment multiple times
and estimate the bias and variance terms (since we can simulate as much training and
test data as needed). We plot them in Figure 4.10 using the same style as Figures 4.3
and 4.8 (note the reversed x-axis: a smaller regularisation parameter corresponds to
a higher model complexity). For this problem, the optimal value of 𝜆 would have

82
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.4 The Bias–Variance Decomposition of 𝐸new

10−310−210−1100101
0

2

4

6

�̄�new

�̄�train Irreducible error
VarianceBias2

Regularisation parameter

Er
ro

r

Fig.
4.10

been about 0.7 since �̄�new attains its minimum there. Finding this optimal 𝜆 is a
typical example of the bias–variance tradeoff.

Connections Between Bias, Variance, and the Generalisation Gap

The bias and variance are theoretically well-defined properties but are often intangible
in practice since they are defined in terms of 𝑝(x, 𝑦). In practice, we mostly have
an estimate of the generalisation gap (for example as 𝐸hold-out − 𝐸train), whereas
the bias and variance require additional tools for their estimation.5 It is, therefore,
interesting to explore what 𝐸train and the generalisation gap say about the bias and
variance.

Consider the regression problem. Assume that the squared error is used both
as error function and loss function and that the global minimum is found during
training. We can then write

𝜎2 + bias2 = E★
[(𝑓 (x★) − 𝑦★)2

] ≈ 1
𝑛

𝑛∑︁
𝑖=1
(𝑓 (x𝑖) − 𝑦𝑖)2

≥ 1
𝑛

𝑛∑︁
𝑖=1
(�̂�(x𝑖;T) − 𝑦𝑖)2 = 𝐸train. (4.22)

In the approximate equality, we approximate the expected value by a sample average
using the training data points.6 If, furthermore, we assume that �̂� can possibly be 𝑓 ,

5The bias and variance can, to some extent, be estimated using the bootstrap, as we will introduce in
Chapter 7.

6Since neither 𝑓 (𝑥★) nor 𝑦★ depends on the training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1, we can use {x𝑖 , 𝑦𝑖}𝑛𝑖=1 to
approximate the integral.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
83

4 Understanding, Evaluating, and Improving Performance

together with the above assumption of having the squared error as loss function and
the learning of �̂� always finding the global minimum, we have the inequality in the
next step. Remembering that �̄�new = 𝜎2 + bias2 + variance, and allowing ourselves
to write �̄�new − 𝐸train = generalisation gap, we have

generalisation gap ' variance, (4.23a)
𝐸train / bias2 + 𝜎2. (4.23b)

The assumptions in this derivation are not always met in practice, but it at least
gives us some rough idea.

As we discussed previously, the choice of method is crucial for what 𝐸new is
obtained. Again, the one-dimensional scale in Figure 4.8 and the notion of a
bias–variance tradeoff is a simplified picture; decreased bias does not always lead
to increased variance, and vice versa. However, in contrast to the decomposition of
𝐸new into training error and generalisation gap, the bias and variance decomposition
can shed some more light on why 𝐸new decreases for different methods: sometimes,
the superiority of one method over another can be attributed to either a lower bias
or a lower variance.

A simple (and useless) way to increase the variance without decreasing the bias
in linear regression is to first learn the parameters using the normal equations and
thereafter add zero-mean random noise to them. The extra noise does not affect
the bias, since the noise has zero mean and hence leaves the average model 𝑓
unchanged, but the variance increases. (This also affects the training error and the
generalisation gap, but in a less clear way.) This way of training linear regression
would be pointless in practice since it increases 𝐸new, but it illustrates the fact that
increased variance does not automatically lead to decreased bias.

A much more useful way of dealing with bias and variance is the meta-method
called bagging, discussed in Chapter 7. It makes use of several copies (an ensemble)
of a base model, each trained on a slightly different version of the training dataset.
Since bagging averages over many base models, it reduces the variance, but the bias
remains essentially unchanged. Hence, by using bagging instead of the base model,
the variance is decreased without significantly increasing the bias, often resulting in
an overall decrease in 𝐸new.

To conclude, the world is more complex than just the one-dimensional model
complexity scale used in Figure 4.3 and 4.8, which we illustrate by Example 4.4.

Time to reflect 4.4 Can you modify linear regression such that the bias
increases without decreasing the variance?

Example 4.4 Bias and variance for a regression problem

We consider the exact same setting as in Example 4.2 but decompose �̄�new into bias
and variance instead. This gives us Figure 4.11.

84
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.4 The Bias–Variance Decomposition of 𝐸new

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

0.1
1

10

100

0.1
1

10
100

1,000

0.1

1
10 100

1,000

1

2

3

4

5

1

2

3
4
5

Bias2

Va
ria

nc
e

Linear regression, 1st order polynomial, 𝐿2 regularisation
Linear regression, 2nd order polynomial, 𝐿2 regularisation
Linear regression, 3rd order polynomial, 𝐿2 regularisation
Regression tree
Random forest

Fig.
4.11

There are clear resemblances to Example 4.2, as expected from (4.23). The effect
of bagging (used in the random forest; see Chapter 7) is, however, clearer, namely
that it reduces the variance compared to the regression tree with no noteworthy
increase in bias.

For another illustration of what bias and variance means, we illustrate some of
these cases in more detail in Figure 4.12. First we plot some of the linear regression
models. The dashed red line is the true 𝑓0 (x) the dotted blue lines are different
models �̂�(x★;T) learned from different training datasets T and the solid blue line
their mean 𝑓 (x). In these figures, bias is the difference between the dashed red
and solid blue lines, whereas variance is the spread of the dotted blue lines around
the solid blue. The variance appears to be roughly the same for all three models,
perhaps somewhat smaller for the first order polynomial, whereas the bias is clearly
smaller for the higher order polynomials. This can be compared to Figure 4.11.

−5 0 5 10

0

2

4

𝑦

Linear regression, 𝜆 = 0.1

−5 0 5 10

0

2

4

2nd order polynomial, 𝜆 = 0.1

−5 0 5 10

0

2

4

3rd order polynomial, 𝜆 = 0.1

−5 0 5 10

0

2

4

𝑥

2nd order polynomial, 𝜆 = 1 000

−5 0 5 10

0

2

4

𝑥

Regression tree, max depth 5

−5 0 5 10

0

2

4

𝑥

Random forest, max depth 5

Fig.
4.12

Comparing the second order polynomial with little (𝜆 = 0.1) and heavy (𝜆 = 1 000)
regularisation, it is clear that regularisation reduces variance but also increases bias.
Furthermore, the random forest has a smaller variance than the regression tree but
without any noticeable change in the solid line 𝑓 (x) and hence no change in bias.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
85

4 Understanding, Evaluating, and Improving Performance

4.5 Additional Tools for Evaluating Binary Classifiers

For classification, and in particular binary classification, there are a wide range of
additional tools for inspecting the performance beyond the misclassification rate.
For simplicity we consider the binary problem and use a hold-out validation dataset
approach, but some of the ideas can be extended to the multiclass problem as well
as to 𝑘-fold cross-validation.

Some of these tools are in particular useful for imbalanced and/or asymmetric
problems, which we will discuss later in this section. Remember that in binary
classification, we have either 𝑦 = {−1, 1}. If a binary classifier is used to detect the
presence of something, such as a disease, an object on the radar, etc., the convention
is that 𝑦 = 1 (positive) denotes presence, and 𝑦 = −1 (negative) denotes absence.
This convention is the background for a lot of the terminology we will introduce now.

The Confusion Matrix and the ROC Curve

If we learn a binary classifier and evaluate it on a hold-out validation dataset, a
simple yet useful way to inspect the performance beyond just computing 𝐸hold-out is
a confusion matrix. By separating the validation data in four groups depending on 𝑦
(the actual output) and �̂�(x) (the output predicted by the classifier), we can make
the confusion matrix:

𝑦 = −1 𝑦 = 1 total
�̂�(x) = −1 True neg (TN) False neg (FN) N*
�̂�(x) = 1 False pos (FP) True pos (TP) P*

total N P 𝑛

Of course, TN, FN, FP, and TP (and also N*, P*, N, P and 𝑛) should be replaced by
the actual numbers, as in Example 4.5. Note that P (N) denotes the total number
of positive (negative) examples in the data set, whereas P* (N*) denotes the total
number of positive (negative) predictions made by the model. The confusion matrix
provides a quick and informative overview of the characteristics of a classifier. For
asymmetric problems, which we will soon introduce, it is important to distinguish
between false positive (FP, also called type I error) and false negative (FN, also
called type II error). Ideally they should both be 0, but in practice, there is usually
a tradeoff between these two errors, and the confusion matrix is a helpful tool in
visualising them both. That tradeoff between false negatives and false positives can
often be done by tuning a decision threshold 𝑟, which is present in many binary
classifiers (3.36).

There is also a wide body of terminology related to the confusion matrix, which
is summarised in Table 4.1. Some particularly common terms are the

recall = TP
P

=
TP

TP + FN
and the precision =

TP
P*

=
TP

TP + FP
.

86
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.5 Additional Tools for Evaluating Binary Classifiers

Table 4.1: Some common terms related to the quantities (TN, FN, FP, TP) in the confusion
matrix. The terms written in italics are discussed in the text.

Ratio Name

FP/N False positive rate, Fall-out, Probability of false alarm
TN/N True negative rate, Specificity, Selectivity
TP/P True positive rate, Sensitivity, Power, Recall, Probability

of detection
FN/P False negative rate, Miss rate
TP/P* Positive predictive value, Precision
FP/P* False discovery rate
TN/N* Negative predictive value
FN/N* False omission rate
P/𝑛 Prevalence
(FN + FP)/𝑛 Misclassification rate
(TN + TP)/𝑛 Accuracy, 1 −misclassification rate
2TP/(P* + P) 𝐹1score
(1 + 𝛽2)TP/((1 + 𝛽2)TP + 𝛽2FN
+ FP)

F𝛽 score

Recall describes how large a proportion of the positive data points are correctly
predicted as positive. A high recall (close to 1) is good, and a low recall (close to 0)
indicates a problem with many false negatives. Precision describes what the ratio
of true positive points are among the ones predicted as positive. A high precision
(close to 1) is good, and a low precision (close to 0) indicates a problem with many
false positives.

Many classifiers contains a threshold 𝑟 (3.36). If we want to compare different
classifiers for a certain problem without specifying a certain decision threshold 𝑟,
the ROC curve can be useful. The abbreviation ROC means ‘receiver operating
characteristics’ and is due to its history from communications theory.

To plot an ROC curve, the recall/true positive rate (TP/P; a large value is good) is
drawn against the false positive rate (FP/N; a small value is good) for all values of
𝑟 ∈ [0, 1]. The curve typically looks as shown in Figure 4.13a. An ROC curve for a
perfect classifier (always predicting the correct value for all 𝑟 ∈ (0, 1)) touches the
upper left corner, whereas a classifier which only assigns random guesses7 gives a
straight diagonal line.

A compact summary of the ROC curve is the area under the ROC curve, ROC-
AUC. From Figure 4.13a, we conclude that a perfect classifier has ROC-AUC = 1,
whereas a classifier which only assigns random guesses has ROC-AUC = 0.5. The
ROC-AUC thus summarises the performance of a classifier for all possible values
of the decision threshold 𝑟 in a single number.

The F1 Score and the Precision–Recall Curve

Many binary classification problems have particular characteristics, in that they are
imbalanced, or asymmetric, or both. We say that a problem is

7That is, predicts �̂� = −1 with probability 𝑟.
This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
87

4 Understanding, Evaluating, and Improving Performance

0 0.5 1
0

0.5

1

dec
rea

sin
g 𝑟
→

False positive rate

Tr
ue

po
sit

iv
e

ra
te

Typical example
Perfect classifier
Random guess

(a) The ROC curve

0 0.5 1
0

0.5

1

𝑃/𝑛

decreasing 𝑟 →

Recall

Pr
ec

isi
on

Typical example
Perfect classifier
Random guess

(b) The precision–recall curve

Figure 4.13: The ROC (left) and the precision–recall (right) curves. Both plots summarise
the performance of a classifier for all decision thresholds 𝑟 (see (3.36)), but the ROC curve is
most relevant for balanced problems, whereas the precision–recall curve is more informative
for imbalanced problems.

(i) imbalanced if the vast majority of the data points belong to one class,
typically the negative class 𝑦 = −1. This imbalance implies that a (useless)
classifier which always predicts �̂�(x) = −1 will score very well in terms of
misclassification rate (4.1a).

(ii) asymmetric if a false negative is considered more severe than a false positive,
or vice versa. That asymmetry is not taken into account in the misclassifcation
rate (4.1a);

A typical imbalanced problem is the prediction of a rare disease (most patients do
not have it – that is, most data points are negative). That problem could also be an
asymmetric problem if it is, say, considered more problematic to predict an infected
patient as healthy than vice versa.

To start with, the confusion matrix offers a good opportunity to inspect the false
negatives and positives in a more explicit fashion. It can, however, sometimes be
useful to also summarise the performance into a single number. For that purpose,
the misclassification rate is not very helpful; in a severely imbalanced problem,
it can, for instance, favour a useless predictor that always predicts −1 over any
realistically useful predictor.

For imbalanced problems, where the negative class 𝑦 = −1 is the most common
class, the F1 score is therefore preferable to the misclassification rate (or accuracy).
The F1 score summarises the precision and recall by their harmonic means,

𝐹1 =
2 · precision · recall
precision + recall , (4.24)

which is a number between zero and one (higher is better).

88
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

4.5 Additional Tools for Evaluating Binary Classifiers

For asymmetric problems, however, the F1 score is not sufficient since it does not
factor in the preference of having one type of error considered more serious than the
other. For that purpose, a generalisation of the F1 score, namely the F𝛽 score, can
be used. The F𝛽 score weighs together precision and recall by considering recall to
be 𝛽 times as important as precision:

𝐹𝛽 =
(1 + 𝛽2)precision · recall
𝛽2 · precision + recall

. (4.25)

Much as the the misclassification rate might be misleading for imbalanced
problems, the ROC curve might also be misleading for such problems. Instead,
the precision–recall curve can (for imbalanced problems where 𝑦 = −1 is the
most common class) be more useful. As the name suggests, the precision–recall
curve plots the precision (TP/P*; a large value is good) against the recall (TP/P;
a large value is good) for all values of 𝑟 ∈ [0, 1], much like the ROC curve. The
precision–recall curve for the perfect classifier touches the upper right corner, and
a classifier which only assigns random guesses gives a horizontal line at the level
𝑃/𝑛, as shown in Figure 4.13b.

Also for the precision–recall curve, we can define the area under the precision–
recall curve, PR-AUC. The best possible PR-AUC is 1, and the classifier which only
makes random guesses has PR-AUC equal to 𝑃/𝑛.

We summarise this section with an example of an imbalanced and asymmetric
problem in medicine. The evaluation of real-world classification problems, which
most often are both imbalanced and asymmetric, is however, a challenging topic
with certain dilemmas that are discussed further in Chapter 12.

Example 4.5 The confusion matrix in thyroid disease detection

The thyroid is an endocrine gland in the human body. The hormones it produces
influences the metabolic rate and protein synthesis, and thyroid disorders may
have serious implications. We consider the problem of detecting thyroid diseases,
using the dataset provided by the UCI Machine Learning Repository (Dheeru and
Karra Taniskidou 2017). The dataset contains 7 200 data points, each with 21
medical indicators as inputs (both qualitative and quantitative). It also contains the
qualitative diagnosis {normal, hyperthyroid, hypothyroid}. For simplicity, we
convert this into the binary problem with the output classes {normal, abnormal}.
The dataset is split into training and hold-out validation sets, with 3 772 and 3 428
data points, respectively. The problem is imbalanced since only 7% of the data
points are abnormal. Hence, the naive (and useless) classifier which always predicts
normal will obtain a misclassification rate of around 7%. The problem is possibly
also asymmetric, if false negatives (not indicating the disease) are considered more
problematic than false positives (falsely indicating the disease). We train a logistic
regression classifier and evaluate it on the validation dataset (using the default
decision threshold 𝑟 = 0.5, see (3.36)). We obtain the confusion matrix

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
89

4 Understanding, Evaluating, and Improving Performance

𝑦 = normal 𝑦 = abnormal
�̂�(x) = normal 3 177 237

�̂�(x) = abnormal 1 13

Most validation data points are correctly predicted as normal, but a large part of the
abnormal data is also falsely predicted as normal. This might indeed be undesired
in the application. The accuracy (1-misclassification) rate is 0.931, and the F1 score
is 0.106. (The useless predictor of always predicting normal has a very similar
accuracy of 0.927, but worse F1 score of 0.)

To change the picture, we lower the decision threshold to 𝑟 = 0.15 in (3.36).
That is, we predict the positive (abnormal) class whenever the predicted class
probability exceeds this value, 𝑔(x) > 0.15. This results in new predictions with
the following confusion matrix:

𝑦 = normal 𝑦 = abnormal
�̂� = normal 3 067 165

�̂� = abnormal 111 85

This change gives more true positives (85 instead of 13 patients are correctly
predicted as abnormal), but this happens at the expense of more false positives
(111 instead of 1 patients are now falsely predicted as abnormal). As expected,
the accuracy is now lower at 0.919, but the F1 score is higher at 0.381. Remember,
however, that the F1 score does not take the asymmetry into account but only the
imbalance. We have to decide ourselves whether this classifier is a good tradeoff
between the false negative and false positive rates, by considering which type of
error has the more severe consequences.

4.6 Further Reading

This chapter was to a large extent inspired by the introductory machine learning
textbook by Abu-Mostafa et al. (2012). There are also several other textbooks on
machine learning, including Vapnik (2000) and Mohri et al. (2018), in which the
central theme is understanding the generalisation gap using formal definitions of
model flexibility such as the VC dimension or Rademacher complexity. The under-
standing of model flexibility for deep neural networks (Chapter 6) is, however, still
subject to research; see for example, C. Zhang et al. (2017), Neyshabur et al. (2017),
Belkin et al. (2019), and B. Neal et al. (2019) for some directions. Furthermore,
the bias–variance decomposition is most often (including in this chapter) presented
only for regression, but a possible generalisation to the classification problem is
suggested by Domingos (2000). An alternative to the precision–recall curve, the
so-called precision–recall–gain curve, is presented by Flach and Kull (2015).

90
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5 Learning Parametric Models

In this chapter, we elaborate on the concept of parametric modelling. We start
by generalising the notion of a parametric model and outline basic principles for
learning these models from data. The chapter then resolves around three central
concepts, namely loss functions, regularisation, and optimisation. We have touched
upon all of them already, mostly in connection with parametric models in Chapter 3,
linear and logistic regression. These topics are, however, central to many supervised
machine learning methods, in fact even beyond parametric models, and deserve a
more elaborate discussion.

5.1 Principles of Parametric Modelling

In Chapter 3, we introduced two basic parametric models for regression and
classification, linear regression and logistic regression, respectively. We also briefly
discussed how generalised linear models could be used to handle different types of
data. The concept of parametric modelling is, however, not restricted to these cases.
We therefore start this chapter by introducing a general framework for parametric
modelling and discuss basic principles for learning these models from data.

Non-linear Parametric Functions

Consider the regression model (3.1), repeated here for convenience:

𝑦 = 𝑓𝜽 (x) + 𝜀. (5.1)

Here we have introduced an explicit dependence on the parameters 𝜽 in the notation
to emphasise that the equation above should be viewed as our model of the true
input–output relationship. To turn this model into a linear regression model, which
could be trained using least squares with a closed form solution, we made two
assumptions in Chapter 3. First, the function 𝑓𝜽 was assumed to be linear in
the model parameters, 𝑓𝜽 (x) = 𝜽Tx. Second, the noise term 𝜀 was assumed to be
Gaussian, 𝜀 ∼ N (

0, 𝜎2
𝜀

)
. The latter assumption is sometimes implicit, but as we

saw in Chapter 3, it makes the maximum likelihood formulation equivalent to least
squares.

Both of these assumptions can be relaxed. Based on the expression above,
the perhaps most obvious generalisation is to allow the function 𝑓𝜽 to be some
arbitrary non-linear function. Since we still want the function to be learnt from

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
91

5 Learning Parametric Models

training data, we require that it is adaptable. Similarly to the linear case, this can
be accomplished by letting the function depend on some model parameters 𝜽 that
control the shape of the function. Different values of the model parameters will then
result in different functions 𝑓𝜽 (·). Training the model amounts to finding a suitable
value for the parameter vector 𝜽, such that the function 𝑓𝜽 accurately describes
the true input–output relationship. In mathematical terms, we say that we have a
parametric family of functions

{ 𝑓𝜽 (·) : 𝜽 ∈ Θ},
where Θ is the space containing all possible parameter vectors. We illustrate with
an example:

Example 5.1 Michaelis–Menten kinetics

A simple example of a non-linear parametric function is the Michaelis–Menten
equation for modelling enzyme kinetics. The model is given by

𝑦 =
𝜃1𝑥

𝜃2 + 𝑥︸ ︷︷ ︸
= 𝑓𝜽 (𝑥)

+ 𝜀,

where 𝑦 corresponds to a reaction rate and 𝑥 a substrate concentration. The
model is parameterised by the maximum reaction rate 𝜃1 > 0 and the so-called
Michaelis constant of the enzyme 𝜃2 > 0. Note that 𝑓𝜽 (𝑥) depends non-linearly on
the parameter 𝜃2 appearing in the denominator.

Typically the model is written as a deterministic relationship without the noise
term 𝜀, but here we include the noise as an error term for consistency with our
statistical regression framework.

In the example above, the parameters 𝜃1 and 𝜃2 have physical interpretations and
are restricted to be positive. Thus, Θ corresponds to the positive quadrant in R2.
However, in machine learning we typically lack such physical interpretations of the
parameters. The model is more of a ‘black box’ which is adapted to fit the training
data as well as possible. For simplicity, we will therefore assume that Θ = R𝑑 ,
meaning that 𝜽 is a 𝑑-dimensional vector of real-valued parameters. The archetypes
of such non-linear black-box models are neural networks, which we will discuss in
more detail in Chapter 6. If we need to restrict a parameter value in some way, for
example to be positive, then this can be accomplished by a suitable transformation
of that parameter. For instance, in the Michaelis–Menten equation, we can replace
𝜃1 and 𝜃2 with exp(𝜃1) and exp(𝜃2), respectively, where the parameters are now
allowed to take arbitrary real values.

Note that the likelihood corresponding to the model (5.1) is governed by the
noise term 𝜀. As long as we stick with the assumption that the noise is additive and
Gaussian with zero mean and variance 𝜎2

𝜀 , we obtain a Gaussian likelihood function

𝑝(𝑦 | x; 𝜽) = N
(
𝑓𝜽 (x), 𝜎2

𝜀

)
. (5.2)

92
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.1 Principles of Parametric Modelling

The only difference between this expression and the likelihood used in the linear
regression model (3.18) is that the mean of the Gaussian distribution is now given
by the arbitrary non-linear function 𝑓𝜽 (x).

Non-linear classification models can be constructed in a very similar way, as a
generalisation of the logistic regression model (3.29). In binary logistic regression,
we first compute the logit 𝑧 = 𝜽Tx. The probability of the positive class, that
is 𝑝(𝑦 = 1 | x), is then obtained by mapping the logit value through the logistic
function, ℎ(𝑧) = 𝑒𝑧

1+𝑒𝑧 . To turn this into a non-linear classification model, we
can simply replace the expression for the logit with 𝑧 = 𝑓𝜽 (x) for some arbitrary
real-valued non-linear function 𝑓𝜽 . Hence, the non-linear logistic regression model
becomes

𝑔(x) = 𝑒 𝑓𝜽 (x)

1 + 𝑒 𝑓𝜽 (x) . (5.3)

Analogously, we can construct a multiclass non-linear classifier by generalising the
multiclass logistic regression model (3.42). That is, we compute a vector of logits
z = [𝑧1 𝑧2 . . . 𝑧𝑀]T according to z = f𝜽 (x), where f𝜽 is some arbitrary function
that maps x to an 𝑀-dimensional real-valued vector z. Propagating this logit vector
through the softmax function results in a non-linear model for the conditional class
probabilities, g𝜽 (x) = softmax(f𝜽 (x)). We will return to non-linear classification
models of this form in Chapter 6, where we use neural networks to construct the
function f𝜽 .

Loss Minimisation as a Proxy for Generalisation

Having specified a certain model class – that is, a parametric family of functions
defining the model – learning amounts to finding suitable values for the parameters
so that the model as accurately as possible describes the actual input–output
relationship. For parametric models, this learning objective is typically formulated
as an optimisation problem, such as

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

loss function︷ ︸︸ ︷
𝐿 (𝑦𝑖 , 𝑓𝜽 (x𝑖))

︸ ︷︷ ︸
cost function 𝐽 (𝜽)

. (5.4)

That is, we seek to minimise a cost function defined as the average of some (user-
chosen) loss function 𝐿 evaluated on the training data. In some special cases
(such as linear regression with squared loss), we can compute the the solution
to this optimisation problem exactly. However, in most cases, and in particular
when working with non-linear parametric models, this is not possible, and we
need to resort to numerical optimisation. We will discuss such algorithms in more
detail in Section 5.4, but it is useful to note already now that these optimisation
algorithms are often iterative. That is, the algorithm is run over many iterations,
and at each iteration, the current approximate solution to the optimisation problem

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
93

5 Learning Parametric Models

(5.4) is updated to a new (hopefully better) approximate solution. This leads to a
computational trade-off. The longer we run the algorithm, the better solution we
expect to find, but at the cost of a longer training time.

Finding the value of 𝜽 which is such that the model fits the training data as well
as possible is a natural idea. However, as we discussed in the previous chapter, the
ultimate goal of machine learning is not to fit the training data as well as possible
but rather to find a model that can generalise to new data, not used for training the
model. Put differently, the problem that we are actually interested in solving is not
(5.4) but rather

�̂� = arg min
𝜽

𝐸new(𝜽), (5.5)

where 𝐸new(𝜽) = E★ [𝐸 (�̂�(x★; 𝜽), 𝑦★)] is the expected new data error (for some
error function 𝐸 of interest; see Chapter 4). The issue is, of course, that the expected
new data error is unknown to us. The ‘true’ data generating distribution is not
available, and we thus cannot compute the expected error with respect to new data,
nor can we optimise the objective (5.5) explicitly. However, this insight is still of
practical importance, because it means that

the training objective (5.4) is only a proxy for the actual objective of interest,
(5.5).

This view of the training objective as a proxy has implications for how we approach
the optimisation problem (5.4) in practice. We make the following observations.

Optimisation accuracy vs. statistical accuracy: The cost function 𝐽 (𝜽) is com-
puted based on the training data and is thus subject to noise in the data. It can
be viewed as a random approximation of the ‘true’ expected loss (obtained as
𝑛→∞). Hence, it is not meaningful to optimise 𝐽 (𝜽) with greater accuracy
than the statistical error in the estimate. This is particularly relevant in
situations when we need to spend a lot of computational effort to obtain a very
accurate solution to the optimisation problem. This is unnecessary as long as
we are within the statistical accuracy of the estimate. In practice, however, it
can be difficult to determine what the statistical accuracy is (and we will not
elaborate on methods that can be used for estimating it in this book), but this
trade-off between optimisation accuracy and statistical accuracy is still useful
to have in the back of the mind.

Loss function ≠ error function As discussed in Chapter 4, we can use an error
function 𝐸 for evaluating the performance of a model, which is different from
the loss function 𝐿 used during training. In words, when training the model,
we minimise an objective which is different from the one that we are actually

94
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.1 Principles of Parametric Modelling

interested in. This might seem counter-intuitive, but based on the proxy view
on the training objective, it makes perfect sense and, in fact, provides the
machine learning engineer with additional flexibility in designing a useful
training objective. There are many reasons why we might want to use a loss
function that is different from the error function. First, it can result in a model
which is expected to generalise better. The typical example is when evaluating
a classification model based on accuracy (equivalently, misclassification
error). If we were to train the model by minimising the misclassification
loss, we would only care about placing the decision boundaries to get as
many training data points as possible on the right side, but without taking
the distances to the decision boundaries into account. However, due to the
noise in the data, having some margin to the decision boundary can result in
better generalisation, and there are loss functions that explicitly encourage
this. Second, we can choose the loss function with the aim of making the
optimisation problem (5.4) easier to solve, for instance by using a convex
loss function (see Section 5.4). Third, certain loss functions can encourage
other favorable properties of the final model, such as making the model less
computationally demanding to use ‘in production’.

Early stopping When optimising the objective (5.4) using an iterative numerical
optimisation method, this can be thought of as generating a sequence of
candidate models. At each iteration of the optimsation algorithm, we have
access to the current estimate of the parameter vector, and we thus obtain a
‘path’ of parameter values. Interestingly, it is not necessarily the end point of
this path that is closest to the solution of (5.5). Indeed, the path of parameter
values can pass a useful solution (with good generalisation properties) before
drifting off to a worse solution (for example due to overfitting). Based
on this observation, there is another reason for stopping the optimisation
algorithm prematurely, apart from the purely computational reason mentioned
above. By early stopping of the algorithm, we can obtain a final model with
superior performance to the one we would obtain if we ran the algorithm
until convergence. We refer to this as implicit regularisation and discuss the
details of how it can be implemented in practice in Section 5.3.

Explicit regularisation Another strategy is to explicitly modify the cost function
(5.4) by adding a term independent of the training data. We refer to this
technique as explicit regularisation. The aim is to make the final model
generalise better – that is, we hope to make the solution to the modified
problem closer to the solution of (5.5). We saw an example of this already in
Section 3.3 where we introduced 𝐿2 regularisation. The underlying idea is the
law of parsimony: that the simplest explanation of an observed phenomenon
is usually the right one. In the context of machine learning, this means

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
95

5 Learning Parametric Models

that if both a ‘simple’ and a ‘complicated’ model fit the data (more or less)
equally well, then the ‘simple’ one will typically have superior generalisation
properties and should therefore be preferred. In explicit regularisation the
vague notions of ‘simple’ and ‘complicated’ are reduced to simply mean small
and large parameter values, respectively. In order to favour a simple model,
an extra term is added to the cost function that penalises large parameter
values. We will discuss regularisation further in Section 5.3.

5.2 Loss Functions and Likelihood-Based Models

Which loss function 𝐿 to use in the training objective (5.4) is a design choice, and
different loss functions will give rise to different solutions �̂� . This will in turn result
in models with different characteristics. There is in general no ‘right’ or ‘wrong’
loss function, but for a given problem, one particular choice can be superior to
another in terms of small 𝐸new (note that there is a similar design choice involved in
𝐸new, namely how to choose the error function which defines how we measure the
performance of the model). Certain combinations of models and loss functions have
proven particularly useful and have historically been branded as specific methods.
For example, the term ‘linear regression’ most often refers to the combination
of a linear-in-the-parameter model and the squared error loss, whereas the term
‘support vector classification’ (see Chapter 8) refers to a linear-in-the-parameter
model trained using the hinge loss. In this section, however, we provide a general
discussion about different loss functions and their properties, without connections
to a specific method.

One important aspect of a loss function is its robustness. Robustness is tightly
connected to outliers, meaning spurious data points that do not describe the
relationship we are interested in modelling. If outliers in the training data only
have a minor impact on the learned model, we say that the loss function is robust.
Conversely, a loss function is not robust if the outliers have a major impact on the
learned model. Robustness is therefore a very important property in applications
where the training data is contaminated with outliers. It is not a binary property,
however, and loss functions can be robust to a greater or lesser extent. Some of the
commonly used loss functions, including the squared error loss, are unfortunately
not particularly robust, and it is therefore important for the user to make an active
and informed decision before resorting to these ‘default’ options.

From a statistical perspective, we can link the loss function to statistical properties
of the learnt model. First, the maximum likelihood approach provides a formal
connection between the loss function and the probabilistic assumptions on the (noise
in the) data. Second, even for loss functions that are not derived from a likelihood
perspective, we can relate the so-called asymptotic minimiser of the loss function
to the statistical properties of the model. The asymptotic minimiser refers to the
model that minimises the expected loss when averaged over the true data-generating
distribution. Equivalently, we can think about the asymptotic minimiser as the

96
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

solution to the optimisation problem (5.4) as the number of training data points
𝑛→∞ (hence the name ‘asymptotic’). If there is a unique asymptotic minimiser
from which we can recover the true conditional distribution 𝑝(𝑦 | x), then the
loss function is said to be strictly proper. We will return to this concept below,
specifically in the context of binary classification.

Loss Functions for Regression

In Chapter 3 we introduced the squared error loss1

𝐿 (𝑦, �̂�) = (
�̂� − 𝑦

)2
, (5.6)

which is the default choice for linear regression since it simplifies the training to
only solving the normal equations. The squared error loss is often also used for
other regression models, such as neural networks. Another common choice is the
absolute error loss,

𝐿 (𝑦, �̂�) = | �̂� − 𝑦 |. (5.7)
The absolute error loss is more robust to outliers than the squared error loss since it
grows more slowly for large errors; see Figure 5.1. In Chapter 3 we introduced the
maximum likelihood motivation of the squared error loss by assuming that the output
𝑦 is measured with additive noise 𝜀 from a Gaussian distribution, 𝜀 ∼ N (

0, 𝜎2
𝜀

)
. We

can similarly motivate the absolute error loss by instead assuming 𝜀 to have a Laplace
distribution, 𝜀 ∼ L(0, 𝑏𝜀). We elaborate and expand on the idea of deriving the loss
function from the maximum likelhood objective and certain statistical modelling
assumptions below. However, there are also some commonly used loss functions
for regression which are not very natural to derive from a maximum likelihood
perspective.

It is sometimes argued that the squared error loss is a good choice because
of its quadratic shape, which penalises small errors (𝜀 < 1) less than linearly.
After all, the Gaussian distribution appears (at least approximately) quite often
in nature. However, the quadratic shape for large errors (𝜀 > 1) is the reason for
its non-robustness, and the Huber loss has therefore been suggested as a hybrid
between the absolute loss and squared error loss:

𝐿 (𝑦, �̂�) =
{

1
2 (�̂� − 𝑦)2 if | �̂� − 𝑦 | < 1,
| �̂� − 𝑦 | − 1

2 otherwise.
(5.8)

Another extension to the absolute error loss is the 𝜖-insensitive loss,

𝐿 (𝑦, �̂�) =
{

0 if | �̂� − 𝑦 | < 𝜖,

| �̂� − 𝑦 | − 𝜖 otherwise,
(5.9)

1As you might already have noticed, the arguments to the loss function (here 𝑦 and �̂�) vary with
context. The reason for this is that different loss functions are most naturally expressed in terms of
different quantities, for example the prediction �̂�, the predicted conditional class probability 𝑔(x),
the classifier margin, etc.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
97

5 Learning Parametric Models

−2 −1 −𝜖 0 𝜖 1 2
0

1

2

3

4

Error �̂� − 𝑦

Lo
ss

Squared error loss
Absolute error loss
Huber loss
𝜖-insensitive loss

Figure 5.1: The loss functions for regression presented in the text, each as a function of the
error �̂� − 𝑦.

where 𝜖 is a user-chosen design parameter. This loss places a tolerance of width 2𝜖
around the observed 𝑦 and behaves like the absolute error loss outside this region.
The robustness properties of the 𝜖-insensitive loss are very similar to those of the
absolute error loss. The 𝜖-insensitive loss turns out to be useful for support vector
regression in Chapter 8. We illustrate all these loss functions for regression in
Figure 5.1.

Loss Functions for Binary Classification

An intuitive loss function for binary classification is provided by the misclassification
loss,

𝐿 (𝑦, �̂�) = I{�̂� ≠ 𝑦} =
{

0 if �̂� = 𝑦,

1 if �̂� ≠ 𝑦.
(5.10)

However, even though a small misclassification loss might be the ultimate goal
in practice, this loss function is rarely used when training models. As mentioned
in Section 5.1, there are at least two reasons for this. First, using a different loss
function can result in a model that generalises better from the training data. This
can be understood by noting that the final prediction �̂� does not reveal all aspects of
the classifier. Intuitively, we may prefer to not have the decision boundary close to
the training data points, even if they are correctly classified, but instead push the
boundary further away to have some margin. To achieve this, we can formulate
the loss function not just in terms of the hard class prediction �̂� but based on the
predicted class probability 𝑔(x) or some other continuous quantity used to compute
the class prediction. The second reason for not using misclassification loss as the
training objective, which is also important, is that it would result in a cost function
that is piecewise constant. From a numerical optimisation perspective, this is a
difficult objective since the gradient is zero everywhere, except where it is undefined.

98
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

For a binary classifier that predicts conditional class probabilities 𝑝(𝑦 = 1 | x) in
terms of a function 𝑔(x), the cross-entropy loss, as introduced in Chapter 3, is a
natural choice:

𝐿 (𝑦, 𝑔(x)) =
{

ln 𝑔(x) if 𝑦 = 1,
ln(1 − 𝑔(x)) if 𝑦 = −1.

(5.11)

This loss was derived from a maximum likelihood perspective, but unlike regression
(where we had to specify a distribution for 𝜀), there are no user choices left in the
cross-entropy loss, other than what model to use for 𝑔(x). Indeed, for a binary
classification problem, the model 𝑔(x) provides a complete statistical description of
the conditional distribution of the output given the input.

While cross entropy is commonly used in practice, there are also other loss
functions for binary classification that are useful. To define an entire family of
loss functions, let us first introduce the concept of margins in binary classification.
Many binary classifiers �̂�(x) can be constructed by thresholding some real-valued
function2 𝑓 (x) at 0. That is, we can write the class prediction

�̂�(x) = sign{ 𝑓 (x)}. (5.12)

Logistic regression, for example, can be brought into this form by simply using
𝑓 (x) = 𝜽Tx, as shown in (3.39). More generally, for a non-linear generalisation of
the logistic regression model where the probability of the positive class is modelled
as in (5.3), the prediction (5.12) corresponds to the most likely class. Not all
classifiers have a probabilistic interpretation, however, but often they can still be
expressed as in (5.12) for some underlying function 𝑓 (x).

The decision boundary for any classifier of the form (5.12) is given by the values
of x for which 𝑓 (x) = 0. To simplify our discussion, we will assume that none of
the data points fall exactly on the decision boundary (which always gives rise to
an ambiguity). This will imply that we can assume that �̂�(x) as defined above is
always either −1 or +1. Based on the function 𝑓 (x), we say that

the margin of a classifier for a data point (x, 𝑦) is 𝑦 · 𝑓 (x).
It follows that if 𝑦 and 𝑓 (x) have the same sign, meaning that the classification is
correct, then the margin is positive. Analogously, for an incorrect classification, 𝑦
and 𝑓 (x) will have different signs, and the margin will be negative. The margin
can be viewed as a measure of certainty in a prediction, where data points with
small margins are in some sense (not necessarily Euclidean) close to the decision
boundary. The margin plays a similar role for binary classification as the prediction
error �̂� − 𝑦 does for regression.

We can now define loss functions for binary classification in terms of the margin,
by assigning a small loss to positive margins (correct classifications) and a large

2In general, the function 𝑓 (x) depends on the model parameters 𝜽 , but in the presentation below we
will drop this dependence from the notation for brevity.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
99

5 Learning Parametric Models

loss to negative margins (misclassifications). We can, for instance, re-formulate the
logistic loss (3.34) in terms of the margin as

𝐿 (𝑦 · 𝑓 (x)) = ln (1 + exp (−𝑦 · 𝑓 (x))) , (5.13)

where, in line with the discussion above, the linear logistic regression model
corresponds to 𝑓 (x) = 𝜃Tx. Analogously to the derivation of the logistic loss
in Chapter 3, this is just another way of writing the cross entropy (or negative
log-likelihood) loss (5.11), assuming that the probability of the positive class is
modelled according to (5.3). However, from an alternative point of view, we can
consider (5.13) as a generic margin-based loss, without linking it to the probabilistic
model (5.3). That is, we simply postulate a classifier according to (5.12) and learn
the parameters of 𝑓 (x) by minimising (5.13). This is, of course, equivalent to
logistic regression, except for the fact that we have seemingly lost the notion of a
conditional class probability estimate 𝑔(x) and only have a ‘hard’ prediction �̂�(x).
We will, however, recover the class probability estimate later when we discuss the
asymptotic minimiser of the logistic loss.

We can also re-formulate the misclassification loss in terms of the margin,

𝐿 (𝑦 · 𝑓 (x)) =
{

1 if 𝑦 · 𝑓 (x) < 0,
0 otherwise.

(5.14)

More important, however, is that the margin view allows us to easily come up with
other loss functions with possibly favourable properties. In principle, any decreasing
function is a candidate loss function. However, most loss functions used in practice
are also convex, which is useful when optimising the training loss numerically.

One example is the exponential loss, defined as

𝐿 (𝑦 · 𝑓 (x)) = exp(−𝑦 · 𝑓 (x)), (5.15)

which turns out to be a useful loss function when we derive the AdaBoost algorithm
in Chapter 7. The downside of the exponential loss is that it is not particularly robust
against outliers, due to its exponential growth for negative margins, compared to,
for example, the linear asymptotic growth of the logistic loss.3 We also have the
hinge loss, which we will use for support vector classification in Chapter 8:

𝐿 (𝑦 · 𝑓 (x)) =
{

1 − 𝑦 · 𝑓 (x) for 𝑦 · 𝑓 (x) ≤ 1,
0 otherwise.

(5.16)

As we will see in Chapter 8, the hinge loss has an attractive so-called support vector
property. However, a downside of the hinge loss is that it is not a strictly proper loss
function, which means that it is not possible to interpret the learnt classification

3For 𝑦 𝑓 (x) � 0, it holds that ln (1 + exp (−𝑦 𝑓 (x))) ≈ −𝑦 𝑓 (x).

100
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

Margin, 𝑦 · 𝑓 (x)

Lo
ss

Logistic loss
Exponential loss
Hinge loss
Squared hinge loss
Huberized squared hinge loss
Misclassification loss

Figure 5.2: Comparison of some common loss functions for classification, plotted as a
function of the margin.

model probabilistically when using this loss (we elaborate on this below). As a
remedy, one may instead consider the squared hinge loss

𝐿 (𝑦 · 𝑓 (x)) =
{
(1 − 𝑦 · 𝑓 (x))2 for 𝑦 · 𝑓 (x) ≤ 1,
0 otherwise,

(5.17)

which on the other hand is less robust than the hinge loss (quadratic instead of linear
growth). A more elaborate alternative is therefore the Huberised squared hinge loss

𝐿 (𝑦 · 𝑓 (x)) =

−4𝑦 · 𝑓 (x) for 𝑦 · 𝑓 (x) ≤ −1,
(1 − 𝑦 · 𝑓 (x))2 for − 1 ≤ 𝑦 · 𝑓 (x) ≤ 1,
0 otherwise,

(squared hinge loss)

(5.18)

whose name refers to its similarities to the Huber loss for regression, namely that
the quadratic function is replaced with a linear function for margins <− 1. The three
loss functions presented above are all particularly interesting for support vector
classification, due to the fact that they are all exactly 0 for margins >1.

We summarise this cascade of loss functions for binary classification in Figure 5.2,
which illustrates all these losses as a function of the margin.

When learning models for imbalanced or asymmetric problems, it is possible to
modify the loss function to account for imbalance or asymmetry. For example, to

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
101

5 Learning Parametric Models

reflect that not predicting 𝑦 = 1 correctly is a ‘𝐶 times more severe mistake’ than
not predicting 𝑦 = −1 correctly, the misclassification loss can be modified into

𝐿 (𝑦, �̂�) =

0 if �̂� = 𝑦,

1 if �̂� ≠ 𝑦 and 𝑦 = −1,
𝐶 if �̂� ≠ 𝑦 and 𝑦 = 1.

(5.19)

The other loss functions can be modified in a similar fashion. A similar effect can
also be achieved by, for this example, simply duplicating all positive training data
points 𝐶 times in the training data, instead of modifying the loss function.

We have already made some claims about robustness. Let us motivate them using
Figure 5.2. One characterisation of an outlier is as a data point on the wrong side
of and far away from the decision boundary. From a margin perspective, that is
equivalent to a large negative margin. The robustness of a loss function is therefore
tightly connected to the shape of the loss function for large negative margins. The
steeper the slope and heavier the penalisation of large negative margins, the more
sensitive it is to outliers. We can therefore tell from Figure 5.2 that the exponential
loss is expected to by sensitive to outliers, due to its exponential growth, whereas
the squared hinge loss is somewhat more robust with a quadratic growth instead.
However, even more robust are the Huberised squared hinge loss, the hinge loss,
and the logistic loss which all have an asymptotic behavior which is linear. Most
robust is the misclassification loss, but as already discussed, that loss has other
disadvantages.

Multiclass Classification

So far, we have only discussed the binary classification problem, with 𝑀 = 2.
The cross-entropy (equivalently, negative log-likelihood) loss is straightforward to
generalise to the multiclass problem, that is, 𝑀 > 2, as we did in Chapter 3 for
logistic regression. This is a useful property of the likelihood-based loss since it
allows us to systematically treat both binary and multiclass classification in the
same coherent framework.

Generalising the other loss functions discussed above requires a generalisation of
the margin to the multiclass problem. That is possible, but we do not elaborate on it
in this book. Instead we mention a pragmatic approach, which is to reformulate the
problem as several binary problems. This reformulation can be done using either a
one-versus-rest or one-versus-one scheme.

The one-versus-rest (or one-versus-all or binary relevance) idea is to train 𝑀
binary classifiers. Each classifier in this scheme is trained for predicting one class
against all the other classes. To make a prediction for a test data point, all 𝑀
classifiers are used, and the class which, for example, is predicted with the largest
margin is taken as the predicted class. This approach is a pragmatic solution, which
may turn out to work well for some problems.

102
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

The one-versus-one idea is instead to train one classifier for each pair of classes.
If there are 𝑀 classes in total, there are 1

2𝑀 (𝑀−1) such pairs. To make a prediction,
each classifier predicts either of its two classes, and the class which overall obtains
most ‘votes’ is chosen as the final prediction. The predicted margins can be used
to break a tie if that happens. Compared to one-versus-rest, the one-versus-one
approach has the disadvantage of involving 1

2𝑀 (𝑀−1) classifiers, instead of only 𝑀 .
On the other hand, each of these classifiers is trained on much smaller datasets (only
the data points that belong to either of the two classes), compared to one-versus-rest,
which uses the entire original training dataset for all 𝑀 classifiers.

Likelihood-Based Models and the Maximum Likelihood Approach

The maximum likelihood approach is a generic way of constructing a loss function
based on a statistical model of the observed data. In general, maximising the
data likelihood is equivalent to minimising a cost function based on the negative
log-likelihood loss,

𝐽 (𝜽) = −1
𝑛

𝑛∑︁
𝑖=1

ln 𝑝(𝑦𝑖 | x𝑖; 𝜽).

Hence, in all cases where we have a probabilistic model of the conditional distribution
𝑝(𝑦 | x), the negative log-likelihood is a plausible loss function. For classification
problems, this takes a particularly simple form since 𝑝(𝑦 | x) then corresponds
to a probability vector over the 𝑀 classes, and the negative log-likelihood is
then equivalent to the cross-entropy loss (3.44) (or (3.32) in the case of binary
classification).

Also, in the regression case there is a duality between certain common loss
functions and the maximum likelihood approach, as we have previously observed.
For instance, in a regression model with additive noise as in (5.1), the squared error
loss is equivalent to the negative log-likelihood if we assume a Gaussian noise
distribution, 𝜀 ∼ N (

0, 𝜎2
𝜀

)
. Similarly, we noted above that the absolute error loss

corresponds to an implicit assumption of Laplace distributed noise, 𝜀 ∼ L(0, 𝑏𝜀).4
This statistical perspective is one way to understand the fact that the absolute error
loss is more robust (less sensitive to outliers) than the squared error loss, since
the Laplace distribution has thicker tails compared to the Gaussian distribution.
The Laplace distribution therefore encodes sporadic large noise values (that is,
outliers) as more probable, compared to the Gaussian distribution.

Using the maximum likelihood approach, other assumptions about the noise or
insights into its distribution can be incorporated in a similar way in the regression
model (5.1). For instance, if we believe that the error is non-symmetric, in the sense
that the probability of observing a large positive error is larger than the probability
of observing a large negative error, then this can be modelled by a skewed noise

4This can be verified from the definition of the Laplace probability density function, which is an
exponential of the negative absolute deviation from the mean.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
103

5 Learning Parametric Models

distribution. Using the negative log-likelihood loss is then a systematic way of
incorporating this skewness into the training objective.

Relaxing the Gaussian assumption in (5.1) gives additional flexibility to the
model. However, the noise is still assumed to be additive and independent of the
input x. The real power of the likelihood perspective for designing a loss function
comes when these basic assumptions are dropped. For instance, in Section 3.4,
we introduced generalised linear models as a way to handle output variables with
specific properties, such as count data (that is, 𝑦 takes values in the set of natural
numbers 0, 1, 2, . . .). In such situations, to build a model we often start from a
specific form of the likelihood 𝑝(𝑦 | x), which is chosen to capture the key properties
of the data (for instance, having support only on the natural numbers). Hence, the
likelihood becomes an integral part of the model, and this approach therefore lends
itself naturally to training by maximum likelihood.

In generalised linear models (see Section 3.4), the likelihood is parameterised in
a very particular way, but when working with non-linear parametric models, this
is not strictly necessary. A more direct approach to (non-linear) likelihood-based
parametric modelling is therefore to

model the conditional distribution 𝑝(𝑦 | x; 𝜽) directly as a function parameterised
by 𝜽 .

More specifically, once we have assumed a certain form for the likelihood (such as
a Gaussian, a Poisson, or some other distribution), its shape will be controlled by
some parameters (such as the mean and the variance of the Gaussian, or the rate of
a Poisson distribution, not to be confused with 𝜽). The idea is then to construct a
parametric model f𝜽 (x), such that the output of this model is a vector of parameters
controlling the shape of the distribution 𝑝(𝑦 | x; 𝜽).

As an example, assume that we are working with unbounded real-valued outputs
and want to use a Gaussian likelihood, similarly to the regression model (5.2).
However, the nature of the data is such that the noise variance, that is the magnitude
of the errors that we expect to see, varies with the input x. By directly working with
the likelihood formulation, we can then hypothesise a model according to

𝑝(𝑦 | x; 𝜽) = N(𝑓𝜽 (x), exp(ℎ𝜽 (x))) ,

where 𝑓𝜽 and ℎ𝜽 are two arbitrary (linear or non-linear) real-valued regression
functions parameterised by 𝜽 (hence, following the notation above, f𝜽 (x) =
(𝑓𝜽 (x) ℎ𝜽 (x))T). The exponential function is used to ensure that the variance
is always positive without explicitly constraining the function ℎ𝜽 (x). The two
functions can be learned simultaneously by minimising the negative log-likelihood
over the training data. Note that in this case the problem does not simplify to a
squared error loss, despite the fact that the likelihood is Gaussian, since we need
to take the dependence on the variance into account. More precisely, the negative
log-likelihood loss becomes

104
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

𝐿 (𝑦, 𝜽) = − lnN(𝑓𝜽 (x), exp(ℎ𝜽 (x)))

∝ ℎ𝜽 (x) + (𝑦 − 𝑓𝜽 (x))2
exp(ℎ𝜽 (x)) + const.

Once the parameters have been learned, the resulting model is capable of predicting
a different mean and a different variance for the output 𝑦, depending on the value
of the input variable x.5

Other situations that can be modelled using a direct likelihood model in a similar
way include multimodality, quantisation, and truncated data. As long as the modeller
can come up with a reasonable likelihood – that is, a distribution that could have
generated the data under study – the negative log-likelihood loss can be used to
train the model in a systematic way.

Strictly Proper Loss Functions and Asymptotic Minimisers

As mentioned earlier, the asymptotic minimiser of a loss function is an important
theoretical concept for understanding its properties. The asymptotic minimiser is the
model which minimises the cost function when the number of training data points
𝑛→∞ (hence the name asymptotic). To formalise this, assume that the model is
expressed in terms of a function 𝑓 (x). As we have seen above, this captures not
only regression but also classification, through the margin concept. The asymptotic
minimiser 𝑓 ∗(x) of a loss function 𝐿 (𝑦, 𝑓 (x)) is then defined as the function which
minimises the expected loss:

𝑓 ∗(·) = arg min
𝑓
E[𝐿 (𝑦, 𝑓 (x))] . (5.20)

There are a couple of things to note about this expression. First, we stated above
that the asymptotic minimiser is obtained as the solution to the training objective
(5.4) as 𝑛 → ∞, but this has now been replaced by an expected value. This is
motivated by the law of large numbers stipulating that the cost function (5.4) will
converge to the expected loss as 𝑛→∞, and the latter is more convenient to analyse
mathematically. Note that the expected value is taken with respect to a ground truth
data generating probability distribution 𝑝(𝑦, x), analogously to how we reasoned
about a the new data error in Chapter 4. Second, when we talk about asymptotic
minimisers, it is typically assumed that the model class is flexible enough to contain
any function 𝑓 (x). Consequently, the minimisation in (5.20) is not with respect to a
finite dimensional model parameter 𝜽 but rather with respect to the function 𝑓 (x)
itself. The reason for this, rather abstract, definition is that we want to derive the
asymptotic minimiser as a property of the loss function itself, not of a particular
combination of loss function and model class.

The expected value above is with respect to both inputs x and outputs 𝑦. However,
by the law of total expectation, we can write E[𝐿 (𝑦, 𝑓 (x))] = E[E[𝐿 (𝑦, 𝑓 (x)) | x]],

5This property is referred to as heteroskedasticity (in contrast to the standard regression model (5.2)
which is homoskedastic – that is, it has the same output variance for all possible inputs).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
105

5 Learning Parametric Models

where the inner expectation is over 𝑦 (conditionally on x), and the outer expectation
is over x. Now, since 𝑓 (·) is free to be any function, minimising the total expectation
is equivalent to minimising the inner expectation point-wise for each value of x.
Therefore, we can replace (5.20) with

𝑓 ∗(x) = arg min
𝑓 (x)
E[𝐿 (𝑦, 𝑓 (x)) | x] , (5.21)

where the minimisation is now done independently for any fixed value of x.
By computing the asymptotic minimiser of a loss function, we obtain information

about the expected behaviour or properties of a model that is trained using this loss
function. Although the asymptotic minimiser is an idealised theoretical concept
(assuming infinite data and infinite flexibility), it reveals, in some sense, what the
training algorithm is striving to achieve when minimising a particular loss.

The concept is useful for understanding both regression and classification losses.
A few notable examples in the regression setting are the asymptotic minimisers
of the squared error loss and the absolute error loss, respectively. For the former,
the asymptotic minimiser can be shown to be equal to the conditional mean,
𝑓 ∗(x) = E[𝑦 | x]. That is, a regression model trained using squared error loss will
strive to predict 𝑦 according to its true conditional mean under the data generating
distribution 𝑝(𝑦, x) (although in practice this will be hampered by the limited
flexibility of the model class and the limited amount of training data). For the
absolute error loss, the asymptotic minimiser is given by the conditional median,
𝑓 ∗(x) = Median[𝑦 | x]. This is less sensitive to the tail probability of 𝑝(𝑦 | x)
than the conditional mean, providing yet another interpretation of the improved
robustness of the absolute error loss.

Related to the concept of asymptotic minimisers is the notion of a strictly
proper loss function. A loss function is said to be strictly proper6 if its asymptotic
minimiser is (i) unique and (ii) in one-to-one correspondence with the true conditional
distribution 𝑝(𝑦 | x). Put differently, for a strictly proper loss function, we can
express 𝑝(𝑦 | x) in terms of the asymptotic minimiser 𝑓 ∗(x). Such a loss function
will thus strive to recover a complete probabilistic characterisation of the true
input–output relationship.

This requires a probabilistic interpretation of the model, in the sense that we
can express 𝑝(𝑦 | x) in terms of the model 𝑓 (x), which is not always obvious.
One case which stands out in this respect is the maximum likelihood approach.
Indeed, training by maximum likelihood requires a likelihood-based model since
the corresponding loss is expressed directly in terms of the likelihood. As we have
discussed above, the negative log-likelihood loss is a very generic loss function (it
is applicable to regression, classification, and many other types of problems). We
can now complement this by the theoretical statement that

the negative-log likelihood loss is strictly proper.

6A loss function that is proper but not strictly proper is minimised by the true conditional distribution
𝑝(𝑦 | x), but the minimising argument is not unique.

106
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.2 Loss Functions and Likelihood-Based Models

Note that this applies to any type of problem where the negative log-likelihood loss
can be used. As noted above, the concept of a loss function being strictly proper is
related to its asymptotic minimiser, which in turn is derived under the assumption
of infinite flexibility and infinite data. Hence, what our claim above says is that
if the likelihood-based model is flexible enough to describe the true conditional
distribution 𝑝(𝑦 | x), then the optimal solution to the maximum likelihood problem
as 𝑛→∞ is to learn this true distribution.

Time to reflect 5.1 To express the expected negative log-likelihood loss
mathematically, we need to distinguish between the likelihood according
to the model, which we can denote by 𝑞(𝑦 | x) for the time being, and the
likelihood with respect to the true data generating distribution 𝑝(𝑦 | x). The
expected loss becomes

E𝑝 (𝑦 | x) [− ln 𝑞(𝑦 | x) | x] ,

which is referred to as the (conditional) cross-entropy of the distribution
𝑞(𝑦 | x) with respect to the distribution 𝑝(𝑦 | x) (which explains the alternative
name cross-entropy loss commonly used in classification).

What does our claim, that the negative log-likelihood loss is strictly proper,
imply regarding the cross entropy?

That negative log-likelihood is strictly proper should not come as a surprise since
it is tightly linked to the statistical properties of the data. What is perhaps less
obvious is that there are other loss functions that are also strictly proper, as we will
see next. To make the presentation below more concrete, we will focus on the case
of binary classification for the remainder of this section. In binary classification,
the conditional distribution 𝑝(𝑦 | x) takes a particularly simple form, since it is
completely characterised by a single number, namely the probability of the positive
class, 𝑝(𝑦 = 1 | x).

Returning to the margin-based loss functions discussed above, recall that any loss
function that encourages positive margins can be used to train a classifier, which
can then be used for making class predictions according to (5.12). However,

it is only when we use a strictly proper loss function that we can interpret
the resulting classification model 𝑔(x) as an estimate of the conditional class
probability 𝑝(𝑦 = 1 | x).

When choosing a loss function for classification, it is therefore instructive to
consider its asymptotic minimiser, since this will determine whether or not the loss
function is strictly proper. In turn, this will reveal whether or not it is sensible to
use the resulting model to reason about conditional class probabilities.

We proceed by stating the asymptotic minimisers for some of the loss functions
presented above. Deriving the asymptotic minimiser is most often a straightforward

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
107

5 Learning Parametric Models

calculation, but for brevity we do not include the derivations here. Starting with
the binary cross-entropy loss (5.11), its asymptotic minimiser can be shown to be
𝑔∗(x) = 𝑝(𝑦 = 1 | x). In other words, when 𝑛 → ∞, the loss function (5.11) is
uniquely minimised when 𝑔(x) is equal to the true conditional class probability.
This is in agreement with the discussion above, since the binary cross-entropy loss
is just another name for the negative log-likelihood.

Similarly, the asymptotic minimiser of the logistic loss (5.13) is 𝑓 ∗(x) =
ln 𝑝 (𝑦=1 | x)

1−𝑝 (𝑦=1 | x) . This is an invertible function of 𝑝(𝑦 = 1 | x) and hence the lo-
gistic loss is strictly proper. By inverting 𝑓 ∗(x), we obtain 𝑝(𝑦 = 1 | x) = exp 𝑓 ∗ (x)

1+exp 𝑓 ∗ (x) ,
which shows how conditional class probability predictions can be obtained from
𝑓 ∗(x). With the ‘margin formulation’ of logistic regression, we seemingly lost the
class probability predictions 𝑔(x). We have now recovered them. Again, this is not
surprising since the logistic loss is a special case of negative log-likelihood when
using a logistic regression model.

For the exponential loss (5.15), the asymptotic minimiser is 𝑓 ∗(x) = 1
2

ln 𝑝 (𝑦=1 | x)
1−𝑝 (𝑦=1 | x) , which is in fact the same expression as we got for the logistic loss

apart from a constant factor 1
2 . The exponential loss is therefore also strictly proper,

and 𝑓 ∗(x) can be inverted and used for predicting conditional class probabilities.
Turning to the hinge loss (5.16), the asymptotic minimiser is

𝑓 ∗(x) =
{

1 if 𝑝(𝑦 = 1 | x) > 0.5,
−1 if 𝑝(𝑦 = 1 | x) < 0.5.

This is a non-invertible transformation of 𝑝(𝑦 = 1 | x), which means that it is not
possible to recover 𝑝(𝑦 = 1 | x) from the asymptotic minimiser 𝑓 ∗(x). This implies
that a classifier learned using hinge loss (such as support vector classification,
Section 8.5) is not able to predict conditional class probabilities.

The squared hinge loss (5.17), on the other hand, is a strictly proper loss function,
since its asymptotic minimiser is 𝑓 ∗(x) = 2𝑝(𝑦 = 1 | x) − 1. This also holds for
the Huberised square hinge loss (5.18). Recalling our robustness discussion, we
see that by squaring the hinge loss, we make it strictly proper, but at the same time
we impact its robustness. However, the ‘Huberisation’ (replacing the quadratic
curve with a linear one for margins <−1) improves the robustness while keeping the
property of being strictly proper.

We have now seen that some (but not all) loss functions are strictly proper, meaning
they could potentially predict conditional class probabilities correctly. However,
this is only under the assumption that the model is sufficiently flexible that 𝑔(x)
or 𝑓 (x) can actually take the shape of the asymptotic minimiser. This is possibly
problematic; for instance, recall that 𝑓 (x) is a linear function in logistic regression,
whereas 𝑝(𝑦 = 1 | x) can be almost arbitrarily complicated in real world applications.
It is therefore not sufficient to use a strictly proper loss function in order to accurately
predict conditional class probabilities: our model also has to be flexible enough. This

108
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.3 Regularisation

discussion is also only valid in the limit as 𝑛→∞. However, in practice 𝑛 is always
finite, and we may ask how large 𝑛 has to be for a flexible enough model to at least
approximately learn the asymptotic minimiser? Unfortunately, we cannot give any
general numbers, but following the same principles as the overfitting discussion in
Chapter 4, the more flexible the model, the larger 𝑛 is required. If 𝑛 is not large enough,
the predicted conditional class probabilities tend to ‘overfit’ to the training data. In
summary, using a strictly proper loss function will encourage the training procedure
to learn a model that is faithful to the true statistical properties of the data, but in itself
it is not enough to guarantee that these properties are well described by the model.

In many practical applications, having access to reliable uncertainty estimates
regarding a model’s predictions is necessary for robust and well-informed decision
making. In such cases, it is thus important to validate the model, not only in terms
of accuracy or expected errors but also in terms of its statistical properties. One
approach is to evaluate the so-called calibration of the model, which is, however,
beyond the scope of this book.

5.3 Regularisation

We will now take a closer look at regularisation, which was briefly introduced in
Section 3.3 as a useful tool for avoiding overfitting if the model was too flexible,
such as a polynomial of high degree. We have also discussed thoroughly in
Chapter 4 the need for tuning the model flexibility, which effectively is the purpose
of regularisation. Finding the right level of flexibility, and thereby avoiding overfit,
is very important in practice.

The idea of regularisation in a parametric model is to ‘keep the parameters �̂�
small unless the data really convinces us otherwise’, or alternatively ‘if a model
with small values of the parameters �̂� fits the data almost as well as a model with
larger parameter values, the one with small parameter values should be preferred’.
There are, however, many different ways to implement this idea, and we distinguish
between explicit regularisation and implicit regularisation. We will first discuss
explicit regularisation, which amounts to modifying the cost function, and in
particular so-called 𝐿2 and 𝐿1 regularisation.

𝐿2 Regularisation

𝐿2 regularisation (also known as Tikhonov regularisation, ridge regression, and
weight decay) amounts to adding an extra penalty term ‖𝜽 ‖22 to the cost function.
Linear regression with squared error loss and 𝐿2 regularisation, as an example,
amounts to solving

�̂� = arg min
𝜽

1
𝑛
‖X𝜽 − y‖22 + 𝜆‖𝜽 ‖22. (5.22)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
109

5 Learning Parametric Models

By choosing the regularisation parameter 𝜆 ≥ 0, a trade-off between the original
cost function (fitting the training data as well as possible) and the regularisation
term (keeping the parameters �̂� close to zero) is made. In setting 𝜆 = 0 we recover
the original least squares problem (3.12), whereas 𝜆→∞ will force all parameters
�̂� to 0. A good choice of lambda in practice is usually neither of those extremes but
somewhere in between, and can be determined using cross-validation.

It is actually possible to derive a version of the normal equations for (5.22),
namely

(XTX + 𝑛𝜆I𝑝+1)�̂� = XTy, (5.23)

where I𝑝+1 is the identity matrix of size (𝑝 + 1) × (𝑝 + 1). For 𝜆 > 0, the matrix
XTX + 𝑛𝜆I𝑝+1 is always invertible, and we have the closed form solution

�̂� = (XTX + 𝑛𝜆I𝑝+1)−1XTy. (5.24)

This also reveals another reason for using regularisation in linear regression, namely
when XTX is not invertible. When XTX is not invertible, the ordinary normal
equations (3.13) have no unique solution �̂�, whereas the 𝐿2-regularised version
always has the unique solution (5.24) if 𝜆 > 0.

𝐿1 Regularisation

With 𝐿1 regularisation (also called LASSO, an abbreviation for Least Absolute
Shrinkage and Selection Operator), the penalty term ‖𝜽 ‖1 is added to the cost
function. Here ‖𝜽 ‖1 is the 1-norm or ‘taxicab norm’ ‖𝜽 ‖1 = |𝜃0 | + |𝜃1 | + · · · + |𝜃𝑝 |.
The 𝐿1 regularised cost function for linear regression (with squared error loss) then
becomes

�̂� = arg min
𝜽

1
𝑛
‖X𝜽 − y‖22 + 𝜆‖𝜽 ‖1. (5.25)

Contrary to linear regression with 𝐿2 regularisation (3.48), there is no closed-form
solution available for (5.25). However, as we will see in Section 5.4, it is possible
to design an efficient numerical optimisation algorithm for solving (5.25).

As for 𝐿2 regularisation, the regularisation parameter 𝜆 has to be chosen by the
user and has a similar meaning: 𝜆 = 0 gives the ordinary least squares solution
and 𝜆 → ∞ gives �̂� = 0. Between these extremes, however, 𝐿1 and 𝐿2 tend to
give different solutions. Whereas 𝐿2 regularisation pushes all parameters towards
small values (but not necessarily exactly zero), 𝐿1 tends to favour so-called sparse
solutions, where only a few of the parameters are non-zero, and the rest are exactly
zero. Thus, 𝐿1 regularisation can effectively ‘switch off’ some inputs (by setting
the corresponding parameter 𝜃𝑘 to zero), and it can therefore be used as an input (or
feature) selection method.

110
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.3 Regularisation

Example 5.2 Regularisation for car stopping distance

Consider again Example 2.2 with the car stopping distance regression problem. We
use the 10th order polynomial that was considered meaningless in Example 3.5 and
apply 𝐿2 and 𝐿1 regularisation to it in turn. With manually chosen 𝜆, we obtain the
models shown in Figure 5.3.

0 20 40
0

50

100

150

Speed (mph)

D
ist

an
ce

(fe
et

)

𝐿2 regularisation

0 20 40
0

50

100

150

Speed (mph)

𝐿1 regularisation

Fig.
5.3

Both models suffer less from overfitting than the non-regularised 10th order
polynomial in Example 3.5. The two models here are, however, not identical.
Whereas all parameters are relatively small but non-zero in the 𝐿2-regularised
model (left panel), only 4 (out of 11) parameters are non-zero in the 𝐿1-regularised
model (right panel). It is typical for 𝐿1 regularisation to give sparse models, where
some parameters are set exactly to zero.

General Explicit Regularisation

𝐿1 and 𝐿2 regularisation are two common examples of what we refer to as explicit
regularisation since they are both formulated as modifications of the cost function.
They suggest a general pattern on which explicit regularisation can be formulated:

�̂� = arg min
𝜽

𝐽 (𝜽; X, y)︸ ︷︷ ︸
(i)

+ 𝜆︸︷︷︸
(iii)

𝑅(𝜽)︸︷︷︸
(ii)

. (5.26)

This expression contains three important elements:

(i) the cost function, which encourages a good fit to the training data;
(ii) the regularisation term, which encourages small parameter values; and
(iii) the regularisation parameter 𝜆, which determines the trade-off between (i)

and (ii).

In this view, it is clear that explicit regularisation modifies the problem of fitting to
the training data (minimising 𝐸train) into something else, which hopefully minimises
𝐸new instead. The actual design of the regularisation term 𝑅(𝜽) can be done in many
ways. As a combination of the 𝐿1 and 𝐿2 terms, one option is 𝑅(𝜽) = ‖𝜽 ‖1 + ‖𝜽 ‖22,
which often is referred to as elastic net regularisation. Regardless of the exact

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
111

5 Learning Parametric Models

expression of the regularisation term, its purpose is to encourage small parameter
values and thereby decrease the flexibility of the model, which might improve the
performance and lower 𝐸new.

Implicit Regularisation

Any supervised machine learning method that is trained by minimising a cost
function can be regularised using (5.26). There are, however, alternative ways to
achieve a similar effect without explicitly modifying the cost function. One such
example of implicit regularisation is early stopping. Early stopping is applicable to
any method that is trained using iterative numerical optimisation, which is the topic
of the next section. It amounts to aborting the optimisation before it has reached
the minimum of the cost function. Although it may appear counter-intuitive to
prematurely abort an optimisation procedure, it has proven useful in practice, and
early stopping has been shown to be of practical importance to avoid overfitting
for some models, most notably deep learning (Chapter 6). Early stopping can
be implemented by setting aside some hold-out validation data and computing
𝐸hold-out as in (4.6) for 𝜽 (𝑡) after each iteration 𝑡 of the numerical optimisation.7
It is typically observed that 𝐸hold-out decreases initially but eventually reaches a
minimum and thereafter starts to increase, even though the cost function (by design
of the optimisation algorithm) decreases monotonically. The optimisation is then
aborted at the point when 𝐸hold-out reached its minimum, as we will illustrate in
Example 5.7.

Early stopping is a commonly used implicit regularisation technique, but not
the only one. Another technique with a regularising effect is dropout for neural
networks, which we discuss in Chapter 6, and data augmentation, which we discuss
in Chapter 11. For decision trees, the splitting criterion can be seen as a type of
implicit regularisation. It has also been argued that the randomness of the stochastic
gradient optimisation algorithm in itself also has the effect of implicit regularisation.

5.4 Parameter Optimisation

Many supervised machine learning methods, linear and logistic regression included,
involve one (or more) optimisation problems, such as (3.12), (3.35), or (5.25).
A machine learning engineer therefore needs to be familiar with the main strategies
for how to solve optimisation problems fast. Starting with the optimisation problems
from linear and logistic regression, we will introduce the ideas behind some of the
optimisation methods commonly used in supervised machine learning. This section
only gives a brief introduction to optimisation theory and, for example, we will only
discuss unconstrained optimisation problems.

Optimisation is about finding the minimum or maximum of an objective func-
tion. Since the maximisation problem can be formulated as minimisation of the

7More practically, to reduce the computational overhead of early stopping, we can compute the
validation error at regular intervals, for instance after each epoch.

112
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

negative objective function, we can limit ourselves to minimisation without any
loss of generality.

There are primarily two ways in which optimisation is used in machine learning:

1. For training a model by minimising the cost function with respect to the
model parameters 𝜽. In this case, the objective function corresponds to the
cost function 𝐽 (𝜽), and the optimisation variables correspond to the model
parameters.

2. For tuning hyperparameters, such as the regularisation parameter 𝜆. For
instance, by using a held-out validation dataset (see Chapter 4), we can select
𝜆 to minimise the hold-out validation error 𝐸hold-out. In this case, the objective
function is the validation error, and the optimisation variables correspond to
the hyperparameters.

In the presentation below, we will use 𝜽 to denote a general optimisation variable,
but keep in mind that optimisation can also be used for selecting hyperparameters.

An important class of objective functions are convex functions. Optimisation
is often easier to carry out for convex objective functions, and it is good practice
to take some time to consider whether a non-convex optimisation problem can be
re-formulated into a convex problem (which sometimes, but not always, is possible).
The most important property of a convex function, for this discussion, is that a
convex function has a unique minimum,8 and no other local minima. Examples of
convex functions are the cost functions for logistic regression, linear regression, and
𝐿1-regularised linear regression. An example of a non-convex function is the cost
function for a deep neural network. We illustrate this by Example 5.3.

Example 5.3 Examples of objective functions

Figure 5.4 contains examples of what an objective function can look like.

−5
0 −4 −2 0 2 4

0

1

2

𝜃1 𝜃2

O
bj

ec
tiv

e
fu

nc
tio

n

−5
0

−4 −2 0 2 4

1

𝜃1 𝜃2

O
bj

ec
tiv

e
fu

nc
tio

n

Fig.
5.4

Both examples are functions of a two-dimensional parameter vector 𝜽 = [𝜃1 𝜃2]T.
The left is convex and has a finite unique global minimum, whereas the right is
non-convex and has three local minima (of which only one is the global minimum).

8The minimum does, however, not have to be finite. The exponential function, for example, is convex
but attains its minimum at −∞. Convexity is a relatively strong property, and also non-convex
functions may have only one minimum.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
113

5 Learning Parametric Models

We will in the following examples illustrate these objective functions using contour
plots instead, as shown in Figure 5.5.

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.5

Time to reflect 5.2 After reading the rest of this book, return here and try
to fill out this table, summarising how optimisation is used by the different
methods.

What is optimisation
used for? What type of optimisation?

Method Training Hyper-
parameters

Nothing Closed-
form*

Grid
search

Gradient-
based

Stochastic
gradient
descent

𝑘-NN
Trees
Linear regression
Linear regression with L2-regularisation
Linear regression with L1-regularisation
Logistic regression
Deep learning
Random forests
AdaBoost
Gradient boosting
Gaussian processes
*including coordinate descent

Optimisation Using Closed-Form Expressions

For linear regression with squared error loss, training the model amounts to solving
the optimisation problem (3.12)

�̂� = arg min
𝜽

1
𝑛
‖X𝜽 − y‖22.

As we have discussed, and also proved in Appendix 3.A, the solution (3.14) to this
problem can (under the assumption that XTX is invertible) be derived analytically.
If we just take the time to efficiently implement (3.14) once, for example using
Cholesky or QR factorisation, we can use this every time we want to train a linear

114
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

regression model with squared error loss. Each time we use it, we know that we
have found the optimal solution in a computationally efficient way.

If we instead want to learn the 𝐿1-regularised version, we have to solve (5.25)

�̂� = arg min
𝜽

1
𝑛
‖X𝜽 − y‖22 + 𝜆‖𝜽 ‖1.

Unfortunately, this problem cannot be solved analytically. Instead we have to use
computer power to solve it, by constructing an iterative procedure to find the solution.
With a certain choice of such an optimisation algorithm, we can make use of some
analytical expressions along the way, which turns out to offer an efficient way of
solving it. Remember that 𝜽 is a vector containing 𝑝 + 1 parameters that we want to
learn from the training data. As it turns out, if we seek the minimum for only one of
these parameters, say 𝜃 𝑗 , while keeping the other parameters fixed, we can find the
optimum as

arg min
𝜃 𝑗

1
𝑛
‖X𝜽 − y‖22 + 𝜆‖𝜽 ‖1 = sign(𝑡) (|𝑡 | − 𝜆),

where 𝑡 =
𝑛∑︁
𝑖=1

𝑥𝑖 𝑗
©«
𝑦𝑖 −

∑︁
𝑘≠ 𝑗

𝑥𝑖𝑘𝜃𝑘
ª®¬
. (5.27)

It turns out that making repeated ‘sweeps’ through the vector 𝜽 and updating one
parameter at a time according to (5.27) is a good way to solve (5.25). This type of
algorithm, where we update one parameter at a time, is referred to as coordinate
descent, and we illustrate it in Example 5.4.

It can be shown that the cost function in (5.25) is convex. Convexity alone is not
sufficient to guarantee that coordinate descent will find its (global) minimum, but
for the 𝐿1-regularised cost function (5.25), it can be shown that coordinate descent
actually finds the (global) minimum. In practice we know that we have found the
global minimum when no parameters have changed during a full ‘sweep’ of the
parameter vector.

It turns out that coordinate descent is a very efficient method for 𝐿1-regularised
linear regression (5.25). The keys are that (i) (5.27) exists and is cheap to compute,
and (ii) many updates will simply set 𝜃 𝑗 = 0 due to the sparsity of the optimal �̂�.
This makes the algorithm fast. For most machine learning optimisation problems,
however, it cannot be said that coordinate descent is the preferred method. We will
now have a look at some more general families of optimisation methods that are
widely used in machine learning.

Example 5.4 Coordinate descent

We apply coordinate descent to the objective functions from Example 5.3 and show
the result in Figure 5.6. For coordinate descent to be an efficient alternative in
practice, closed-form solutions for updating one parameter at a time, similar to
(5.27), have to be available.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
115

5 Learning Parametric Models

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.6

Figure 5.6 shows how the parameters are updated in the coordinate descent algorithm,
for two different initial parameter vectors (blue and green trajectory, respectively).
It is clear from the figure that only one parameter is updated each time, which
gives the trajectory a characteristic shape. The obtained minimum is marked with a
yellow dot. Note how the different initialisations lead to different (local) minima in
the non-convex case (right panel).

Gradient Descent

In many situations, we cannot do closed-form manipulations, but we do have
access to the value of the objective function as well as its derivative (or gradient).
Sometimes we even have access to the second derivative (the Hessian). In those
situations, it is often a good idea to use a gradient descent method, which we will
introduce now, or even Newton’s method, which we will discuss later.

Gradient descent can be used for learning parameter vectors 𝜽 of high dimension
when the objective function 𝐽 (𝜽) is simple enough such that its gradient is possible
to compute. Let us therefore consider the parameter learning problem

�̂� = arg min
𝜽

𝐽 (𝜽) (5.28)

(even though gradient descent can potentially be used for hyperparameters as well).
We will assume that the gradient of the cost function ∇𝜽𝐽 (𝜽) exists for all 𝜽 . As an
example, the gradient of the cost function for logistic regression (3.34) is9

∇𝜽𝐽 (𝜽) = −1
𝑛

𝑛∑︁
𝑖=1

(
1

1 + 𝑒𝑦𝑖𝜽Tx𝑖

)
𝑦𝑖x𝑖 . (5.29)

Note that ∇𝜽𝐽 (𝜽) is a vector of the same dimension as 𝜽, which describes the
direction in which 𝐽 (𝜽) increases. Consequently, and more useful for us, −∇𝜽𝐽 (𝜽)

9This assumption is primarily made for the theoretical discussion. In practice, there are successful
examples of gradient descent being applied to objective functions not differentiable everywhere,
such as neural networks with ReLu activation functions (Chapter 6).

116
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

describes the direction in which 𝐽 (𝜽) decreases. That is, if we take a small
step in the direction of the negative gradient, this will reduce the value of the
cost function,

𝐽
(
𝜽 − 𝛾∇𝜽𝐽 (𝜽)

) ≤ 𝐽
(
𝜽
)

(5.30)

for some (possibly very small) 𝛾 > 0. If 𝐽 (𝜽) is convex, the inequality in (5.30) is
strict except at the minimum (where ∇𝜽𝐽 (𝜽) is zero). This suggests that if we have
𝜽 (𝑡) and want to select 𝜽 (𝑡+1) such that 𝐽 (𝜽 (𝑡+1)) ≤ 𝐽 (𝜽 (𝑡)), we should

update 𝜽 (𝑡+1) = 𝜽 (𝑡) − 𝛾∇𝜽𝐽 (𝜽 (𝑡)) (5.31)

with some positive 𝛾 > 0. Repeating (5.31) gives the gradient descent algorithm,
Algorithm 5.1.

Algorithm 5.1: Gradient descent
Input: Objective function 𝐽 (𝜽), initial 𝜽 (0) , learning rate 𝛾
Result: �̂�

1 Set 𝑡 ← 0
2 while ‖𝜽 (𝑡) − 𝜽 (𝑡−1) ‖ not small enough do
3 Update 𝜽 (𝑡+1) ← 𝜽 (𝑡) − 𝛾∇𝜽𝐽 (𝜽 (𝑡))
4 Update 𝑡 ← 𝑡 + 1
5 end
6 return �̂� ← 𝜽 (𝑡−1)

In practice we do not know 𝛾, which determines how big the 𝜽-step is at each
iteration. It is possible to formulate the selection of 𝛾 as an internal optimisation
problem that is solved at each iteration, a so-called line-search problem. This will
result in a possibly different value for 𝛾 at each iteration of the algorithm. Here we
will consider the simpler solution where we leave the choice of 𝛾 to the user, or
more specifically view it as a hyperparameter.10 In such cases, 𝛾 is often referred
to as the learning rate or step-size. Note that the gradient ∇𝜽𝐽 (𝜽) will typically
decrease and eventually attain 0 at a stationary point (possibly, but not necessarily, a
minimum), so Algorithm 5.1 may converge if 𝛾 is kept constant. This is in contrast
to what we will discuss when we introduce the stochastic gradient algorithm.

The choice of learning rate 𝛾 is important. Some typical situations with too small,
too large and a good choice of learning rate are shown in Figure 5.7. With the
intuition from these figures, we advise monitoring 𝐽 (𝜽 (𝑡)) during the optimisation,
and to

10When viewed as a hyperparmeter, we can also optimise 𝛾, for instance by using cross-validation,
as discussed above. However, this is an ‘external’ optimisation problem, contrary to line-search
which is an ‘internal’ optimisation problem.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
117

5 Learning Parametric Models

𝜃

𝐽
(𝜃
)

(a) Low learning rate 𝛾 = 0.05

𝜃

(b) High learning rate 𝛾 = 1.2

𝜃

(c) Good learning rate 𝛾 = 0.3

Figure 5.7: Optimisation using gradient descent of a cost function 𝐽 (𝜃) where 𝜃 is a
scalar parameter. In the different subfigures we use a too low learning rate (a), a too high
learning rate (b), and a good learning rate (c). Remember that a good value of 𝛾 is very
much related to the shape of the cost function; 𝛾 = 0.3 might be too small (or large) for a
different 𝐽 (𝜃).

• decrease the learning rate 𝛾 if the cost function values 𝐽 (𝜃 (𝑡)) are getting
worse or oscillate widely (as in Figure 5.7b);

• increase the learning rate 𝛾 if the cost function values 𝐽 (𝜃 (𝑡)) are fairly
constant and only slowly decreasing (as in Figure 5.7a).

No general convergence guarantees can be given for gradient descent, basically
because a bad learning rate 𝛾 may break the method. However, with the ‘right’
choice of 𝛾, the value of 𝐽 (𝜽) will decrease for each iteration (as suggested by (5.30))
until a point with zero gradient is found – that is, a stationary point. A stationary
point is, however, not necessarily a minimum but can also be a maximum or a
saddle-point of the objective function. In practice one typically monitors the value
of 𝐽 (𝜽) and terminates the algorithm when it seems not to be decreasing anymore,
and hope it has arrived at a minimum.

In non-convex problems with multiple local minima, we cannot expect gradient
descent to always find the global minimum. The initialisation is usually critical
for determining which minimum (or stationary point) is found, as illustrated by
Example 5.5. It can, therefore, be a good practice (if time and computational
resources permit) to run the optimisation multiple times with different initialisations.
For computationally heavy non-convex problems, such as training a deep neural
network (Chapter 6), when we cannot afford to re-run the training, we usually
employ method-specific heuristics and tricks to find a good initialisation point.

For convex problems, there is only one stationary point, which also is the global
minimum. Hence, the initialisation for a convex problem can be done arbitrarily.
However, by warm-starting the optimisation with a good initial guess, we may still
save valuable computational time. Sometimes, such as when doing 𝑘-fold cross

118
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

validation (Chapter 4), we have to train 𝑘 models on similar (but not identical)
datasets. In situations like this, we can typically make use of the situation by
initialising Algorithm 5.1 with the parameters learned for the previous model.

For training a logistic regression model (3.35), gradient descent can be used.
Since its cost function is convex, we know that once the gradient descent has
converged to a minimum, it has reached the global minimum and we are done.
For logistic regression there are, however, more advanced alternatives that usually
perform better. We discuss these next.

Example 5.5 Gradient descent

We first consider the convex objective function from Example 5.3 and apply gradient
descent to it with a seemingly reasonable learning rate. We show the result in
Figure 5.8. Note that each step is perpendicular to the level curves at the point
where it starts, which is a property of the gradient. As expected, we find the (global)
minimum with both of the two different initialisations.

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.8

For the non-convex objective function from Example 5.3, we apply gradi-
ent descent with two different learning rates and show the result in Figure 5.9. In
the left plot, the learning rate seems well chosen and the optimisation converges
nicely, albeit to different minima depending on the initialisation. Note that it could
have converged also to one of the saddle points between the different minima. In the
right plot, the learning rate is too big, and the procedure does not seem to converge.

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.9

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
119

5 Learning Parametric Models

Second Order Gradient Methods

We can think of gradient descent as approximating 𝐽 (𝜽) with a first order Taylor
expansion around 𝜽 (𝑡) , that is, a (hyper-)plane. The next parameter 𝜽 (𝑡+1) is selected
by taking a step in the steepest direction of the (hyper-)plane. Let us now see what
happen if we instead use a second order Taylor expansion,

𝐽 (𝜽 + v) ≈ 𝐽 (𝜽) + vT [∇𝜽𝐽 (𝜽)] + 1
2

vT [∇2
𝜽𝐽 (𝜽)]v︸ ︷︷ ︸

,𝑠 (𝜽,v)

, (5.32)

where v is a vector of the same dimension as 𝜽 . This expression contains not only
the gradient of the cost function ∇𝜽𝐽 (𝜽) but also the Hessian matrix of the cost
function ∇2

𝜽𝐽 (𝜽). Remember that we are searching for the minimum of 𝐽 (𝜽). We
will compute this by iteratively minimising the second order approximation 𝑠(𝜽 , v).
If the Hessian ∇2

𝜽𝐽 (𝜽) is positive definite, then the minimum of 𝑠(𝜽 , v) with respect
to v is obtained where the derivative of 𝑠(𝜽 , v) is zero:

𝜕

𝜕v 𝑠(𝜽 , v) = ∇𝜽𝐽 (𝜽) + [∇
2
𝜽𝐽 (𝜽)]v = 0⇔ v = −[∇2

𝜽𝐽 (𝜽)]−1 [∇𝜽𝐽 (𝜽)] . (5.33)

This suggests to update

𝜽 (𝑡+1) = 𝜽 (𝑡) − [∇2
𝜽𝐽 (𝜽 (𝑡))]−1 [∇𝜽𝐽 (𝜽 (𝑡))], (5.34)

which is Netwton’s method for minimisation. Unfortunately, no general convergence
guarantees can be given for Newton’s method either. For certain cases, Newton’s
method can be much faster than gradient descent. In fact, if the cost function 𝐽 (𝜽) is
a quadratic function in 𝜽 , then (5.32) is exact, and Newton’s method (5.34) will find
the optimum in only one iteration! Quadratic objective functions are, however, rare
in machine learning.11 It is not even guaranteed that the Hessian ∇2

𝜽𝐽 (𝜽) is always
positive definite in practice, which may result in rather strange parameter updates
in (5.34). To still make use of the potentially valuable second order information
but at the same time also have a robust and practically useful algorithm, we have to
introduce some modification of Newton’s method. There are multiple options, and
we will look at so-called trust regions.

We derived Newton’s method using the second order Taylor expansion (5.32)
as a model for how 𝐽 (𝜽) behaves around 𝜽 (𝑡) . We should perhaps not trust the
Taylor expansion to be a good model for all values of 𝜽 but only for those in the
vicinity of 𝜽 (𝑡) . One natural restriction is, therefore, to trust the second order Taylor

11For regression, we often use the squared error loss 𝐿 (𝑦, �̂�) = (�̂� − 𝑦)2, which is a quadratic function
in �̂�. That does not imply that 𝐽 (𝜽) (the objective function) is necessarily a quadratic function in
𝜽, since �̂� can depend non-linearly on 𝜽. For linear regression with squared loss, however, the
dependence is linear, and the cost function is indeed quadratic. This is why we can compute an
explicit solution using the normal equations, which is of course the same solution that we would
obtain after one iteration of Newton’s method applied to this problem.

120
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

expansion (5.32) only within a ball of radius 𝐷 around 𝜽 (𝑡) , which we refer to as
our trust region. This suggests that we could make a Newton update (5.34) of the
parameters, unless the step is longer than 𝐷, in which case we downscale the step to
never leave our trust region. In the next iteration, the trust region is moved to be
centered around the updated 𝜽 (𝑡+1) , and another step is taken from there. We can
express this as

update 𝜽 (𝑡+1) = 𝜽 (𝑡) − 𝜂[∇2
𝜽𝐽 (𝜽 (𝑡))]−1 [∇𝜽𝐽 (𝜽 (𝑡))], (5.35)

where 𝜂 ≤ 1 is chosen as large as possible such that ‖𝜽 (𝑡+1) − 𝜽 (𝑡) ‖ ≤ 𝐷. The radius
of the trust region 𝐷 can be updated and adapted as the optimisation proceeds, but
for simplicity we will consider 𝐷 to be a user choice (much like the learning rate for
gradient descent). We summarise this as Algorithm 5.2 and look at it in Example 5.6.
The trust region Newton method, with a certain set of rules on how to update 𝐷, is ac-
tually one of the methods commonly used for training logistic regression in practice.

Algorithm 5.2: Trust region Newton’s method
Input: Objective function 𝐽 (𝜽), initial 𝜽 (0) , trust region radius 𝐷
Result: �̂�

1 Set 𝑡 ← 0
2 while ‖𝜽 (𝑡) − 𝜽 (𝑡−1) ‖ not small enough do
3 Compute v← [∇2

𝜽𝐽 (𝜽 (𝑡))]−1 [∇𝜽𝐽 (𝜽 (𝑡))]
4 Compute 𝜂← 𝐷

max(‖v‖,𝐷)
5 Update 𝜽 (𝑡+1) ← 𝜽 (𝑡) − 𝜂v
6 Update 𝑡 ← 𝑡 + 1
7 end
8 return �̂� ← 𝜽 (𝑡−1)

It can be computationally expensive or even impossible to compute the inverse of
the Hessian matrix [∇2

𝜽𝐽 (𝜽 (𝑡))]−1. To this end, there is an entire class of methods
called quasi-Newton methods that all use different ways to approximate the inverse of
the Hessian matrix [∇2

𝜽𝐽 (𝜽)]−1 in (5.34). This class includes, among others, the Broy-
den method and the BFGS method (an abbreviation of Broyden, Fletcher, Goldfarb,
and Shanno). A further approximation of the latter, called limited-memory BFGS or
L-BFGS, has proven to be another good choice for the logistic regression problem.

Example 5.6 Newton’s method

We first apply Newton’s method to the cost functions from Example 5.3 and show
the result in Figure 5.10. Since the convex cost function (left) also happens to
be close to a quadratic function, Newton’s method works well and finds, for both
initialisations, the minimum in only two iterations. For the non-convex problem
(right), Newton’s method diverges for both initialisations, since the second order

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
121

5 Learning Parametric Models

Taylor expansion (5.32) is a poor approximation of this function and leads the
method astray.

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.10

We also apply the trust region Newton’s method to both problems and show the
result in Figure 5.11. Note that the first step direction is identical to the non-truncated
version above, but the steps are now limited to stay within the trust region (here a
circle of radius 2). This prevents the severe divergence problems for the non-convex
case, and all cases converge nicely. Indeed, the convex case (left) requires more
iterations than for the non-truncated version above, but that is a price we have to pay
in order to have a robust method which also works for the non-convex case shown
to the right.

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.11

Before we end this section, we will have a look at an example of early stopping for
logistic regression when using a Newton-type of method. (It can in fact be shown
that using early stopping when solving linear regression (with squared error loss)
with gradient descent is equivalent to 𝐿2 regularisation.12) Besides completing the
discussion on early stopping from Section 5.3, this example also serves as a good
reminder that it is actually not always the global optimum which is the goal when
we use optimisation in machine learning.

12See, for example, Goodfellow, Bengio, et al. (2016, Section 7.8).

122
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.4 Parameter Optimisation

Example 5.7 Early stopping with logistic regression for the music
classification example

We consider again the music classification problem from Example 2.1. We apply
multi-class logistic regression and, to exaggerate the point of this example, we
apply a 20 degree polynomial input transformation. The polynomial transformation
means that instead of having 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 within the logistic regression model,
we now have 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥

2
1 + 𝜃4𝑥1𝑥2 + 𝜃5𝑥

2
2 + · · · + 𝜃229𝑥1𝑥

19
2 + 𝜃230𝑥

20
2 .

Such a setup with 231 parameters and a rather limited amount of data will most
likely lead to overfitting if no regularisation is used.

Logistic regression is learned using a Newton-type numerical optimisation
algorithm (Section 5.4). We can therefore apply early stopping to it. For this
purpose we set aside some hold-out validation data and monitor how 𝐸hold-out (with
misclassification error) evolves as the numerical optimisation proceeds.

10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

Iteration of optimisation algorithm (𝑡)

𝐸
ho

ld
-o

ut

Fig.
5.12

As seen in Figure 5.12, 𝐸hold-out reaches a minimum for 𝑡 = 12 and seems to increase
thereafter. We do, however, know that the cost function, and thereby probably also
𝐸train, decreases monotonically as 𝑡 increases. The picture, therefore, is that the
model suffers from overfitting as 𝑡 becomes large. The best model (in terms of
𝐸hold-out and, hopefully, in the end also 𝐸new) is for this case found after a only a
few initial runs of the optimisation, long before it has reached the minimum of the
cost function. To illustrate what is happening, we plot in Figure 5.13 the decision
boundaries after 𝑡 = 1, 12, 75, and 10 000 iterations, respectively.

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

1 iteration

5 6 7
0

0.5

1

Length (ln s)

12 iterations

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

75 iterations

5 6 7
0

0.5

1

Length (ln s)

10 000 iterations

Fig.
5.13

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
123

5 Learning Parametric Models

It is clear that the shape of the decision boundaries becomes more complicated
as 𝑡 increases, and the number of iterations 𝑡 can therefore, to some extent, be
understood as a way to control the model flexibility. This example is indeed
somewhat exaggerated, but the same effect can be seen in particular when training
deep neural networks (Chapter 6).

5.5 Optimisation with Large Datasets

In machine learning, the training data may have 𝑛 = millions (or more) of data
points. Computing, for example, the gradient of the cost function

∇𝜽𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1
∇𝜽𝐿 (x𝑖 , 𝑦𝑖 , 𝜽) (5.36)

thus can involve summing a million terms. Besides taking lot of time to sum, it can
also be an issue to keep all data points in the computer memory at the same time.
However, with that many data points, many of them are probably relatively similar,
and in practice we might not need to consider all of them every time: looking at
only a subset of them might give sufficient information. This is a general idea called
subsampling, and we will have a closer look at how subsampling can be combined
with gradient descent into a very useful optimisation method called stochastic
gradient descent. It is, however, also possible to combine the subsampling idea with
other methods.

Stochastic Gradient Descent

With very large 𝑛, we can expect the gradient computed only for the first half of the
dataset ∇𝜽𝐽 (𝜽) ≈

∑𝑛/2
𝑖=1 ∇𝜽𝐿 (x𝑖 , y𝑖 , 𝜽) to be almost identical to the gradient based

on the second half of the dataset ∇𝜽𝐽 (𝜽) ≈
∑𝑛

𝑖=𝑛/2+1 ∇𝜽𝐿 (x𝑖 , y𝑖 , 𝜽). Consequently,
it might be a waste of time to compute the gradient based on the whole training
dataset at each iteration of gradient descent. Instead, we could compute the gradient
based on the first half of the training dataset, update the parameters according to the
gradient descent method Algorithm 5.1, and then compute the gradient for the new
parameters based on the second half of the training data:

𝜽 (𝑡+1) = 𝜽 (𝑡) − 𝛾 1
𝑛/2

𝑛
2∑︁

𝑖=1
∇𝜽𝐿 (x𝑖 , y𝑖 , 𝜽 (𝑡)), (5.37a)

𝜽 (𝑡+2) = 𝜽 (𝑡+1) − 𝛾 1
𝑛/2

𝑛∑︁
𝑖= 𝑛

2 +1
∇𝜽𝐿 (x𝑖 , y𝑖 , 𝜽 (𝑡+1)). (5.37b)

In other words, we use only a subsample of the training data when we compute
the gradient. In this way we still make use of all the training data, but it is split

124
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.5 Optimisation with Large Datasets

into two consecutive parameter updates. Hence, (5.37) requires roughly half the
computational time compared to two parameter updates of normal gradient descent.
This computational saving illustrates the benefit of the subsampling idea.

We can extend on this idea and consider subsampling with even fewer data points
used in each gradient computation. The extreme version of subsampling would be
to use only one single data point each time we compute the gradient. In practice
it is most common to do something in between. We call a small subsample of
data a mini-batch, which typically can contain 𝑛𝑏 = 10, 𝑛𝑏 = 100, or 𝑛𝑏 = 1 000
data points. One complete pass through the training data is called an epoch, and
consequently consists of 𝑛/𝑛𝑏 iterations.

When using mini-batches it is important to ensure that the different mini-batches
are balanced and representative for the whole dataset. For example, if we have a
big training dataset with a few different output classes, and the dataset is sorted
with respect to the output, the mini-batch with the first 𝑛𝑏 data points would only
include one class and hence not give a good approximation of the gradient for the
full dataset. For this reason, the mini-batches should be formed randomly. One
implementation of this is to first randomly shuffle the training data, and thereafter
divide it into mini-batches in an ordered manner. When we have completed one
epoch, we do another random reshuffling of the training data and do another pass
through the dataset. We summarise gradient descent with mini-batches, often called
stochastic gradient descent, as Algorithm 5.3.

Stochastic gradient descent is widely used in machine learning, and there are
many extensions tailored to different methods. For training deep neural networks

Algorithm 5.3: Stochastic gradient descent
Input: Objective function 𝐽 (𝜽) = 1

𝑛

∑𝑛
𝑖=1 𝐿 (x𝑖 , 𝑦𝑖 , 𝜽), initial 𝜽 (0) , learning

rate 𝛾 (𝑡)

Result: �̂�
1 Set 𝑡 ← 0
2 while Convergence criteria not met do
3 for 𝑖 = 1, 2, . . . , 𝐸 do
4 Randomly shuffle the training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1
5 for 𝑗 = 1, 2, . . . , 𝑛

𝑛𝑏
do

6 Approximate the gradient using the mini-batch
{(x𝑖 , y𝑖)} 𝑗𝑛𝑏𝑖=(𝑗−1)𝑛𝑏+1, d̂(𝑡) = 1

𝑛𝑏

∑ 𝑗𝑛𝑏
𝑖=(𝑗−1)𝑛𝑏+1 ∇𝜽𝐿 (x𝑖 , 𝑦𝑖 , 𝜽

(𝑡)).
7 Update 𝜽 (𝑡+1) ← 𝜽 (𝑡) − 𝛾 (𝑡) d̂(𝑡)
8 Update 𝑡 ← 𝑡 + 1
9 end

10 end
11 end
12 return �̂� ← 𝜽 (𝑡−1)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
125

5 Learning Parametric Models

(Chapter 6), some commonly used methods include automatic adaption of the
learning rate and an idea called momentum to counteract the randomness caused
by subsampling. The AdaGrad (short for adaptive gradient), RMSProp (short for
root mean square propagation), and Adam (short for adaptive moments) methods
are such examples. For logistic regression in the ‘big data’ setting, the stochastic
average gradient (SAG) method, which averages over all previous gradient estimates,
has proven useful, to mention but a few.

Learning Rate and Convergence for Stochastic
Gradient Descent

Standard gradient descent converges if the learning rate is wisely chosen and constant,
since the gradient itself is zero at the minimum (or any other stationary point). For
stochastic gradient descent, on the other hand, we cannot obtain convergence with a
constant learning rate. The reason is that we only use an estimate of the true gradient,
and this estimate will not necessarily be zero at the minimum of the objective
function, but there might still be a considerable amount of ‘noise’ in the gradient
estimate due to the subsampling. As a consequence, the stochastic gradient descent
algorithm with a constant learning rate will not converge towards a point but will
continue to ‘wander around’, somewhat randomly. For the algorithm to work
properly, we also need the gradient estimate to be unbiased. The intuitive reason
is that the unbiased gradient ensures that the algorithm will on average step in the
right direction in its search for the optimum.

By not using a constant learning rate but instead decreasing it gradually towards
zero, the parameter updates will be smaller and smaller, and eventually converge.
We hence start at 𝑡 = 0 with a fairly high learning rate 𝛾 (𝑡) (meaning that we take
big steps), and then decay 𝛾 (𝑡) as 𝑡 increases. Under certain regularity conditions of
the cost function and with a learning rate fulfilling the Robbins–Monro conditions∑∞

𝑡=0 𝛾
(𝑡) = ∞ and

∑∞
𝑡=0(𝛾 (𝑡))2 < ∞, the stochastic gradient descent algorithm can

be shown to almost surely converge to a local minimum. The Robbins–Monro
conditions are, for example, fulfilled if using 𝛾 (𝑡) = 1

𝑡𝛼 , 𝛼 ∈ (0.5, 1]. For many
machine learning problems, however, it has been found that better performance is
often obtained in practice by not letting 𝛾 (𝑡) → 0 but to cap it at some small value
𝛾min > 0. This will cause stochastic gradient descent not to exactly converge, and
the Robbins–Monro conditions will not be fulfilled, but the algorithm will in fact
walk around indefinitely (or until the algorithm is aborted by the user). For practical
purposes, this seemingly undesirable property does not usually cause any major issue
if 𝛾min is small enough, and one heuristic for setting the learning rate in practice is

𝛾 (𝑡) = 𝛾min + (𝛾max − 𝛾min)𝑒−
𝑡
𝜏 . (5.38)

Now the learning rate 𝛾 (𝑡) starts at 𝛾max and goes to 𝛾min as 𝑡 →∞. How to pick the
parameters 𝛾min, 𝛾max, and 𝜏 is more art than science. As a rule of thumb, 𝛾min can
be chosen approximately as 1% of 𝛾max. The parameter 𝜏 depends on the size of the

126
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.5 Optimisation with Large Datasets

dataset and the complexity of the problem, but it should be chosen such that multiple
epochs have passed before we reach 𝛾min. The strategy for picking 𝛾max can be
chosen by monitoring the cost function as for standard gradient descent in Figure 5.7.

Example 5.8 Stochastic gradient descent

We apply the stochastic gradient descent method to the objective functions from
Example 5.3. For the convex function in Figure 5.14, the choice of learning rate is
not very crucial. Note, however, that the algorithm does not converge as nicely as,
for example, gradient descent, due to the ‘noise’ in the gradient estimate caused by
the subsampling. This is the price we have to pay for the substantial computational
savings offered by the subsampling.

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.14

For the objective function with multiple local minima, we apply stochastic
gradient descent with two decaying learning rates but with different initial 𝛾 (0) in
Figure 5.15. With a smaller learning rate, left, stochastic gradient descent converges
to the closest minima, whereas a larger learning rate causes it to initially take larger
steps, and it does not therefore necessarily converge to the closest minimum (right).

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.15

Stochastic Second Order Gradient Methods

The idea of improving the stochastic gradient method by exploiting second or-
der information is natural in settings involving ill-conditioning and significant
non-linearity. At the same time, this will add complexity and computational time to
the algorithm, which needs to be traded off in the design of these algorithms.

A popular and rather natural strand of algorithms is those falling under the name

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
127

5 Learning Parametric Models

stochastic quasi-Newton methods. As mentioned above, the idea underlying the
deterministic quasi-Newton methods is to compute an approximation of the Hessian
using information in the gradients. For large-scale problems, we make use of a
receding history of gradients. These ideas can also be employed in the stochastic
setting, albeit with new algorithms as the result.

Adaptive Methods

The idea of using gradients from earlier steps is also exploited within the adaptive
methods. By considering different ways of combining the gradients from earlier
steps into suitable learning rates

𝛾𝑡 = 𝛾(∇𝐽𝑡 ,∇𝐽𝑡−1, . . .∇𝐽0) (5.39)

and search directions

𝑑𝑡 = 𝑑 (∇𝐽𝑡 ,∇𝐽𝑡−1, . . .∇𝐽0), (5.40)

we obtain different members of this family of methods. In the basic stochastic
gradient algorithms, 𝑑𝑡 only depends on the current gradient ∇𝐽𝑡 . The resulting
update rule for the adaptive stochastic gradient methods is

𝜃 (𝑡+1) = 𝜃 (𝑡) − 𝛾𝑡𝑑𝑡 . (5.41)

The most popular member of this class of methods makes use of an exponential
moving average, where recent gradients have higher weights than older gradients.
Let 𝛽1 < 1 and 𝛽2 < 1 denote the exponential weights for the search direction
and the learning rate, respectively. The ADAM optimiser then updates the search
direction and the learning rate according to

𝑑𝑡 = (1 − 𝛽1)
𝑡∑︁

𝑖=1
𝛽𝑡−𝑖1 ∇𝐽𝑖 , (5.42a)

𝛾𝑡 =
𝜂√
𝑡

(
(1 − 𝛽2)diag

(
𝑡∑︁

𝑖=1
𝛽𝑡−𝑖2 ‖∇𝐽𝑖 ‖2

))1/2
. (5.42b)

Both of the tuning parameters 𝛽1 and 𝛽2 are typically set to be close to 1, and
common values are 𝛽1 = 0.9, 𝛽2 = 0.999. The reason is simply that too small
values will effectively result in an exponential forgetting of the past information and
remove the – often very valuable – memory effect inherent in this method.

128
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.6 Hyperparameter Optimisation

The first member of this adaptive family is called ADAGRAD, which makes use
of the current gradient as its search direction 𝑑𝑡 = ∇𝐽𝑡 and has a learning rate with
a memory, but where all components are equally important:

𝛾𝑡 =
𝜂√
𝑡

(
1√
𝑘

diag

(
𝑡∑︁

𝑖=1
‖∇𝐽𝑖 ‖2

))1/2
. (5.43)

5.6 Hyperparameter Optimisation

Besides the learning parameters of a model, there are quite often also a set of
hyperparameters that have to be optimised. As a concrete example, we will use the
regularisation parameter 𝜆, but the discussion below applies to all hyperparameters,
as long as they are not of too high dimensions. We can usually estimate 𝐸new as,
say, 𝐸hold-out, and aim for minimising this.

Writing down an explicit form of 𝐸hold-out as a function of the hyperparameter 𝜆
can be quite tedious, not to mention taking its derivate. In fact, 𝐸hold-out includes
an optimisation problem itself – learning �̂� for a given value of 𝜆. However, we
can nevertheless evaluate the objective function for any given 𝜆, simply by running
the entire learning procedure and computing the prediction errors on the validation
dataset.

Perhaps the simplest way to solve such an optimisation problem is to ‘try a few
different parameter values and pick the one which works best’. That is the idea
of grid search and its likes. The term ‘grid’ here refers to some (more or less
arbitrarily chosen) set of different parameter values to try out, and we illustrate it
in Example 5.9.

Although simple to implement, grid search can be computationally inefficient, in
particular if the parameter vector has a high dimension. As an example, having a grid
with a resolution of 10 grid points per dimension (which is a very coarse-grained
grid) for a five-dimensional parameter vector requires 105 = 100 000 evaluations of
the objective function. If possible one should avoid using grid search for this reason.
However, with low-dimensional hyperparameters (in 𝐿1 and 𝐿2 regularisation, 𝜆
is one-dimensional, for example), grid search can be feasible. We summarise grid
search in Algorithm 5.4, where we use it to determine a regularisation parameter 𝜆.

Example 5.9 Grid search

We apply grid search to the objective functions from Example 5.3, with an arbitrarily
chosen grid indicated by blue the marks in Figure 5.16. The discovered minimum,
which is the grid point with the smallest value of the objective functions, is marked
with a yellow dot.

Due to the unfortunate selection of the grid, the global minimum is not found in
the non-convex problem (right of Figure 5.16). This problem could be handled by

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
129

5 Learning Parametric Models

increasing the resolution of the grid, which however requires more computations
(more evaluations of the objective function).

−5 0 5

−5

0

5

𝜃1

𝜃 2

−5 0 5

−5

0

5

𝜃1

𝜃 2

Fig.
5.16

Algorithm 5.4: Grid search for regularisation parameter 𝜆
Input: Training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1, validation data {x 𝑗 , 𝑦 𝑗}𝑛𝑣𝑗=1
Result: 𝜆

1 for 𝜆 = 10−3, 10−2, . . . , 103 (as an example) do
2 Learn �̂� with regularisation parameter 𝜆 from training data
3 Compute error on validation data 𝐸val(𝜆) ← 1

𝑛𝑣

∑𝑛𝑣
𝑗=1(�̂�(x 𝑗 ; �̂�) − 𝑦 𝑗)2

4 end
5 return 𝜆 as arg min𝜆 𝐸val(𝜆)

Some hyperparameters (for example 𝑘 in 𝑘-NN, Chapter 2) are integers, and
sometimes it is feasible to simply try all reasonable integer values in grid search.
However, most of the time the major challenge in grid search is to select a good
grid. The grid used in Algorithm 5.4 is logarithmic between 0.001 and 1 000, but
that is of course only an example. One could indeed do some manual work by first
selecting a coarse grid to get an initial guess, and thereafter refine the grid only
around the promising candidates, etc. In practice, if the problem has more than one
dimension, it can also be beneficial to select the grid points randomly instead of
using an equally spaced linear or logarithmic grid.

The manual procedure of choosing a grid might, however, become quite tedious,
and one could wish for an automated method. That is, in fact, possible by treating
the grid point selection problem as a machine learning problem itself. If we
consider the points for which the objective function has already been evaluated as a
training dataset, we can use a regression method to learn a model for the objective
function. That model can, in turn, be used to answer questions on where to evaluate
the objective function next, and thereby automatically select the next grid point.
A concrete method built from this idea is the Gaussian process optimisation method,
which uses Gaussian processes (Chapter 9) to train a model of the objective function.

130
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

5.7 Further Reading

5.7 Further Reading

A mathematically more thorough discussion on loss functions is provided by
Gneiting and Raftery (2007). Some of the asymptotic minimisers, also referred to
as population minimisers, are derived by Hastie et al. (2009, Section 10.5-10.6).

A standard reference for optimisation, covering much more than this chapter, is
the book by Nocedal and Wright (2006). Stochastic gradient descent has its roots
in the work on stochastic optimisation by Robbins and Monro (1951), and two
overviews of its modern use in machine learning are given by Bottou et al. (2018)
and Ruder (2017). For Gaussian process optimisation, see Frazier (2018) and Snoek
et al. (2012).

𝐿2 regularisation was introduced independently in statistics by Hoerl and Kennard
(1970) and earlier in numerical analysis by Andrey Nikolayevich Tikhonov. 𝐿1

regularisation was first introduced by Tibshirani (1996). Early stopping has been
used as a regulariser for long time in neural network practice and has been analysed
by Bishop (1995) and Sjöberg and Ljung (1995). For the regularising effect of
stochastic gradient descent, see Hardt et al. (2016) and Mandt et al. (2017). A
lot has been written about adaptive methods, and many different algorithms are
available. The ADAGRAD algorithm was introduced by Duchi et al. (2011), and
ADAM was derived by D. P. Kingma and Ba (2015). Interesting insights about
these algorithms are offered by Reddi et al. (2018).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
131

6 Neural Networks and Deep Learning

In Chapter 3, we introduced linear regression and logistic regression as the two basic
parametric models for solving the regression and classification problems. A neural
network extends this by stacking multiple copies of these models to construct a
hierarchical model that can describe more complicated relationships between inputs
and outputs than linear or logistic regression models are able to. Deep learning is
a subfield of machine learning that deals with such hierarchical machine learning
models.

We will start in Section 6.1 by generalising linear regression to a two-layer neural
network (that is, a neural network with one hidden layer), and then generalise it
further to a deep neural network. In Section 6.3, we present a special neural network
tailored for images, and in Section 6.2, we look into some details on how to train
neural networks. Finally, in Section 6.4, we provide one technique for how to
regularise neural networks.

6.1 The Neural Network Model

In Section 5.1, we introduced concept of non-linear parametric functions for
modelling the relationship between the input variables 𝑥1, . . . , 𝑥𝑝 and the output 𝑦.
We denote this non-linear relationship in its prediction form as

�̂� = 𝑓𝜽 (𝑥1, . . . , 𝑥𝑝), (6.1)

where the function 𝑓 is parametrised by 𝜽. Such a non-linear function can be
parametrised in many ways. In a neural network, the strategy is to use several layers
of linear regression models and non-linear activation functions. We will explain
carefully what that means step by step below.

Generalised Linear Regression

We start the description of the neural network model with the linear regression
model

�̂� = 𝑊1𝑥1 +𝑊2𝑥2 + · · · +𝑊𝑝𝑥𝑝 + 𝑏. (6.2)

Here we denote the parameters by the weights 𝑊1, . . . ,𝑊𝑝 and the offset term 𝑏.
We choose to use this notation instead of the one used in (3.2) since we will later
handle the weights slightly differently from the offset term. As before, 𝑥1, . . . , 𝑥𝑝
are the input variables. In Figure 6.1a, a graphical illustration of (6.2) is shown.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
133

6 Neural Networks and Deep Learning

...

1
𝑥1

𝑥𝑝

�̂�

𝑏

𝑊1

𝑊𝑝

(a)

...

1
𝑥1

𝑥𝑝

ℎ �̂�

𝑏

𝑊1

𝑊𝑝

(b)

Figure 6.1: Graphical illustration of a linear regression model (Figure 6.1a) and a generalised
linear regression model (Figure 6.1b). In Figure 6.1a, the output �̂� is described as the sum
of all terms, 𝑏 and {𝑊 𝑗𝑥 𝑗 }𝑝𝑗=1, as in (6.2). In Figure 6.1b, the circle denotes addition and
also transformation through the activation function ℎ, as in (6.3).

Each input variable 𝑥 𝑗 is represented by a node, and each parameter 𝑊 𝑗 by a link.
Furthermore, the output �̂� is described as the sum of all the terms, 𝑊 𝑗𝑥 𝑗 . Note that
we use the constant value 1 as the input variable corresponding to the offset term 𝑏.

To describe non-linear relationships between x = [1 𝑥1 𝑥2 . . . 𝑥𝑝]T and �̂�, we
introduce a non-linear scalar function called the activation function ℎ : R→ R. The
linear regression model (6.2) is now modified into a generalised linear regression
model (see Section 3.4) where the linear combination of the inputs is transformed
by the activation function

�̂� = ℎ
(
𝑊1𝑥1 +𝑊2𝑥2 + · · · +𝑊𝑝𝑥𝑝 + 𝑏

)
. (6.3)

This extension to the generalised linear regression model is visualised in Figure 6.1b.
Common choices of activation function are the logistic function and the rectified

linear unit (ReLU).

Logistic: ℎ(𝑧) = 1
1 + 𝑒−𝑧 , ReLU: ℎ(𝑧) = max(0, 𝑧).

These are illustrated in Figure 6.2a and b, respectively. The logistic (or sigmoid)
function has already been used in the context of logistic regression (Section 3.2).
The logistic function is linear close to 𝑧 = 0 and saturates at 0 and 1 as 𝑧 decreases
or increases. The ReLU is even simpler. The function is just equal to 𝑧 for positive
inputs and equal to zero for negative inputs. The logistic function used to be the
standard choice of activation function in neural networks for many years, whereas
the ReLU is now the standard choice in most neural network models, despite (and
partly due to) its simplicity.

The generalised linear regression model (6.3) is very simple and is itself not
capable of describing very complicated relationships between the input x and the
output �̂�. Therefore, we make two further extensions to increase the generality
of the model: We first make use of several parallel generalised linear regression
models to build a layer (which will lead us to the two-layer neural network) and
then stack these layers in a sequential construction (which will result in a deep
neural network).

134
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.1 The Neural Network Model

−6 6

1

𝑧

ℎ(𝑧)

Logistic: ℎ(𝑧) = 1
1+𝑒−𝑧

(a)

−1 1

1

𝑧

ℎ(𝑧)

ReLU: ℎ(𝑧) = max(0, 𝑧)
(b)

Figure 6.2: Two common activation functions used in neural networks. The logistic (or
sigmoid) function (Figure 6.2a) and the rectified linear unit (Figure 6.2b).

Two-Layer Neural Network

In (6.3), the output �̂� is constructed by one scalar regression model. To increase its
flexibility and turn it into a two-layer neural network, we instead let its output be a
sum of 𝑈 such generalised linear regression models, each of which has its own set
of parameters. The parameters for the 𝑘th regression model are 𝑏𝑘 ,𝑊𝑘1, . . . ,𝑊𝑘 𝑝,
and we denote its output by 𝑞𝑘 ,

𝑞𝑘 = ℎ
(
𝑊𝑘1𝑥1 +𝑊𝑘2𝑥2 + · · · +𝑊𝑘 𝑝𝑥𝑝 + 𝑏𝑘

)
, 𝑘 = 1, . . . ,𝑈. (6.4)

These intermediate outputs 𝑞𝑘 are so-called hidden units, since they are not the
output of the whole model. The 𝑈 different hidden units {𝑞𝑘 }𝑈𝑘=1 instead act as
input variables to an additional linear regression model

�̂� = 𝑊1𝑞1 +𝑊2𝑞2 + · · · +𝑊𝑈𝑞𝑈 + 𝑏. (6.5)

To distinguish the parameters in (6.4) and (6.5), we add the superscripts (1) and (2),
respectively. The equations describing this two-layer neural network (or equivalently,
a neural network with one layer of hidden units) are thus

𝑞1 = ℎ
(
𝑊 (1)11 𝑥1 +𝑊 (1)12 𝑥2 + · · · +𝑊 (1)1𝑝 𝑥𝑝 + 𝑏

(1)
1

)
,

𝑞2 = ℎ
(
𝑊 (1)21 𝑥1 +𝑊 (1)22 𝑥2 + · · · +𝑊 (1)2𝑝 𝑥𝑝 + 𝑏

(1)
2

)
, (6.6a)

...

𝑞𝑈 = ℎ
(
𝑊 (1)𝑈1𝑥1 +𝑊 (1)𝑈2𝑥2 + · · · +𝑊 (1)𝑈 𝑝𝑥𝑝 + 𝑏

(1)
𝑈

)
,

�̂� = 𝑊 (2)1 𝑞1 +𝑊 (2)2 𝑞2 + · · · +𝑊 (2)𝑈 𝑞𝑈 + 𝑏 (2) . (6.6b)

Extending the graphical illustration from Figure 6.1, this model can be depicted
as a graph with two layers of links (illustrated using arrows); see Figure 6.3. As
before, each link has a parameter associated with it. Note that we include an offset
term not only in the input layer but also in the hidden layer.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
135

6 Neural Networks and Deep Learning

... ...

�̂�

1

𝑥1

𝑥𝑝

1

𝑞1

𝑞𝑈

ℎ

ℎ

ℎ

𝑏 (1)1

𝑊 (1)𝑈 𝑝

𝑏 (2)

𝑊 (2)𝑈

Input variables Hidden units Output

Figure 6.3: A two-layer neural network, or equivalently, a neural network with one
intermediate layer of hidden units.

Vectorisation over Units

The two-layer neural network model in (6.6) can also be written more compactly
using matrix notation, where the parameters in each layer are stacked in a weight
matrix W and an offset vector1 b as

W(1) =

𝑊 (1)11 . . . 𝑊 (1)1𝑝
...

...

𝑊 (1)𝑈1 . . . 𝑊 (1)𝑈 𝑝

, b(1) =

𝑏 (1)1
...

𝑏 (1)𝑈

,

W(2) =
[
𝑊 (2)1 . . . 𝑊 (2)𝑈

]
, b(2) =

[
𝑏 (2)

]
. (6.7)

The full model can then be written as

q = ℎ
(
W(1)x + b(1)

)
, (6.8a)

�̂� = W(2)q + b(2) , (6.8b)

where we have also stacked the components in x and q as x = [𝑥1 . . . 𝑥𝑝]T and
q = [𝑞1 . . . 𝑞𝑈]T. Note that the activation function ℎ in (6.8a) acts element-wise
on the input vector and results in an output vector of the same dimension. The two
weight matrices and the two offset vectors are the parameters of the model, which
can be written as

𝜽 =
[
vec(W(1))T b(1)T vec(W(2))T b(2)T

]T
, (6.9)

1The word ‘bias’ is often used for the offset vector in the neural network literature, but this is really
just a model parameter and not a bias in the statistical sense. To avoid confusion, we refer to it as
an offset instead.

136
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.1 The Neural Network Model

where the operator vec takes all elements in the matrix and puts them into a vector.
Overall, (6.8) describes a non-linear regression model of the form �̂� = 𝑓𝜽 (x).

Deep Neural Network

The two-layer neural network is a useful model on its own, and a lot of research and
analysis has been done on it. However, the real descriptive power of a neural network
is realised when we stack multiple such layers of generalised linear regression
models and thereby achieve a deep neural network. Deep neural networks can
model complicated relationships (such as the one between an image and its class),
and are one of the state-of-the-art methods in machine learning as of today.

We enumerate the layers with index 𝑙 ∈ {1, . . . , 𝐿}, where 𝐿 is the number
of layers. Each layer is parametrised with a weight matrix W(𝑙) and an offset
vector b(𝑙) , as for the two-layer case. For example, W(1) and b(1) belong to layer
𝑙 = 1, W(2) and b(2) belong to layer 𝑙 = 2, and so forth. We also have multiple
layers of hidden units denoted by q(𝑙) . Each such layer consists of 𝑈𝑙 hidden units
q(𝑙) = [𝑞 (𝑙)1 . . . 𝑞 (𝑙)𝑈𝑙

]T, where the dimensions𝑈1, . . . ,𝑈𝐿−1 can be different across
the various layers.

Each layer maps a hidden layer q(𝑙−1) to the next hidden layer q(𝑙) according to

q(𝑙) = ℎ
(
W(𝑙)q(𝑙−1) + b(𝑙)

)
. (6.10)

This means that the layers are stacked such that the output of the first layer of hidden
units q(1) is the input to the second layer, the output of the second layer q(2) (the
second layer of hidden units) is the input to the third layer, etc. By stacking multiple
layers we have constructed a deep neural network. A deep neural network of 𝐿
layers can be described mathematically as

q(1) = ℎ
(
W(1)x + b(1)

)
,

q(2) = ℎ
(
W(2)q(1) + b(2)

)
,

... (6.11)
q(𝐿−1) = ℎ

(
W(𝐿−1)q(𝐿−2) + b(𝐿−1)) ,

�̂� = W(𝐿)q(𝐿−1) + b(𝐿) .

A graphical representation of this model is provided in Figure 6.4. The expression
(6.11) for a deep neural network can be compared with the expression (6.8) for a
two-layer neural network.

The weight matrix W(1) for the first layer 𝑙 = 1 has dimension 𝑈1 × 𝑝, and the
corresponding offset vector b(1) has dimension 𝑈1. Since the output is scalar, in the
last layer, the weight matrix W(𝐿) has dimension 1×𝑈𝐿−1, and the offset vector b(𝐿)
has dimension 1. For all intermediate layers 𝑙 = 2, . . . , 𝐿 − 1, W(𝑙) has dimension
𝑈𝑙 ×𝑈𝑙−1, and the corresponding offset vector has dimension 𝑈𝑙. The number of
inputs 𝑝 is given by the problem, but the number of layers 𝐿 and the dimensions
𝑈1, 𝑈2, . . . are user design choices that determine the flexibility of the model.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
137

6 Neural Networks and Deep Learning

... ...
...

...
...

...

. . .

1

𝑥1

𝑥𝑝

1

𝑞 (1)1

𝑞 (1)𝑈1

ℎ

ℎ

ℎ

1

𝑞 (2)1

𝑞 (2)𝑈2

ℎ

ℎ

ℎ

1

𝑞 (𝐿−2)
1

𝑞 (𝐿−2)
𝑈𝐿−2

ℎ

ℎ

ℎ

1

𝑞 (𝐿−1)
1

𝑞 (𝐿−1)
𝑈𝐿−1

ℎ

ℎ

ℎ

�̂�

Input
variables

Hidden
units

Hidden
units

Hidden
units

Hidden
units

Outputs

Layer 1
W(1) b(1)

Layer 2
W(2) b(2)

Layer 𝐿-1
W(𝐿−1) b(𝐿−1)

Layer 𝐿
W(𝐿) b(𝐿)

Figure 6.4: A deep neural network with 𝐿 layers. Each layer 𝑙 is parameterised by W(𝑙)

and b(𝑙) .

Vectorisation over Data Points

During training, the neural network model is used to compute the predicted output,
not only for one input x but for several inputs {x𝑖}𝑛𝑖=1. For example, for the two-layer
neural network presented in Section 6.1, we have

qT
𝑖 = ℎ

(
xT
𝑖 W(1)T + b(1)T

)
, (6.12a)

�̂�𝑖 = qT
𝑖 W(2)T + b(2)T, 𝑖 = 1, . . . , 𝑛. (6.12b)

Similar to the vectorisation over units explained earlier, we also want to vectorise
these equations over the data points to allow for efficient computation of the model.
Note that the equations (6.12) are transposed in comparison to the model in (6.8).
With this notation, we can, similar to the linear regression model (3.5), stack all
data points in matrices, where each data point represents one row:

y =

𝑦1
...
𝑦𝑛

, X =

xT

1
...

xT
𝑛

, ŷ =

�̂�1
...
�̂�𝑛

, and Q =

qT

1
...

qT
𝑛

. (6.13)

We can then conveniently write (6.12) as

Q = ℎ
(
XW(1)T + b(1)T

)
, (6.14a)

ŷ = QW(2)T + b(2)T, (6.14b)

where we have also stacked the predicted output and the hidden units in matrices.
Note that the transposed offset vectors b(1)T and b(2)T are added to each row in this
notation.

The vectorised equations in (6.14) are also how the model would typically be
implemented in languages that support array programming. For implementation,
you may want to consider using the transposed versions of W and b as your weight
matrix and offset vector to avoid transposing them in each layer.

138
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.1 The Neural Network Model

Neural Networks for Classification

Neural networks can also be used for classification, where we have categorical
outputs 𝑦 ∈ {1, . . . , 𝑀} instead of numerical. In Section 3.2, we extended linear
regression to logistic regression by simply adding the logistic function to the output.
In the same manner, we can extend the neural network for regression presented
in the previous section to a neural network for classification. In doing so, we use
the multiclass version of logistic regression presented in Section 3.2 and more
specifically the softmax parametrisation (3.41), repeated here for convenience:

softmax(z) , 1∑𝑀
𝑗=1 𝑒

𝑧 𝑗

𝑒𝑧1

𝑒𝑧2

...
𝑒𝑧𝑀

. (6.15)

The model is constructed as in (6.11), but where the output is of dimension 𝑀.
The softmax function now becomes an additional activation function acting on the
final layer of the neural network:

q(1) = ℎ
(
W(1)x + b(1)

)
, (6.16a)

...

q(𝐿−1) = ℎ
(
W(𝐿−1)q(𝐿−2) + b(𝐿−1)

)
, (6.16b)

z = W(𝐿)q(𝐿−1) + b(𝐿) , (6.16c)
g = softmax(z). (6.16d)

The softmax function maps the output of the last layer z = [𝑧1, . . . , 𝑧𝑀]T to
g = [𝑔1, . . . , 𝑔𝑀]T, where 𝑔𝑚 is a model of the class probability 𝑝(𝑦𝑖 = 𝑚 | x𝑖).
The input variables 𝑧1, . . . , 𝑧𝑀 to the softmax function are referred to as logits.
Note that the softmax function does not come as a layer with additional parameters;
it merely acts as a transformation of the output into the modelled class probabilities.
By construction, the outputs of the softmax function will always be in the interval
𝑔𝑚 ∈ [0, 1] and sum to

∑𝑀
𝑚=1 𝑔𝑚 = 1, otherwise they could not be interpreted as

probabilities. Since the output now has dimension 𝑀, the last layer of the weight
matrix W(𝐿) has dimension 𝑀 ×𝑈𝐿−1, and the offset vector b(𝐿) has dimension 𝑀 .

Example 6.1 Classification of hand-written digits – problem formulation

We consider the so-called MNIST dataset,a which is one of the most well studied
datasets within machine learning and image processing. The dataset has 60 000
training data points and 10 000 validation data points. Each data point consists
of a 28 × 28 pixel greyscale image of a handwritten digit. The digit has been
size-normalised and centred within a fixed-sized image. Each image is also labelled
with the digit 0, 1, . . . , 8, or 9 that it is depicting. Figure 6.5 shows a batch of 20
data points from this dataset.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
139

6 Neural Networks and Deep Learning

Fig.
6.5

In this classification task, we consider the image as our input x = [𝑥1, . . . 𝑥𝑝]T.
Each input variable 𝑥 𝑗 corresponds to a pixel in the image. In total we have
𝑝 = 28 × 28 = 784 input variables which we flatten out into one long vector.b The
value of each 𝑥 𝑗 represents the intensity of that pixel. The intensity-value is within
the interval [0, 1], where 𝑥 𝑗 = 0 corresponds to a black pixel and 𝑥 𝑗 = 1 to a white
pixel. Anything between 0 and 1 is a grey pixel with corresponding intensity. The
output is the class 𝑦𝑖 ∈ {0, . . . , 9}. This means that we have in total 10 classes
representing the 10 digits. Based on a set of training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1 with images
and labels, the problem is to find a good model for the class probabilities

𝑝(𝑦 = 𝑚 | x), 𝑚 = 0, . . . , 9,

in other words, the probabilities that an unseen image x belongs to each of the
𝑀 = 10 classes. Assume that we would like to use logistic regression to solve this
problem with a softmax output. This is identical to a neural network with just one
layer – that is, (6.16) where 𝐿 = 1. The parameters of that model would be

W(1) ∈ R784×10 b(1) ∈ R10,

which gives in total 784 · 10 + 10 = 7 850 parameters. Assume that we would like
to extend this model with a two-layer neural network with 𝑈 = 200 hidden units.
That would require two sets of weight matrices and offset vectors:

W(1) ∈ R784×200 b(1) ∈ R200, W(2) ∈ R200×10 b(2) ∈ R10,

which is a model with 784 · 200 + 200 + 200 · 10 + 10 = 159 010 parameters. In the
next section, we will learn how to fit all of these parameters to the training data.

ahttp://yann.lecun.com/exdb/mnist/
bBy flattening, we actually remove quite some information from the data. In Section 6.3,

we will look at another neural network model where this spatial information is preserved.

6.2 Training a Neural Network

A neural network is a parametric model, and we find its parameters by using the
techniques explained in Chapter 5. The parameters in the model are all weight
matrices and all offset vectors:

𝜽 =
[
vec(W(1))T b(1)T · · · vec(W(𝐿))T b(𝐿)T

]T
. (6.17)

To find suitable values for the parameters 𝜽 , we solve an optimisation problem of
the form

140
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://yann.lecun.com/exdb/mnist/
http://smlbook.org

6.2 Training a Neural Network

�̂� = arg min
𝜽

𝐽 (𝜽), where 𝐽 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

𝐿 (x𝑖 , 𝑦𝑖 , 𝜽). (6.18)

We denote the cost function as 𝐽 (𝜽) and the loss function as 𝐿 (x𝑖 , y𝑖 , 𝜽). The
functional form of the loss function depends on the problem at hand, mainly if it is
a regression problem or a classification problem.

For the regression problems, we typically use the squared error loss (5.6) as we
did in linear regression,

𝐿 (x, 𝑦, 𝜽) = (
𝑦 − 𝑓 (x; 𝜽))2

, (6.19)

where 𝑓 (x; 𝜽) is the output of the neural network.
For the multiclass classification problem, we analogously use the cross-entropy

loss function (3.44) as we did for multiclass logistic regression,

𝐿 (x, 𝑦, 𝜽) = − ln 𝑔𝑦
(
f (x; 𝜽)) = −𝑧𝑦 + ln

𝑀∑︁
𝑗=1

𝑒𝑧 𝑗 , (6.20)

where 𝑧 𝑗 = 𝑓 𝑗 (x; 𝜽) is the 𝑗 th logit – that is, the 𝑗 th output of the last layer before
the softmax function g(z). Also, similar to the notation in (3.44), we use the training
data label 𝑦 as an index variable to select the correct logit for the loss function. Also
note that both linear regression and logistic regression can be seen as a special case
of the neural network model where we only have one single layer in the network.
Also note that we are not restricted to these two loss functions. Following the
discussion in Section 5.2, we could use another loss function that suits our needs.

These optimisation problems cannot be solved in closed form, so numerical
optimisation has to be used. In all numerical optimisation algorithms, the parameters
are updated in an iterative manner. In deep learning, we typically use various
versions of gradient based search:

1. Pick an initialisation 𝜽0.
2. Update the parameters as 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 (𝜽 𝑡) for 𝑡 = 0, 1, 2, (6.21)

3. Terminate when some criterion is fulfilled, and take the last 𝜽 𝑡 as �̂� .

Solving the optimisation problem (6.18) has two main computational challenges.

• Computational challenge 1 – 𝑛 is large. The first computational challenge
is the big data problem. For many deep learning applications, the number
of data points 𝑛 is very large, making the computation of the cost function
and its gradient very costly since it requires sums over all data points. As
a consequence, we cannot afford to compute the exact gradient ∇𝜽𝐽 (𝜽 𝑡) at
each iteration. Instead, we compute an approximation of this gradient by
only considering a random subset of the training data at each iteration, which
we refer to as a mini-batch. This optimisation procedure is called stochastic
gradient descent and was further explained in Section 5.5.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
141

6 Neural Networks and Deep Learning

• Computational challenge 2 – dim(𝜽) is large. The second computational
challenge is that the number of parameters dim(𝜽) is also very large for deep
learning problems. To efficiently compute the gradient ∇𝜽𝐽 (𝜽 𝑡), we apply
the chain rule of calculus and reuse the partial derivatives needed to compute
this gradient. This is called the backpropagation algorithm, which is further
explained in the next section.

Backpropagation

The backpropagation algorithm is an important ingredient in almost all training
procedures of neural networks. As outlined above, it is not a complete training
algorithm in the sense that it takes training data and trains a model. Backpropagation
is an algorithm that efficiently computes the cost function and its gradient with
respect to all the parameters in a neural network. The cost function and its gradient
are then used in the stochastic gradient descent algorithms explained in Section 5.5.

The parameters in this model are all weight matrices and all offset vectors. Hence,
at each iteration in our gradient based search algorithm (6.21), we also need to find
the gradient of the cost function with respect to all elements in these matrices and
vectors. To summarise, we want to find

𝑑W(𝑙) , ∇𝜕W(𝑙) 𝐽 (𝜽) =

𝜕𝐽 (𝜽)
𝜕𝑊

(𝑙)
11

. . . 𝜕𝐽 (𝜽)
𝜕𝑊

(𝑙)
1,𝑈 (𝑙−1)

...
...

𝜕𝐽 (𝜽)
𝜕𝑊

(𝑙)
𝑈 (𝑙) ,1

. . . 𝜕𝐽 (𝜽)
𝜕𝑊

(𝑙)
𝑈 (𝑙) ,𝑈 (𝑙−1)

and

𝑑b(𝑙) , ∇𝜕b(𝑙) 𝐽 (𝜽) =

𝜕𝐽 (𝜽)
𝜕𝑏
(𝑙)
1
...

𝜕𝐽 (𝜽)
𝜕𝑏
(𝑙)
𝑈 (𝑙)

. (6.22)

for all 𝑙 = 1, . . . , 𝐿. Note that the cost function 𝐽 (𝜽) here only includes the losses
in the current mini-batch. When these gradients are computed, we can update the
weight matrices and offset vectors accordingly:

W(𝑙)
𝑡+1 ←W(𝑙)

𝑡 − 𝛾𝑑W(𝑙)
𝑡 , (6.23a)

b(𝑙)𝑡+1 ← b(𝑙)𝑡 − 𝛾𝑑b(𝑙)𝑡 . (6.23b)

To compute all these gradients efficiently, backpropagation exploits the structure of
the model instead of naively computing the derivatives with respect to each single
parameter separately. To do that, backpropagation uses the chain rule of calculus.

First, we describe how backpropagation works for one single data point (x, 𝑦). In
Algorithm 6.1, we later generalise this to multiple data points. The backpropagation

142
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.2 Training a Neural Network

algorithm consists of two steps, the forward propagation and the backward propaga-
tion. In the forward propagation, we simply evaluate the cost function using the
neural network model we presented in Section 6.1. We start with the input x and
evaluate each layer sequentially from layer 1 to the last layer 𝐿: hence, we propagate
forwards:

q(0) = x, (6.24a){
z(𝑙) = W(𝑙)q(𝑙−1) + b(𝑙) ,
q(𝑙) = ℎ(z(𝑙)), for 𝑙 = 1, . . . , 𝐿 − 1 (6.24b)

z(𝐿) = W(𝐿)q(𝐿−1) + b(𝐿) , (6.24c)

𝐽 (𝜽) =
{(

𝑦 − 𝑧 (𝐿)
)2
, if regression problem,

−𝑧 (𝐿)𝑦 + ln
∑𝑀

𝑗=1 𝑒
𝑧
(𝐿)
𝑗 , if classification problem.

(6.24d)

Note that, since we only consider one data point, the cost function 𝐽 (𝜽) will only
include one loss term.

When it comes to backward propagation, we need to introduce some additional
notation, namely the gradient of the cost 𝐽 with respect to the hidden units z(𝑙) and
q(𝑙) , given by

𝑑z(𝑙) , ∇z(𝑙) 𝐽 (𝜽) =

𝜕𝐽 (𝜽)
𝜕𝑧
(𝑙)
1
...

𝜕𝐽 (𝜽)
𝜕𝑧
(𝑙)
𝑈 (𝑙)

and 𝑑q(𝑙) , ∇q(𝑙) 𝐽 (𝜽) =

𝜕𝐽 (𝜽)
𝜕𝑞
(𝑙)
1
...

𝜕𝐽 (𝜽)
𝜕𝑞
(𝑙)
𝑈 (𝑙)

. (6.25)

In the backward propagation, we compute the gradients 𝑑z(𝑙) and 𝑑q(𝑙) for all
layers. We do this recursively, in the opposite direction to what we did in the forward
propagation – that is, starting from the last layer 𝐿, we propagate back to the first
layer. To start these recursions, we first need to compute 𝑑z(𝐿) , the gradient of the
cost function with respect to the hidden units in the last hidden layer. This obviously
depends on our choice of loss function (6.24d). If we have a regression problem
and choose the squared error loss, we get

𝑑𝑧 (𝐿) =
𝜕𝐽 (𝜽)
𝜕𝑧 (𝐿)

=
𝜕

𝜕𝑧 (𝐿)
(
𝑦 − 𝑧 (𝐿)

)2 = −2
(
𝑦 − 𝑧 (𝐿)

)
. (6.26a)

For a multiclass classification problem, we instead use the cross-entropy loss (6.20),
and we get

𝑑𝑧 (𝐿)𝑗 =
𝜕𝐽 (𝜽)
𝜕𝑧 (𝐿)𝑗

=
𝜕

𝜕𝑧 (𝑙)𝑗

(
−𝑧 (𝐿)𝑦 + ln

𝑀∑︁
𝑘=1

𝑒𝑧
(𝐿)
𝑘

)
= −I{𝑦 = 𝑗} + 𝑒𝑧

(𝐿)
𝑗∑𝑀

𝑘=1 𝑒
𝑧
(𝐿)
𝑘

.

(6.26b)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
143

6 Neural Networks and Deep Learning

Forward
Layer 1

Forward
Layer 2

· · · Forward
Layer 𝐿

Backward
Layer 1

Backward
Layer 2

· · · Backward
Layer 𝐿

q(0) = x q(1) q(2) q(𝐿−1)

W(1)

z(1)
q(0)

W(2)

z(2)
q(1)

W(𝐿)

z(𝐿)
q(𝐿−1)

𝑑q(𝐿−1)𝑑q(2)𝑑q(1)

Cost
function

z(𝐿)

𝐽

𝑑z(𝐿)

𝑦

𝑑W(1) , 𝑑b(1) 𝑑W(2) , 𝑑b(2) 𝑑W(𝐿) , 𝑑b(𝐿)

W(1) , b(1) W(2) , b(2) W(𝐿) , b(𝐿)

Figure 6.6: A computational graph of the backpropagation algorithm. We start with the
input in the upper left corner and propagate forward and evaluate the cost function. Along
the way, we also cache the values for the hidden units q(𝑙) and z(𝑙) . We then propagate the
gradients 𝑑q(𝑙) and 𝑑z(𝑙) backwards and compute the gradients for the parameters W(𝑙) ,
b(𝑙) . The equations behind this computational graph are given in (6.24), (6.26), and (6.27).

The backwards propagation now proceeds with the following recursions:

𝑑z(𝑙) = 𝑑q(𝑙) � ℎ′(z(𝑙)), (6.27a)
𝑑q(𝑙−1) = W(𝑙)T𝑑z(𝑙) , (6.27b)

where � denotes the element-wise product and where ℎ′(𝑧) is the derivative of the
activation function ℎ(𝑧). Similar to the notation in (6.24b), ℎ′(z) acts element-wise
on the vector z. Note that the first line (6.27a) is not executed for layer 𝐿 since that
layer does not have an activation function; see (6.24c).

With 𝑑z(𝑙) , we can now compute the gradients of the weight matrices and offset
vectors as

𝑑W(𝑙) = 𝑑z(𝑙)q(𝑙−1)T, (6.27c)
𝑑b(𝑙) = 𝑑z(𝑙) . (6.27d)

All equations for the backward propagation (6.27) can be derived from the chain
rule of calculus; for further details see Appendix 6.A. A computational graph of the
backpropagation algorithm is summarised in Figure 6.6.

So far, we have only considered backpropagation for one data point (x, 𝑦).
However, we do want to compute the cost function 𝐽 (𝜽) and its gradients 𝑑W(𝑙) and
𝑑b(𝑙) for the whole mini-batch {x𝑖 , 𝑦𝑖} 𝑗𝑛𝑏𝑖=(𝑗−1)𝑛𝑏+1. Therefore, we run the equations
(6.24), (6.26), and (6.27) for all data points in the current mini-batch and average
their results for 𝐽, 𝑑W(𝑙) , and 𝑑b(𝑙) . To do this in a computationally efficient
manner, we process all 𝑛𝑏 data points in the mini-batch simultaneously by stacking
them in matrices as we did in (6.14), where each row represent one data point:

144
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.2 Training a Neural Network

Algorithm 6.1: Backpropagation
Input: Parameters 𝜽 = {W(𝑙) , b(𝑙) }𝐿𝑙=1, activation function ℎ, and data X, y,

with 𝑛𝑏 rows, where each row corresponds to one data point in the
current mini-batch.

Result: 𝐽 (𝜽), ∇𝜽𝐽 (𝜽) of the current mini-batch.

1 Forward propagation
2 Set Q0 ← X
3 for 𝑙 = 1, . . . , 𝐿 do
4 Z(𝑙) = Q(𝑙−1)W(𝑙)T + b(𝑙)T
5 Q(𝑙) = ℎ(Z(𝑙)) Do not execute this line for last layer 𝑙 = 𝐿

6 end
7 Evaluate cost function
8 if Regression problem then
9 𝐽 (𝜽) = 1

𝑛𝑏

∑𝑛𝑏
𝑖=1

(
𝑦𝑖 − 𝑍 (𝐿)𝑖

)2

10 𝑑Z(𝐿) = −2
(
y − Z(𝐿)

)
11 else if Classification problem2 then
12 𝐽 (𝜽) = 1

𝑛𝑏

∑𝑛𝑏
𝑖=1

(
−𝑍 (𝐿)𝑖,𝑦𝑖

+ ln
(∑𝑀

𝑗=1 exp
(
𝑍 (𝐿)𝑖 𝑗

)))

13 𝑑𝑍 (𝐿)𝑖 𝑗 = −I{𝑦𝑖 = 𝑗} + exp
(
𝑍
(𝐿)
𝑖 𝑗

)
∑𝑀

𝑗=1 exp
(
𝑍
(𝐿)
𝑖 𝑗

) ∀𝑖, 𝑗

14 Backward propagation
15 for 𝑙 = 𝐿, . . . , 1 do
16 𝑑Z(𝑙) = 𝑑Q(𝑙) � ℎ′(Z(𝑙)) Do not execute this line for last layer

𝑙 = 𝐿

17 𝑑Q(𝑙−1) = 𝑑Z(𝑙)W(𝑙)

18 𝑑W(𝑙) = 1
𝑛𝑏
𝑑Z(𝑙)TQ(𝑙−1)

19 𝑑𝑏 (𝑙)𝑗 = 1
𝑛𝑏

∑𝑛𝑏
𝑖=1 𝑑𝑍

(𝑙)
𝑖 𝑗 ∀ 𝑗

20 end
21 ∇𝜽𝐽 (𝜽) =

[
vec(𝑑W(1))T 𝑑b(1)T · · · vec(𝑑W(𝐿))T 𝑑b(𝐿)T

]
22 return 𝐽 (𝜽), ∇𝜽𝐽 (𝜽)

Q =

qT

1
...

qT
𝑛𝑏

, Z =

zT

1
...

zT
𝑛𝑏

, 𝑑Q =

𝑑qT

1
...

𝑑qT
𝑛𝑏

and 𝑑Z =

𝑑zT

1
...

𝑑zT
𝑛𝑏

. (6.28)

The complete algorithm we then get is summarised as Algorithm 6.1.
2One might want to consider normalizing the logits 𝑍 (𝐿)𝑖 𝑗 ← 𝑍

(𝐿)
𝑖 𝑗 −max 𝑗 𝑍

(𝐿)
𝑖 𝑗 before computing

the cost to avoid potential overflow while computing exp
(
𝑍
(𝐿)
𝑖 𝑗

)
. Note that this normalisation

does not change the value of the cost function.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
145

6 Neural Networks and Deep Learning

Initialisation

Most of the previous optimisation problems (such as 𝐿1 regularisation and logistic
regression) that we have encountered have been convex. This means that we can
guarantee global convergence regardless of what initialisation 𝜽0 we use. In contrast,
the cost functions for training neural networks are usually non-convex. This means
that the training is sensitive to the value of the initial parameters. Typically, we
initialise all the parameters to small random numbers to enable the different hidden
units to encode different aspects of the data. If ReLU activation functions are used,
the offset elements 𝑏0 are typically initialised to a small positive value such that
they operate in the non-negative range of the ReLU.

Example 6.2 Classification of hand-written digits – first attempt

We consider the example of classifying hand-written digits, introduced in Exam-
ple 6.1. Based on the presented data, we train the two models mentioned at the
end of that example: a logistic regression model (or equivalently a one-layer neural
network) and a two-layer neural network.

We use stochastic gradient descent, explained in Algorithm 5.3, with learning rate
𝛾 = 0.5 and a mini-batch size of 𝑛𝑏 = 100 data points. Since we have 𝑛 = 60 000
training data points in total, one epoch is completed after 6 000/100 = 600 iterations.
We run the algorithm for 15 epochs, i.e., 9 000 iterations.

As explained earlier, at each iteration of the algorithm, the cost function is
evaluated for the current mini-batch of the training data. The value for this cost
function is illustrated in blue in the left parts of Figures 6.7 and 6.8. In addition,
we also compute the miscalssification rate for the 100 data points in the current
mini-batch. This is illustrated in the right parts of Figures 6.7 and 6.8. Since
the current mini-batch consists of 100 randomly selected training data points, the
performance fluctuates depending on which mini-batch is considered.

However, the important measure is how we perform on data which has not been
used during training. Therefore, at every 100th iteration, we also evaluate the cost
function and the misclassification error on the whole validation dataset of 10 000
data points. This performance is illustrated in red in Figures 6.7 and 6.8.

Logistic regression model
Figure 6.7 illustrates the training of the logistic regression model.

0 5 10 15
0

0.2

0.4

Epochs

𝐽
(𝜽
)

Cost function

Training data
Validation data

0 5 10 15

2 %

4 %

6 %

8 %

10 %

12 %

Epochs

1 𝑛

∑ 𝑛 𝑖=
1
I{�̂�

𝑖
≠
𝑦 𝑖
}

Misclassification rate

Training data
Validation data

Fig.
6.7

146
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.3 Convolutional Neural Networks

We can see that the performance on validation data improves, and already after a few
epochs we do not see any additional improvements, and we get a misclassification
rate of approximately 8% on the validation data.

Two-layer neural network
In Figure 6.8, the training of the two-layer neural network with 𝑈 = 200 hidden
units is illustrated. We use the ReLU as activation function in this model.

0 5 10 15
0

0.2

0.4

Epochs

𝐽
(𝜽
)

Cost function

Training data
Validation data

0 5 10 15

2 %

4 %

6 %

8 %

10 %

12 %

Epochs

1 𝑛

∑ 𝑛 𝑖=
1
I{�̂�

𝑖
≠
𝑦 𝑖
}

Misclassification rate

Training data
Validation data

Fig.
6.8

Adding this layer of hidden units significantly reduces the misclassification rate
down to 2% on the validation data. We can also see that during the later epochs,
we often get all 100 data points in the current mini-batch correct. The discrepancy
between training error and validation error indicates that we are overfitting our
model. One way to circumvent this overfitting, and hence improve the performance
on validation data even further, is to change the neural network layers to other types
of layers which are tailored for image data. These types of neural network layers
are explained in the following section.

6.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are a special kind of neural network originally
tailored for problems where the input data has a grid-like structure. In this text we
will focus on images, where the pixels reside on a two-dimensional grid. Images are
also the most common type of input data in applications where CNNs are applied.
However, CNNs can be used for any input data on a grid, also in one dimension
(e.g. audio waveform data) and three dimensions. (volumetric data, e.g. computer
tomography (CT) scans or video data). We will focus on greyscale images, but the
approach can easily be extended to colour images as well.

Data Representation of an Image

Digital greyscale images consist of pixels ordered in a matrix. Each pixel can be
represented as a range from 0 (total absence, black) to 1 (total presence, white), and
values between 0 and 1 represent different shades of grey. In Figure 6.9, this is
illustrated for an image with 6×6 pixels. In an image classification problem, an image

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
147

6 Neural Networks and Deep Learning

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.9

0.8 0.9

0.8

0.9

0.9

0.9

0.9 0.9 0.9 0.90.8

0.6

0.6

0.6 𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

Image Data representation Input variables

Figure 6.9: Data representation of a greyscale image with 6 × 6 pixels. Each pixel is
represented by a number encoding the intensity of that pixel. These pixel values are stored
in a matrix with the elements 𝑥 𝑗 ,𝑘 .

is the input x, and the pixels in the image are the input variables 𝑥1,1, 𝑥1,2, . . . , 𝑥6,6.
The two indices 𝑗 and 𝑘 determine the position of the pixel in the image, as illustrated
in Figure 6.9.

If we put all input variables representing the image pixels in a long vector, as we
did in Example 6.1 and Example 6.2, we can use the network architecture presented
in Section 6.1. However, by doing that, a lot of the structure present in the image
data will be lost. For example, we know that two pixels close to each other typically
have more in common than two pixels further apart. This information would be
destroyed by such a vectorisation. In contrast, CNNs preserve this information by
representing both the input variables and the hidden layers as matrices. The core
component in a CNN is the convolutional layer, which will be explained next.

The Convolutional Layer

Following the input layer, we use a hidden layer with as many hidden units as there
are input variables. For the image with 6×6 pixels, we consequently have 6×6 = 36
hidden units. We choose to order the hidden units in a 6 × 6 matrix, in the same
manner as we did for the input variables; see Figure 6.10a.

The network layers presented in earlier sections (like the one in Figure 6.3) have
been dense layers. This means that each input variable is connected to all hidden
units in the subsequent layer, and each such connection has a unique parameter
𝑊 𝑗𝑘 associated to it. These layers have empirically been found to provide too much
flexibility for images, and we might not be able to capture the patterns of real
importance, and hence the models will not generalise and perform well on unseen
data. Instead, a convolutional layer exploits the structure present in images to find a
more efficiently parameterised model. In contrast to a dense layer, a convolutional
layer leverages two important concepts – sparse interactions and parameter sharing –
to achieve such a parametrisation.

148
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.3 Convolutional Neural Networks

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ

𝑊 (1)1,3

𝑊 (1)3,3

Input variables Hidden units

(a)

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ

𝑊 (1)1,3

𝑊 (1)3,3

Input variables Hidden units

(b)

Figure 6.10: An illustration of the interactions in a convolutional layer: Each hidden unit
(circle) is only dependent on the pixels in a small region of the image (red boxes), here of
size 3 × 3 pixels. The location of the hidden unit corresponds to the location of the region
in the image: if we move to a hidden unit one step to the right, the corresponding region in
the image also moves one step to the right – compare Figure 6.10a and b. Furthermore, the
nine parameters 𝑊 (1)1,1 ,𝑊

(1)
1,2 , . . . ,𝑊

(1)
3,3 are the same for all hidden units in the layer.

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

0

0

0

0 0

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ

𝑊 (1)1,3

𝑊 (1)3,3

Input variables Hidden units

Figure 6.11: An illustration of zero-padding used when the region is partly outside the
image. With zero-padding, the size of the image can be preserved in the following layer.

Sparse Interactions

By sparse interactions we mean that most of the parameters in a corresponding
dense layer are forced to be equal to zero. More specifically, a hidden unit in a
convolutional layer only depends on the pixels in a small region of the image and
not on all pixels. In Figure 6.10, this region is of size 3 × 3. The position of the
region is related to the position of the hidden unit in its matrix representation. If
we move to a hidden unit one step to the right, the corresponding region in the
image also moves one step to the right, as illustrated by comparing Figure 6.10a
and b. For the hidden units on the border, the corresponding region is partly located
outside the image. For these border cases, we typically use zero-padding, where
the missing pixels are simply replaced with zeros. Zero-padding is illustrated in
Figure 6.11.

Parameter Sharing

In a dense layer, each link between an input variable and a hidden unit has its
own unique parameter. With parameter sharing, we instead let the same parameter

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
149

6 Neural Networks and Deep Learning

be present in multiple places in the network. In a convolutional layer, the set
of parameters for the different hidden units are all the same. For example, in
Figure 6.10a, we use the same set of parameters to map the 3 × 3 region of pixels
to the hidden unit as we do in Figure 6.10b. Instead of learning separate sets of
parameters for every position, we only learn one set of a few parameters, and use
it for all links between the input layer and the hidden units. We call this set of
parameters a filter. The mapping between the input variables and the hidden units
can be interpreted as a convolution between the input variables and the filter, hence
the name convolutional neural network. Mathematically, this convolution can be
written as

𝑞𝑖 𝑗 = ℎ

(
𝐹∑︁
𝑘=1

𝐹∑︁
𝑙=1

𝑥𝑖+𝑘−1, 𝑗+𝑙−1𝑊𝑘,𝑙

)
, (6.29)

where 𝑥𝑖, 𝑗 denotes the zero-padded input to the layer, 𝑞𝑖 𝑗 the output of the layer, and
𝑊𝑘,𝑙 the filter with 𝐹 rows and 𝐹 columns. The sparse interactions and parameter
sharing in a convolutional layer makes the CNN relatively invariant to translations
of objects in the image. If the parameters in the filter are sensitive to a certain
detail (such as a corner, an edge, etc.), a hidden unit will react to this detail (or not)
regardless of where in the image that detail is present! Furthermore, a convolutional
layer uses significantly fewer parameters compared to the corresponding dense layer.
In Figure 6.10, only 3 · 3 + 1 = 10 parameters are required (including the offset
parameter). If we instead had used a dense layer, (36 + 1) · 36 = 1 332 parameters
would have been needed! Another way of interpreting this is: with the same amount
of parameters, a convolutional layer can encode more properties of an image than a
dense layer.

Convolutional Layer with Strides

In the convolutional layer presented above, we have as many hidden units as we
have pixels in the image. However, when we add more layers, we want to reduce the
number of hidden units and only store the most important information computed
in the previous layers. One way of doing this is by not applying the filter to every
pixel but to, say, every two pixels. If we apply the filter to every two pixels, both
row-wise and column-wise, the hidden units will only have half as many rows and
half as many columns. For a 6× 6, image we get 3× 3 hidden units. This concept is
illustrated in Figure 6.12.

The stride controls how many pixels the filter shifts over the image at each step.
In Figure 6.10, the stride is 𝑠 = 1 since the filter moves by one pixel both row- and
column-wise. In Figure 6.12, the stride is 𝑠 = 2 since it moves by two pixels row-
and column-wise. Note that the convolutional layer in Figure 6.12 still requires 10
parameters, just as the convolutional layer in Figure 6.10 does. Mathematically, the
convolutional layer with stride can be expressed as

𝑞𝑖 𝑗 = ℎ

(
𝐹∑︁
𝑘=1

𝐹∑︁
𝑙=1

𝑥𝑠 (𝑖−1)+𝑘,𝑠 (𝑗−1)+𝑙𝑊𝑘,𝑙

)
. (6.30)

150
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.3 Convolutional Neural Networks

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ

𝑊 (1)1,3

𝑊 (1)3,3

Input variables Hidden units

(a)

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ

𝑊 (1)1,3

𝑊 (1)3,3

Input variables Hidden units

(b)

Figure 6.12: A convolutional layer with stride 2 and filter size 3 × 3.

5

2

5

0

1

2

2

3

7

4

3

2

1

0

7

9

5

4

0

3

4

0

2

3

2

4

3

2

6

8

4

2

4

3

2

0

5

7

3

3

9

5

4

4

8

Pooling layer input Pooling layer output

(a)

5

2

5

0

1

2

2

3

7

4

3

2

1

0

7

9

5

4

0

3

4

0

2

3

2

4

3

2

6

8

4

2

4

3

2

0

5

7

3

3

9

5

4

4

8

Pooling layer input Pooling layer output

(b)

Figure 6.13: A max pooling layer with stride 2 and pooling filter size 2 × 2.

Not in particular that this is equivalent to (6.29) if we were to use 𝑠 = 1 in the
equation above.

Pooling Layer

Another way of summarising the information in previous layers is achieved by
using pooling. A pooling layer acts as an additional layer after the convolutional
layer. Similar to the convolutional layer, it only depends on a region of pixels.
However, in contrast to convolutional layers, the pooling layer does not come with
any extra trainable parameters. In pooling layers, we also use strides to condense the
information, meaning that region is shifted by 𝑠 > 1 pixels. Two common versions
of pooling are average pooling and max pooling. In average pooling, the average of
the units in the corresponding region is computed. Mathematically, this means

𝑞𝑖 𝑗 =
1
𝐹2

𝐹∑︁
𝑘=1

𝐹∑︁
𝑙=1

𝑞𝑠 (𝑖−1)+𝑘,𝑠 (𝑗−1)+𝑙, (6.31)

where 𝑞𝑖, 𝑗 is the input to the pooling layer, 𝑞𝑖 𝑗 is the output, 𝐹 is the pooling size,
and 𝑠 is the stride used in the pooling layer. In max pooling, we instead take the
maximum of the pixels. Max pooling is illustrated in Figure 6.13.

In comparison to convolution with strides, pooling layers can make the model
more invariant to small translations of the input, meaning that if we translate the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
151

6 Neural Networks and Deep Learning

input by a small amount, many of the pooling outputs do not change. For example,
in Figure 6.13, if we shift the input units one step to the right (and replace the first
column with 0’s), the output of the pooling layer would be the same except for the
7 and 3 in the first column, which would become a 5 and a 2. However, using a
convolutional layer with stride 𝑠 = 2 requires four times fewer computations than a
computational layer (with stride 𝑠 = 1) and after that a pooling layer with stride 𝑠 = 2,
since for the first option the convolution is shifted two steps row- and column-wise,
whereas in the second option the convolution is still shifted by one step.

Time to reflect 6.1 What would the pooling layer output be in Figure 6.13 if
we applied average pooling instead of max pooling?

Multiple Channels

The networks presented in Figures 6.10 and 6.12 only have 10 parameters each.
Even though this parameterisation comes with several important advantages, one
filter is probably not sufficient to encode all interesting properties of the images in
our dataset. To extended the network, we add multiple filters, each with their own set
of parameters. Each filter produces its own set of hidden units – a so-called channel
– using the same convolution operation as explained in Section 6.3. Hence, each
layer of hidden units in a CNN is organised into a so-called tensor with dimension
(rows × columns × channels). In Figure 6.14, the first layer of hidden units has four
channels, and that hidden layer consequently has dimension 6 × 6 × 4.

When we continue to stack convolutional layers, each filter depends not only on
one channel but on all the channels in the previous layer. This is displayed in the
second convolutional layer in Figure 6.14. As a consequence, each filter is a tensor
of dimension (filter rows × filter columns × input channels). For example, each
filter in the second convolutional layer in Figure 6.14 is of size 3 × 3 × 4. If we
collect all filter parameters in one weight tensor W, that tensor will be of dimension
(filter rows × filter columns × input channels × output channels). In the second
convolutional layer in Figure 6.14, the corresponding weight matrix W(2) is a tensor
of dimension 3 × 3 × 4 × 6. With multiple filters in each convolutional layer, each
of them can be sensitive to different features in the image, such as certain edges,
lines, or circles, enabling a rich representation of the images in our training data.

The convolutional layer with multiple input channels and output channels can be
described mathematically as

𝑞 (𝑙)𝑖 𝑗𝑛 = ℎ

(
𝐹𝑙∑︁
𝑘=1

𝐹𝑙∑︁
𝑙=1

𝑈𝑙−1∑︁
𝑚=1

𝑞 (𝑙−1)
𝑠𝑙 (𝑖−1)+𝑘−1,𝑠𝑙 (𝑗−1)+𝑙,𝑚𝑊

(𝑙)
𝑘,𝑙,𝑚,𝑛

)
, (6.32)

where 𝑞 (𝑙−1)
𝑖 𝑗𝑚 is the input to layer 𝑙, 𝑞 (𝑙)𝑖 𝑗𝑛 is the output from layer 𝑙,𝑈𝑙−1 is the number

of input channels, 𝐹𝑙 is the filter rows/columns, 𝑠𝑙 is the stride, and 𝑊 (𝑙)𝑘,𝑙,𝑚,𝑛 is the
weight tensor.

152
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.3 Convolutional Neural Networks

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6

𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6

𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6

𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6

𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6

...

ℎ

ℎ

ℎ

...

𝑧1

𝑧𝑀

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ

𝑊 (1)1,3,1

𝑊 (1)3,3,1

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ ℎ ℎ ℎ ℎ ℎ

ℎ

𝑊 (1)1,3,4

𝑊 (1)3,3,4

𝑊 (2)1,3,4,6

𝑊 (2)3,3,4,6

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ ℎ ℎ

ℎ
...

...

𝑔1

𝑔𝑀

Input variables
dim 6 × 6 × 1

Hidden units
dim 6 × 6 × 4

Hidden units
dim 3 × 3 × 6

Hidden units
dim 𝑈3

Logits
dim 𝑀

Outputs
dim 𝑀

Convolutional
layer

W(1) ∈ R3×3×1×4

b(1) ∈ R4

Convolutional
layer

W(2) ∈ R3×3×4×6

b(2) ∈ R6

Dense
layer

W(3) ∈ R54×𝑈3

b(3) ∈ R𝑈3

Dense
layer

W(4) ∈ R𝑈3×𝑀

b(4) ∈ R𝑀

Softmax

Figure 6.14: A full CNN architecture for classification of greyscale 6 × 6 images. In the
first convolutional layer, four filters, each of size 3 × 3, produce a hidden layer with four
channels. The first channel (in the back) is visualised in red, and the forth channel (in
the front) is visualised in blue. We use stride 1, which maintains the number of rows and
columns. In the second convolutional layer, six filters of size 3 × 3 × 4 and stride 2 are
used. They produce a hidden layer with 3 rows, 3 columns, and 6 channels. After the two
convolutional layers follows a dense layer where all 3 · 3 · 6 = 54 hidden units in the second
hidden layer are densely connected to all 𝑈3 hidden units in the third layer, where all links
have their unique parameters. We add an additional dense layer mapping down to the 𝑀
logits. The network ends with a softmax function to provide predicted class probabilities as
output. Note that the arrows corresponding to the offset parameters are not included here in
order to make the figure less cluttered.

Full CNN Architecture

A full CNN architecture consists of multiple convolutional layers. For predictive
tasks, we decrease the number of rows and columns in the hidden layers as we
proceed through the network but instead increase the number of channels to enable
the network to encode more high level features. After a few convolutional layers,
we usually end the network with one or more dense layers. If we consider an image
classification task, we place a softmax layer at the very end to get outputs in the
range [0,1]. The loss function when training a CNN will be the same as in the
regression and classification networks explained earlier, depending on what type
of problem we have at hand. Figure 6.14 shows a small example of a full CNN
architecture.

Example 6.3 Classification of hand-written digits – convolutional neural
network

In the previous models explained in Examples 6.1 and 6.2, we placed all the 28× 28
pixels of each image into a long vector with 784 elements. With this action, we
did not exploit the information that two neighbouring pixels are more likely to be
correlated than two pixels further apart. Instead, we now keep the matrix structure
of the data and use a CNN with three convolutional layers and two dense layers.
The settings for the layers are given in the table below.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
153

6 Neural Networks and Deep Learning

Convolutional layers Dense layers
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Number of filters/output
channels

4 8 12 – –

Filter rows and columns (5 × 5) (5 × 5) (4 × 4) – –
Stride 1 2 2 – –
Number of hidden units 3 136 1 568 588 200 10
Number of parameters
(including offset vector)

104 808 1 548 117 800 2 010

In a high-dimensional parameter space, saddle points in the cost function are
frequent. Since the gradients are zero also at these saddle points, stochastic gradient
descent might get stuck there. Therefore, we train this model using an extension of
stochastic gradient descent called Adam (short for adaptive moment estimation).
Adam uses running averages on the gradients and their second order moments and
can pass these saddle points more easily. For the Adam optimiser, we use a learning
rate of 𝛾 = 0.002. In Figure 6.15, the cost function and the misclassification rate on
the current training mini-batch and the validation data are displayed. The shaded
red line is the performance on the validation data for the two-layer network that was
presented in Example 6.2.

0 5 10 15
0

0.05

0.1

0.15

Epochs

𝐽
(𝜽
)

Cost function

Training data
Validation data

0 5 10 15
0 %

1 %

2 %

3 %

4 %

Epochs

1 𝑛

∑ 𝑛 𝑖=
1
I{�̂�

𝑖
≠
𝑦 𝑖
}

Misclassification rate

Training data
Validation data

Fig.
6.15

0 2 4 6 8 10 12 14
0

1

2

3

4
·10−3

Epochs

𝛾
𝑡

Learning rate

Constant learning rate
Decaying learning rate

Fig.
6.16

In comparison to the result on the dense
two-layer network, we can see an improve-
ment going from 2% down to just over
1% misclassification on the validation data.
From Figure 6.15 we can also see that the
performance on validation data does not
quite settle but is fluctuating in the span
1–1.5%. As explained in Section 5.5, this
is due to the randomness introduced by
stochastic gradient descent itself. To cir-
cumvent this effect, we use decaying learning rate. We use the scheme suggested in
(5.38), with 𝛾max = 0.003, 𝛾min = 0.0001, and 𝜏 = 2 000 (Figure 6.16).

After employing the adaptive learning rate in Figure 6.17, the misclassification
rate on validation data settles around 1% rather than only sometimes bouncing down
to 1% as it did before we applied a decaying learning rate. However, we can do more.
In the last epochs, we get almost all data points correct in the current mini-batch. In
addition, looking at the plot for the cost function evaluated for the validation data, it

154
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.4 Dropout

0 5 10 15
0

0.05

0.1

0.15

Epochs

𝐽
(𝜽
)

Cost function

Training data
Validation data

0 5 10 15
0 %

1 %

2 %

3 %

4 %

Epochs

1 𝑛

∑ 𝑛 𝑖=
1
I{�̂�

𝑖
≠
𝑦 𝑖
}

Misclassification rate

Training data
Validation data

Fig.
6.17

starts increasing after five epochs. Hence, we see signs of overfitting as we did at the
end of Example 6.2 . To circumvent this overfitting, we can add regularisation. One
popular regularisation method for neural networks is dropout, which is explained in
the following section.

Time to reflect 6.2 In the table in Example 6.3, the number of parameters
for all five layers, as well as the number of hidden units for the three
convolutional layers, can all be computed from the remaining numbers in
that table and previously stated information. Can you do this computation?

6.4 Dropout

Like all models presented in this course, neural network models can suffer from
overfitting if we have too flexible a model in relation to the complexity of the data.
One way to reduce the variance, and by that also reduce the risk of overfitting, is
by training not just one model but multiple models and averaging their predictions.
This is the main idea behind bagging, which we present in more detail in Chapter 7.
To set the terminology, we say that we train an ensemble of models, and each model
we refer to as an ensamble member.

Bagging is also applicable to neural networks. However, it comes with some
practical problems. A large neural network model usually takes quite some time
to train, and it has many parameters to store. To train not just one but an entire
ensemble of many large neural networks would thus be very costly, both in terms
of runtime and memory. Dropout is a bagging-like technique that allows us to
combine many neural networks without the need to train them separately. The trick
is to let the different models share parameters with each other, which reduces the
computational cost and memory requirement.

Ensemble of Sub-networks

Consider a dense neural network like the one in Figure 6.18a. In dropout, we
construct the equivalent to an ensemble member by randomly removing some of the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
155

6 Neural Networks and Deep Learning

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ
𝑊 (1)55

𝑊 (2)11

𝑊 (3)15

(a) A standard neural network

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ
𝑊 (1)55

𝑊 (3)15

×

×

×

×

×

×

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ
𝑊 (1)55

𝑊 (2)11×

×
×

×

×
×

(b) Two sub-networks

Figure 6.18: A neural network with two hidden layers (a) and two sub-networks with
dropped units (b). The collection of units that have been dropped are independent between
the two sub-networks.

hidden units. We say that we drop the units, hence the name dropout. When a unit
is removed, we also remove all of its incoming and outgoing connections. With
this procedure, we obtain a sub-network that only contains a subset of the units and
parameters present in the original network. Two such sub-networks are displayed in
Figure 6.18b.

Mathematically, we can write this as sampling a mask m(𝑙−1) = [𝑚 (𝑙−1)
1 . . . 𝑚 (𝑙−1)

𝑈𝑙−1
]

for each layer, multiplying that mask element-wise with the hidden units q(𝑙−1) , and
then feeding the masked hidden units q̃(𝑙−1) to the next layer:

𝑚 (𝑙−1)
𝑗 =

{
1 with probability 𝑟

0 with probability 1 − 𝑟,
for all 𝑗 = 1, . . . ,𝑈𝑙−1, (6.33a)

q̃(𝑙−1) = m(𝑙−1) � q(𝑙−1) , (6.33b)

q(𝑙) = ℎ(W(𝑙) q̃(𝑙−1) + b(𝑙)). (6.33c)

The probability 𝑟 of keeping a unit is a hyperparameter set by the user. We can
choose to apply dropout to all layers or only some of them and can also use different
probabilities 𝑟 for the different layers. We can also apply dropout to the input
variables as we do in Figure 6.18b. However, we do not apply dropout on the
output units. Since all sub-networks stem from the very same original network,
the different sub-networks share some parameters with each other. For example, in
Figure 6.18b, the parameter 𝑊 (1)55 is present in both sub-networks. The fact that they
share parameters with each other allows us to train the ensemble of sub-networks in
an efficient manner.

Training with Dropout

To train with dropout, we use stochastic gradient descent as described in Algorithm
5.3. In each gradient step, a mini-batch of data is used to compute an approximation

156
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.4 Dropout

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ
𝑟𝑊 (1)55

𝑟𝑊 (2)11

𝑟𝑊 (3)15

Figure 6.19: The network used for prediction after being trained with dropout. All units and
links are present (no dropout), but the weights going out from a certain unit are multiplied
by the probability of that unit being included during training. This is to compensate for the
fact that some of them were dropped during training. Here all units have been kept with
probability 𝑟 during training (and consequently dropped with probability 1 − 𝑟).

of the gradient, as normally done in stochastic gradient descent. However, instead
of computing the gradient for the full network, we generate a random sub-network
by randomly dropping units as described above. We compute the gradient for
that sub-network and then do a gradient step. This gradient step only updates the
parameters present in the sub-network. The parameters that are associated with
the dropped units do not affect the output of that sub-network and are hence left
untouched. In the next gradient step, we use another mini-batch of data, remove
another randomly selected collection of units, and update the parameters present
in that sub-network. We proceed in this manner until some terminal condition is
fulfilled.

Prediction at Test Time

After we have trained the sub-networks, we want to make a prediction based on an
unseen input data point x★. If this was an ensemble method, we would evaluate all
possible sub-networks and average their predictions. Since each unit can be either
in our out, there are 2𝑈 such sub-networks, where 𝑈 is the total number of units
in the network. Hence, due to this large number, evaluating all of them would be
infeasible. However, there is a simple trick to approximately achieve the same result.
Instead of evaluating all possible sub-networks, we simply evaluate the full network
containing all the parameters. To compensate for the fact that the model was trained
with dropout, we multiply each estimated parameter going out from a unit by the
probability of that unit being kept during training. This ensures that the expected
value of the input to the next unit is the same during training and testing. If during

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
157

6 Neural Networks and Deep Learning

training, we kept a unit in layer 𝑙 − 1 with probability 𝑟, then during prediction we
multiply the following weight matrix W(𝑙) with 𝑟 , that is

W̃(𝑙)
= 𝑟W(𝑙) , (6.34a)

q(𝑙) = ℎ(W̃(𝑙)q(𝑙−1) + b(𝑙)). (6.34b)

This is also illustrated in Figure 6.19, where we have kept a unit with probability 𝑟
in all layers during training. This adjustment of the weights can, of course, be done
just once after we are done training and then these adjusted weights used as usual
during all coming predictions.

This procedure of approximating the average over all ensemble members has
been shown to work surprisingly well in practice even though there is not yet any
solid theoretical argument for the accuracy of this approximation.

Dropout vs. Bagging

As already pointed out, dropout has similarities with the ensamble method called
bagging. If you have already learned about bagging in Chapter 7, there are a few
important differences to point out:

• In bagging, all models are independent in the sense that they have their
own parameters. In dropout, the different models (the sub-networks) share
parameters.

• In bagging, each model is trained until convergence. In dropout, most of the
𝑈2 sub-networks are not trained at all (since they have not been sampled),
and those that have been trained have most likely only been trained for one
singe gradient step. However, since they share parameters, all models will
also be updated when the other sub-networks are trained.

• Similar to bagging, in dropout, we train each model on a dataset that has been
randomly selected from our training data. However, in bagging, we usually
do it on a bootstrapped version of the whole dataset, whereas in dropout, each
model is trained on a randomly selected mini-batch of data.

Even though dropout differs from bagging in some aspects, it has empirically been
shown to enjoy similar properties as bagging in terms of avoiding overfitting and
reducing the variance of the model.

Dropout as a Regularisation Method

As a way to reduce the variance and avoid overfitting, dropout can be seen as
a regularisation method. There are plenty of other regularisation methods for
neural networks, including explicit regularisation (like 𝐿1 and 𝐿2 regularisation;
see Chapter 5), early stopping (the training is stopped before the parameters have
converged; see Chapter 5), and various sparse representations (for example, CNNs

158
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.5 Further Reading

can be seen as a regularisation method where most parameters are forced to be
zero), just to mention a few. Since its invention, dropout has become one of
the most popular regularisation techniques due to its simplicity, the fact that it
is computationally cheap, and its good performance. In fact, a good practice of
designing a neural network is often to extended the network until it overfits, then
extend it a bit more, and finally add a regularisation like dropout to avoid that
overfitting.

Example 6.4 Classification of hand-written digits – regularising with dropout

We return to the last model in Example 6.3, where we used a CNN trained with an
adaptive learning rate. In the results, we could see clear indications of overfitting.
To reduce this overfitting, we employ dropout during the training procedure. We
use dropout in the final hidden layer and keep only 𝑟 = 75% of the 200 hidden units
in that layer at each iteration. The result for this regularised model is presented in
Figure 6.20. In shaded red, we also present the performance on validation data for
the non-regularised version which was already presented at the end of Example 6.3.

0 5 10 15
0

0.02

0.04

Epochs

𝐽
(𝜽
)

Cost function

Training data
Validation data

0 5 10 15

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

Epochs

1 𝑛

∑ 𝑛 𝑖=
1
I{�̂�

𝑖
≠
𝑦 𝑖
}

Misclassification rate

Training data
Validation data

Fig.
6.20

In contrast to the last model of Example 6.3, the cost function evaluated for
the validation data is (almost) no longer increasing, and we also reduce the
misclassification rate by an additional 0.1% to 0.2%.

6.5 Further Reading

Although the first conceptual ideas of neural networks date back to the 1940s
(McCulloch and Pitts 1943), they had their first main success stories in the late
1980s and early 1990s with the use of the so-called backpropagation algorithm.
At that stage, neural networks could, for example, be used to classify handwritten
digits from low-resolution images (LeCun, Boser, et al. 1989). However, in the
late 1990s, neural networks were largely forsaken because it was widely believed
that they could not be used to solve any challenging problems in computer vision
and speech recognition. In these areas, neural networks could not compete with
hand-crafted solutions based on domain-specific prior knowledge.

This situation has changed dramatically since the late 2000s under the name
deep learning. Progress in software, hardware, and algorithm parallelisation made
it possible to address more complicated problems, which were unthinkable only

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
159

6 Neural Networks and Deep Learning

a couple of decades ago. For example, in image recognition, these deep models
are now the dominant methods in use, and they reach human or even super-human
performance on some specific tasks. An accessible introduction to and overview of
deep learning is provided by LeCun, Bengio, et al. (2015), and via the textbook by
Goodfellow, Bengio, et al. (2016).

6.A Derivation of the Backpropagation Equations

To derive the backpropagation equations (6.27), consider the non-vectorised version
of layer 𝑙:

𝑧 (𝑙)𝑗 =

∑
𝑘
𝑊 (𝑙)𝑗𝑘 𝑞

(𝑙−1)
𝑘 + 𝑏 (𝑙)𝑗

𝑞 (𝑙)𝑗 = ℎ(𝑧 (𝑙)𝑗)
, ∀ 𝑗 = 1, . . . 𝑈 (𝑙) . (6.35)

Assume that we want to compute the derivatives of the cost function with respect
to the parameters 𝑊 (𝑙)𝑗𝑘 and 𝑏 (𝑙)𝑗 . Note that the cost function 𝐽 (𝜽) depends on both
𝑊 (𝑙)𝑗𝑘 and 𝑏 (𝑙)𝑗 only via the hidden unit 𝑧 (𝑙)𝑗 (and non of the other hidden units in that
layer). We can use the chain rule of calculus to write

𝜕𝐽

𝜕𝑏 (𝑙)𝑗
=

𝜕𝐽

𝜕𝑧 (𝑙)𝑗

𝜕𝑧 (𝑙)𝑗

𝜕𝑏 (𝑙)𝑗︸︷︷︸
=1

=
𝜕𝐽

𝜕𝑧 (𝑙)𝑗
,

𝜕𝐽

𝜕𝑊 (𝑙)𝑗𝑘
=

𝜕𝐽

𝜕𝑧 (𝑙)𝑗

𝜕𝑧 (𝑙)𝑗

𝜕𝑊 (𝑙)𝑗𝑘︸ ︷︷ ︸
=𝑞 (𝑙−1)

𝑘

=
𝜕𝐽

𝜕𝑧 (𝑙)𝑗
𝑞 (𝑙−1)
𝑘 , ∀ 𝑗 = 1, . . . 𝑈 (𝑙) , (6.36)

where the partial derivatives of 𝑧 (𝑙)𝑗 with respect to 𝑊 (𝑙)𝑗𝑘 and 𝑏 (𝑙)𝑗 can be directly
derived from (6.35).

Similarly, we can also use the chain rule to compute the partial derivative of
𝐽 (𝜽) with respect to the post-activation hidden unit 𝑞 (𝑙−1)

𝑘 for layer 𝑙 − 1. Note,
𝐽 (𝜽) depends on 𝑞 (𝑙−1)

𝑘 via all of the pre-activation hidden units {𝑧 (𝑙)𝑗 }𝑈
(𝑙)

𝑗=1 in layer
𝑙; hence we get

𝜕𝐽

𝜕𝑞 (𝑙−1)
𝑘

=
∑︁
𝑗

𝜕𝐽

𝜕𝑧 (𝑙)𝑗

𝜕𝑧 (𝑙)𝑗

𝜕𝑞 (𝑙−1)
𝑘︸ ︷︷ ︸

𝑊
(𝑙)
𝑗𝑘

=
∑︁
𝑗

𝜕𝐽

𝑧 (𝑙)𝑗
𝑊 (𝑙)𝑗𝑘 , ∀𝑘 = 1, . . . 𝑈 (𝑙−1) . (6.37)

160
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

6.A Derivation of the Backpropagation Equations

Finally, we can also use the chain rule to express

𝜕𝐽

𝜕𝑧 (𝑙)𝑗
=

𝜕𝐽

𝜕𝑞 (𝑙)𝑗

𝜕𝑞 (𝑙)𝑗

𝜕𝑧 (𝑙)𝑗
=

𝜕𝐽

𝜕𝑞 (𝑙)𝑗
ℎ′(𝑧 (𝑙)𝑗), ∀ 𝑗 = 1, . . . 𝑈 (𝑙) , (6.38)

where ℎ′ is the derivative of the activation function. With the vectorised notation
for 𝑑W, 𝑑b, 𝑑z, and 𝑑q introduced in (6.2) and (6.25), we get that Equation (6.38)
gives (6.27a), Equation (6.37) gives (6.27b), and Section 6.A gives (6.27c)–(6.27d).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
161

7 Ensemble Methods: Bagging
and Boosting

In the preceding chapters, we have seen several examples of different machine
learning models, from 𝑘-NN to deep neural networks. In this chapter, we will
introduce a new way of constructing models, by combining multiple instances
of some basic model. We refer to this as an ensemble of base models, and the
resulting methods are consequently referred to as ensemble methods. The key idea
behind ensemble methods is the ‘wisdom of crowds’: by training each base model
in a slightly different way, they can all contribute to learning the input–output
relationship. Specifically, to obtain a prediction from an ensemble, we let each
base model make its own prediction and then use a (possibly weighted) average or
majority vote to obtain the final prediction. With a carefully constructed ensemble,
the prediction obtained in this way is better than the predictions of the individual
base models.

We start in Section 7.1 by introducing a general technique referred to as bootstrap
aggregating, or bagging for short. The bagging idea is to first create multiple
slightly different ‘versions’ of the training data by, essentially, randomly sampling
overlapping subsets of the training data (the so-called bootstrap). Thereafter, one
base model is trained from each such ‘version’ of the training data. In this way, an
ensemble of similar, but not identical, base models is obtained. With this procedure
it is possible to reduce the variance (without any notable increase in bias) compared
to using only a single base model trained on the entire training dataset. In practice,
this means that by using bagging, the risk of overfitting decreases compared to using
the base model itself. In Section 7.2 we introduce an extension to bagging only
applicable when the base model is a classification or regression tree, which results
in a powerful off-the-shelf method called random forests. In random forests, each
tree is randomly perturbed in order to obtain additional variance reduction, beyond
what is already obtained by the bagging procedure itself.

In Sections 7.3–7.4 we introduce another ensemble method known as boosting.
Boosting is different from bagging and random forests, since its base models are
trained sequentially, one after the other, where each model tries to ‘correct’ for
the ‘mistakes’ made by the previous ones. Contrary to bagging, the main effect of
boosting is bias reduction compared to the base model. Thus, boosting is able to
turn an ensemble of ‘weak’ base models (e.g., linear classifiers) into one ‘strong’
ensemble model (e.g., a heavily non-linear classifier).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
163

7 Ensemble Methods: Bagging and Boosting

7.1 Bagging

As already discussed in Chapter 4, a central concept in machine learning is the
bias–variance trade-off. Roughly speaking, the more flexible a model is, the lower
its bias will be. That is, a flexible model is capable of representing complicated
input–output relationships. Examples of simple yet flexible models are 𝑘-NN with
a small value of 𝑘 and a classification tree that is grown deep. Such highly flexible
models are sometimes needed for solving real-world machine learning problems,
where relationships are far from linear. The downside, however, is the risk of
overfitting, or equivalently, high model variance. Despite their high variance, those
models are not useless. By using them as base models in bootstrap aggregating, or
bagging, we can

reduce the variance of the base model without increasing its bias.

We outline the main idea of bagging with the example below.

Example 7.1 Using bagging for a regression problem

Consider the data (black dots) that are drawn from a function (dashed line) plus
noise in Figure 7.1a. As always in supervised machine learning, we want to train
a model from the data which is able to predict new data points well. Being able
to predict new data points well means, among other things, that the model should
predict the dotted line at 𝑥★ (the empty blue circle) well.

To solve this problem, we could use any regression method. Here, we use a
regression tree which is grown until each leaf node only contains one data point,
whose prediction is shown to the lower left in Figure 7.1c (blue line and dot). This
is a typical low-bias high-variance model, and the overfit to the training data is
apparent from the figure. We could decrease its variance, and hence the overfitting,
by using a shallower tree, but that would on the other hand increase the bias. Instead,
we lower the variance (without increasing the bias much) by using bagging with the
regression tree as base model.

The rationale behind bagging goes as follows: Because of the noise in the training
data, we may think of the prediction �̂�(𝑥★) (the blue dot) as a random variable.
In bagging, we learn an ensemble of base models (Figure 7.1b), where each base
model is trained on a different ‘version’ of the training data, obtained using the
bootstrap. We may therefore think of each base model as a different realisation
of the random variable �̂�(𝑥★). The average of multiple realisations of a random
variable has a lower variance than the random variable itself, which means that by
taking the average (Figure 7.1d) of all the base models, we obtain a prediction with
less variance than the base model itself. That is, the bagged regression tree (Figure
7.1d) has lower variance than a single prediction tree (Figure 7.1c). Since the base
model itself also has low bias, the averaged prediction will have low bias and low
variance. We can visually confirm that the prediction is better (blue dot and circle
are closer to each other) for bagging than for the single regression tree.

164
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.1 Bagging

0 𝑥★ 2

−2

−1

0

1

𝑥

𝑦

Data

0 𝑥★ 2

−2

−1

0

1

𝑥

𝑦

Regression tree learned from all data

0 𝑥★ 2
−2

−1

0

1

𝑦

0 𝑥★ 2

Ensemble of bootstrapped regression trees

0 𝑥★ 2

0 𝑥★ 2
−2

−1

0

1

0 𝑥★ 2 0 𝑥★ 2

𝑦

0 𝑥★ 2
−2

−1

0

1

𝑥
0 𝑥★ 2

𝑥
0 𝑥★ 2

𝑥

𝑦

0 𝑥★ 2

−2

−1

0

1

𝑥

𝑦

Average of bootstrapped regression trees = bagging

Fig.
7.1

The Bootstrap

As outlined in Example 7.1, the idea of bagging is to average over multiple base
models, each learned from a different training dataset. Therefore, we first have to
construct different training datasets. In the best of worlds, we would just collect
multiple datasets, but most often we cannot do that and instead we have to make the
most of the limited data available. For this purpose, the bootstrap is useful.

The bootstrap is a method for artificially creating multiple datasets (of size 𝑛) out
of one dataset (also of size 𝑛). The traditional usage of the bootstrap is to quantify
uncertainties in statistical estimators (such as confidence intervals), but it turns
out that it can also be used to construct machine learning models. We denote the
original dataset T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 and assume that T provides a good representation
of the real-world data generating process, in the sense that if we were to collect
more training data, these data points would likely be similar to the training data
points already contained in T . We can thus argue that randomly picking data points

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
165

7 Ensemble Methods: Bagging and Boosting

from T is a reasonable way to simulate a ‘new’ training dataset. In statistical terms,
instead of sampling from the population (collecting more data), we sample from the
available training data, which is assumed to provide a good representation of the
population.

The bootstrap is stated in Algorithm 7.1 and illustrated in Example 7.2 below. Note
that the sampling is done with replacement, meaning that the resulting bootstrapped
dataset may contain multiple copies of some of the original training data points,
whereas other data points may not be included at all.

Algorithm 7.1: The bootstrap.
Data: Training dataset T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Bootstrapped data T̃ = {x̃𝑖 , �̃�𝑖}𝑛𝑖=1

1 for 𝑖 = 1, . . . , 𝑛 do
2 Sample ℓ uniformly on the set of integers {1, . . . , 𝑛}
3 Set x̃𝑖 = xℓ and �̃�𝑖 = 𝑦ℓ
4 end

Time to reflect 7.1 What would happen if the sampling was done without
replacement in the bootstrap?

Example 7.2 The bootstrap

We have a small training dataset with 𝑛 = 10 data points, with a two-dimensional
input x = [𝑥1 𝑥2] and a binary output 𝑦 ∈ {Blue, Red} (see Figure 7.2).

Original training data, T = {x𝑖 , 𝑦𝑖}10
𝑖=1

Index 𝑥1 𝑥2 𝑦

1 9.0 2.0 Blue
2 1.0 4.0 Blue
3 4.0 6.0 Blue
4 4.0 1.0 Blue
5 1.0 2.0 Blue
6 1.0 8.0 Red
7 6.0 4.0 Red
8 7.0 9.0 Red
9 9.0 8.0 Red

10 9.0 6.0 Red

0 2 4 6 8 10
0

2

4

6

8

10

𝑥1

𝑥 2

Fig.
7.2

To generate a bootstrapped dataset T̃ = {x̃𝑖 , �̃�𝑖}10
𝑖=1, we simulate 10 times

with replacement from the index set {1, . . . , 10}, resulting in the indices
{2, 10, 10, 5, 9, 2, 5, 10, 8, 10}. Thus, (x̃1, �̃�1) = (x2, 𝑦2), (x̃2, �̃�2) = (x10, 𝑦10),
etc. We end up with the dataset in Figure 7.3, where the numbers in parentheses in
the right panel indicate that there are multiple copies of some of the original data
points in the bootstrapped data.

166
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.1 Bagging

Bootstrapped data, T̃ = {x̃𝑖 , �̃�𝑖}10
𝑖=1

Index �̃�1 �̃�2 �̃�

2 1.0 4.0 Blue
10 9.0 6.0 Red
10 9.0 6.0 Red
5 1.0 2.0 Blue
9 9.0 8.0 Red
2 1.0 4.0 Blue
5 1.0 2.0 Blue

10 9.0 6.0 Red
8 7.0 9.0 Red

10 9.0 6.0 Red

0 2 4 6 8 10
0

2

4

6

8

10

(2)
(2)

(4)

𝑥1

𝑥 2

Fig.
7.3

Variance Reduction by Averaging

By running the bootstrap (Algorithm 7.1) repeatedly 𝐵 times, we obtain 𝐵 random
but identically distributed bootstrapped datasets T̃ (1) , . . . , T̃ (𝐵) . We can then use
those bootstrapped datasets to train an ensemble of 𝐵 base models. We thereafter
average their predictions

�̂�bag(x★) = 1
𝐵

𝐵∑︁
𝑏=1

�̃� (𝑏) (x★) or gbag(x★) =
1
𝐵

𝐵∑︁
𝑏=1

g̃(𝑏) (x★), (7.1)

depending on whether we are concerned with regression (predicting an output
value �̂�bag(x★)) or classification (predicting class probabilities gbag(x★)). The latter
expression assumes that each base classifier outputs a vector of class probabilities.
If this is not the case, we can instead obtain a ‘hard’ class prediction by taking a
majority vote among the ensemble members. Note that it is natural to take a plain
average across the ensemble (each member is weighted equally) in (7.1) due to the
fact that all ensemble members are constructed in the same way, that is, they are
identically distributed.

In (7.1), �̃� (1) (x★), . . . , �̃� (𝐵) (x★) and g̃(1) (x★), . . . , g̃(𝐵) (x★) denote the predic-
tions from the individual ensemble members. The averaged prediction, denoted
�̂�bag(x★) or gbag(x★), is the final prediction obtained from bagging. We summarise
this by Method 7.1. (For classification, the prediction could alternatively be decided
by majority vote among the ensemble members, but that typically degrades the
performance slightly compared to averaging the predicted class probabilities.)

We will now give some more details on the variance reduction that happens in
(7.1), which is the entire point of bagging. We focus on regression, but the intuition
also works for classification.

First we make a basic observation regarding random variables, namely that
averaging reduces variance. To formalise this, let 𝑧1, . . . , 𝑧𝐵 be a collection of
identically distributed (but possibly dependent) random variables with mean value
E[𝑧𝑏] = 𝜇 and variance Var[𝑧𝑏] = 𝜎2 for 𝑏 = 1, . . . , 𝐵. Furthermore, assume that

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
167

7 Ensemble Methods: Bagging and Boosting

Learn all base models
Data: Training dataset T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: 𝐵 base models

1 for 𝑏 = 1, . . . , 𝐵 do
2 Run Algorithm 7.1 to obtain a bootstrapped training dataset T̃ (𝑏)
3 Learn a base model from T̃ (𝑏)
4 end
5 Obtain �̂�bag(x★) or gbag(x★) by averaging (7.1).

Predict with the base models
Data: 𝐵 base models and test input x★
Result: A prediction �̂�bag(x★) or gbag(x★)

1 for 𝑏 = 1, . . . , 𝐵 do
2 Use base model 𝑏 to predict �̃� (𝑏) (x★) or g̃(𝑏) (x★)
3 end
4 Obtain �̂�bag(x★) or gbag(x★) by averaging (7.1).

Method 7.1: Bagging

the average correlation1 between any pair of variables is 𝜌. Then, computing the
mean and the variance of the average 1

𝐵

∑𝐵
𝑏=1 𝑧𝑏 of these variables, we get

E

[
1
𝐵

𝐵∑︁
𝑏=1

𝑧𝑏

]
= 𝜇, (7.2a)

Var

[
1
𝐵

𝐵∑︁
𝑏=1

𝑧𝑏

]
=

1 − 𝜌

𝐵
𝜎2 + 𝜌𝜎2. (7.2b)

The first equation (7.2a) tells us that the mean is unaltered by averaging a number of
identically distributed random variables. Furthermore, the second equation (7.2b)
tells us that the variance is reduced by averaging if the correlation 𝜌 < 1. The first
term in the variance expression (7.2b) can be made arbitrarily small by increasing 𝐵,
whereas the second term is only determined by the correlation 𝜌 and variance 𝜎2.

To make a connection between bagging and (7.2), consider the predictions
�̃� (𝑏) (x★) from the base models as random variables. All base models, and hence
their predictions, originate from the same data T (via the bootstrap), and �̃� (𝑏) (x★)
are therefore identically distributed but correlated. By averaging the predictions, we
decrease the variance, according to (7.2b). If we choose 𝐵 large enough, the achieved
variance reduction will be limited by the correlation 𝜌. Experience has shown that 𝜌

1That is, 1
𝐵 (𝐵−1)

∑
𝑏≠𝑐 E[(𝑧𝑏 − 𝜇) (𝑧𝑐 − 𝜇)] = 𝜌𝜎2.

168
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.1 Bagging

is often small enough such that the computational complexity of bagging (compared
to only using the base model itself) pays off well in terms of decreased variance. To
summarise, by averaging the identically distributed predictions from several base
models as in (7.1), each with a low bias, the bias remains low2 (according to (7.2a)),
and the variance is reduced (according to (7.2b)).

At first glance, one might think that a bagging model (7.1) becomes more
‘complex’ as the number of ensemble members 𝐵 increases, and that we therefore
run a risk of overfitting if we use many ensemble members 𝐵. However, there
is nothing in (7.2) which indicates any such problem (bias remains low; variance
decreases), and we confirm this by Example 7.3.

Example 7.3 Bagging for regression (continued)

We consider the problem from Example 7.1 again and explore how the number of
base models 𝐵 affects the result. We measure the squared error between the ‘true’
function value at 𝑥★ and the predicted �̂�bag (𝑥★) when using different values of 𝐵.
(Because of the bootstrap, there is a certain amount of randomness in the bagging
algorithm itself. To avoid that ‘noise’, we average the result over multiple runs of
the bagging algorithm.)

5 10 15 20 25 30 35 40 45
0.1

0.2

0.3

𝐵

Sq
ua

re
d

er
ro

rf
or

�̂� b
ag
(𝑥 ★
)

Fig.
7.4

What we see in Figure 7.4 is that the squared error eventually reaches a plateau as
𝐵→∞. Had there been an overfitting issue with 𝐵→∞, the squared error would
have started to increase again for some large value of 𝐵.

Despite the fact that the number of parameters in the model increases as 𝐵
increases, the lack of overfitting as 𝐵→∞ according to Example 7.3 is the expected
(and intended) behaviour. It is important to understand that from the construction of
bagging, more ensemble members does not make the resulting model more flexible
but only reduces the variance. This can be understood by noting that the addition of
an ensemble member to the bagging model is not done in order to obtain a better fit
to the training data. On the contrary, if each ensemble member overfits to its own
perturbed version of the training data, the averaging across the ensemble will result

2 Strictly speaking, (7.2a) implies that the bias is identical for a single ensemble member and the
ensemble average. The use of the bootstrap might, however, affect the bias, in that a base model
trained on the original data might have a smaller bias than a base model trained on a bootstrapped
version of the training data. Most often, this is not an issue in practice.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
169

7 Ensemble Methods: Bagging and Boosting

in a smoothing effect which typically results in a larger training error (compared to
the individual ensemble members’ training errors) but also better generalisation.
We can also understand this by considering the limiting behavior as 𝐵 → ∞. By
the law of large numbers and the fact that the ensemble members are identically
distributed, the bagging model becomes

�̂�bag(𝑥★) = 1
𝐵

𝐵∑︁
𝑏=1

�̃� (𝑏) (𝑥★) 𝐵→∞−→ E
[
�̃� (𝑏) (𝑥★) | T

]
, (7.3)

where the expectation is with respect to the randomness of the bootstrapping
algorithm. As 𝐵 increases, we expect the bagging model to converge to the
hypothetical (limited flexibility) model on the right hand side. With this in mind, in
practice the choice of 𝐵 is mainly guided by computational constraints. The larger
𝐵 is, the better, but increasing 𝐵 when there is no further reduction in test error is
computationally wasteful.

Be aware! Bagging can still suffer from overfitting since each individual ensemble
member can overfit. The only claim we have made is that the overfitting is not
caused by (or made worse by) using too many ensemble members and, conceptually,
there is no problem with taking 𝐵→∞.

Out-of-Bag Error Estimation

When using bagging (or random forests, which we discuss below), it turns out
that there is a way to estimate the expected new data error 𝐸new without using
cross-validation. The first observation we have to make is that not all data points
from the original dataset T will have been used for training all ensemble members.
It can be shown that with the bootstrap, on average only 63% of the original training
data points in T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 will be present in a bootstrapped training dataset
T̃ = {x̃𝑖 , �̃�𝑖}𝑛𝑖=1. Roughly speaking, this means that for any given {x𝑖 , 𝑦𝑖} in T ,
about one third of the ensemble members will not have seen that data point during
training. We refer to these (roughly 𝐵/3) ensemble members as being out-of-bag for
data point 𝑖, and we let them form their own ensemble: the 𝑖th out-of-bag-ensemble.
Note that the out-of-bag-ensemble is different for each data point {x𝑖 , 𝑦𝑖}.

The next key insight is that for the out-of-bag-ensemble 𝑖, the data point {x𝑖 , 𝑦𝑖}
can act as a test data point since it has not yet been seen by any of its ensemble
members. By computing the (e.g., squared or misclassification) error when the
out-of-bag-ensemble 𝑖 predicts {x𝑖 , 𝑦𝑖}, we thus get an estimate of 𝐸new for this
out-of-bag-ensemble, which we denote 𝐸 (𝑖)OOB. Since 𝐸 (𝑖)OOB is based on only one
data point, it will be a fairly poor estimate of 𝐸new. However, if we repeat this for
all data points {x𝑖 , 𝑦𝑖} in the training data T and average 𝐸OOB = 1

𝑛

∑𝑛
𝑖=1 𝐸

(𝑖)
OOB,

we get a better estimate of 𝐸new. Indeed, 𝐸OOB will be an estimate of 𝐸new for an
ensemble with only 𝐵/3 (and not 𝐵) members, but as we have seen (Example 7.3),

170
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.2 Random Forests

the performance of bagging plateaus after a certain number of ensemble members.
Hence, if 𝐵 is large enough so that ensembles with 𝐵 and 𝐵/3 members perform
similarly, 𝐸OOB provides an estimate of 𝐸new which can be at least as good as the
estimate 𝐸𝑘-fold from 𝑘-fold cross-validation. Most importantly, however, 𝐸OOB
comes almost for free in bagging, whereas 𝐸𝑘-fold requires much more computation
when re-training 𝑘 times.

7.2 Random Forests

In bagging, we reduce the variance by averaging over an ensemble of models.
Unfortunately, the variance reduction is limited by the correlation between the
individual ensemble members (compare this with the dependence on the average
correlation 𝜌 in (7.2b)). However, using a simple trick, it is possible to reduce the
correlation beyond what is achieved by the bootstrap, resulting in a method referred
to as random forests.

While bagging is a general technique that in principle can be used to reduce
the variance of any base model, random forests assume that these base models are
classification or regression trees. The idea is to inject additional randomness when
constructing each tree, in order to further reduce the correlation among the base
models. At first this might seem like a silly idea: randomly perturbing the training
of a model should intuitively degrade its performance. There is a rationale for this
perturbation, however, which we will discuss below, but first we present the details
of the algorithm.

Let T̃ (𝑏) be one of the 𝐵 bootstrapped datasets in bagging. To train a classification
or regression tree on this data, we proceed as usual (see Section 2.3) but with one
difference. Throughout the training, whenever we are about to split a node, we do
not consider all possible input variables 𝑥1, . . . , 𝑥𝑝 as splitting variables. Instead, we
pick a random subset consisting of 𝑞 ≤ 𝑝 inputs and only consider these 𝑞 variables
as possible splitting variables. At the next splitting point, we draw a new random
subset of 𝑞 inputs to use as possible splitting variables, and so on. Naturally, this
random subset selection is done independently for each of the 𝐵 ensemble members,
so that we (with high probability) end up using different subsets for the different
trees. This additional random constraint when training is what turns bagging into
random forests. This will cause the 𝐵 trees to be less correlated, and averaging their
predictions can therefore result in a larger variance reduction compared to bagging.
It should be noted, however, that this random perturbation of the training procedure
will increase the variance3 of each individual tree. In the notation of equation (7.2b),
the random forest decreases 𝜌 (good) but increases 𝜎2 (bad) compared to bagging.
Experience has, however, shown that the reduction in correlation is the dominant

3And possibly also the bias, in a similar manner as the bootstrap might increase the bias; see footnote
2, page 169.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
171

7 Ensemble Methods: Bagging and Boosting

effect, so that the averaged prediction variance is often reduced. We illustrate
this in Example 7.4 below.

To understand why it can be a good idea to only consider a subset of inputs as
splitting variables, recall that tree-building is based on recursive binary splitting,
which is a greedy algorithm. This means that the algorithm can make choices early
on that appear to be good but which nevertheless turn out to be suboptimal further
down the splitting procedure. For instance, consider the case when there is one
dominant input variable. If we construct an ensemble of trees using plain bagging, it
is then very likely that all of the ensemble members will pick this dominant variable
as the first splitting variable, making all trees identical (that is, perfectly correlated)
after the first split. If we instead apply a random forest, some of the ensemble
members will not even have access to this dominant variable at the first split, since
it most likely will not be present in the random subset of 𝑞 inputs selected at the
first split for some of the ensemble members. This will force those members to
split according to some other variable. While there is no reason for why this would
improve the performance of the individual tree, it could prove to be useful further
down the splitting process, and since we average over many ensemble members, the
overall performance could therefore be improved.

Example 7.4 Random forests and bagging for a binary classification problem

Consider the binary classification with 𝑝 = 2 using the data in Figure 7.5. The
different classes are blue and red. The 𝑛 = 200 input values were randomly sampled
from [0, 2] × [0, 2] and labelled red with probability 0.98 if above the dotted line,
and vice versa. We use two different classifiers: bagging with classification trees
(which is equivalent to a random forest with 𝑞 = 𝑝 = 2) and a random forest with
𝑞 = 1, each with 𝐵 = 9 ensemble members. In Figure 7.5, we plot the decision
boundary for each ensemble member as well as the majority-voted final decision
boundary.

The most apparent difference is the higher individual variation of the random
forest ensemble members compared to bagging. Roughly half of the random forest
ensemble members have been forced to make the first split along the horizontal axis,
which has led to an increased variance and a decreased correlation compared to
bagging, where all ensemble members make the first split along the vertical axis.

Since it is hard to visually compare the final decision boundaries for bagging and
random forest (top right), we also compute 𝐸new for different numbers of ensemble
members 𝐵. Since the learning itself has a certain amount of randomness, we
average over multiple learned models to avoid being confused by that random effect.
Indeed, we see that the random forest performs better than bagging, except for very
small 𝐵, and we conclude that the positive effect of the reduced correlation between
the ensemble members outweighs the negative effect of additional variance. The
poor performance of random forest with only one ensemble member is expected,
since this single model has higher variance, and no averaging is taking place
when 𝐵 = 1.

172
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.2 Random Forests

0 1 2
0

1

2

𝑥1

𝑥 2

Data

0 1 2
0

1

2

𝑥1

𝑥 2

Bagging

0 1 2
0

1

2

0 1 2

Bagging ensemble members

0 1 2

0 1 2
0

1

2

0 1 2 0 1 2

0 1 2
0

1

2

0 1 2 0 1 2

0 1 2
0

1

2

𝑥1

𝑥 2

Random forest

0 1 2
0

1

2

0 1 2

Random forest ensemble members

0 1 2

0 1 2
0

1

2

0 1 2 0 1 2

0 1 2
0

1

2

0 1 2 0 1 2

5 10 15 20 25 30 35 40 45

0.1

0.12

0.14

0.16

𝐵

𝐸
ne

w

Random forest
Bagging

Fig.
7.5

Since the random forest is a bagging method, the tools and properties from
Section 7.1 apply also to random forests, such as out-of-bag error estimation. As
for bagging, taking 𝐵→∞ does not lead to overfitting in random forests. Hence,
the only reason to choose 𝐵 small is to reduce the computational cost. Compared
to using a single tree, a random forest requires approximately 𝐵 times as much
computation. Since all trees are identically distributed, it is, however, possible to
parallelise the implementation of random forest learning.

The choice of 𝑞 is a tuning parameter, where for 𝑞 = 𝑝, we recover the basic
bagging method described previously. As a rule-of-thumb, we can set 𝑞 =

√
𝑝 for

classification problems and 𝑞 = 𝑝/3 for regression problems (values rounded down
to closest integer). A more systematic way of selecting 𝑞 is to use out-of-bag error
estimation or cross-validation and select 𝑞 such that 𝐸OOB or 𝐸𝑘-fold is minimised.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
173

7 Ensemble Methods: Bagging and Boosting

4.5 5 5.5 6 6.5 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

Figure 7.6: Random forest applied to the music classification problem from Example 2.1.
This figure can be compared to Figure 2.11a, which is the decision boundary from
a single tree.

We finally apply random forests to the music classification problem from Exam-
ple 2.1 in Figure 7.6.

7.3 Boosting and AdaBoost

As we have seen above, bagging is an ensemble method for reducing the variance
in high-variance base models. Boosting is another ensemble method, which is
primarily used for reducing bias in high-bias base models. A typical example of a
simple (or, in other words, weak) high-bias model is a classification tree of depth
one (sometimes called a classification stump). Boosting is built on the idea that
even a weak high-bias model can often capture some of the relationship between the
inputs and the output. Thus, by training multiple weak models, each describing part
of the input–output relationship, it might be possible to combine the predictions of
these models into an overall better prediction. Hence, the intention is to reduce the
bias by turning an ensemble of weak models into one strong model.

Boosting shares some similarities with bagging. They are both ensemble methods,
in the sense that they are based on combining the predictions from multiple models
(an ensemble). Both bagging and boosting can also be viewed as meta-algorithms, in
the sense that they can be used to combine essentially any regression or classification
algorithm – they are algorithms built on top of other algorithms. However, there
are also important differences between boosting and bagging which we will discuss
below.

The main difference is how the base models are trained. In bagging, we train
𝐵 identically distributed models in parallel. Boosting, on the other hand, uses a
sequential construction of the ensemble members. Informally, this is done in such a
way that each model tries to correct the mistakes made by the previous one. This is
accomplished by modifying the training dataset at each iteration in order to put

174
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.3 Boosting and AdaBoost

more emphasis on the data points for which the model (so far) has performed poorly.
The final prediction is obtained from a weighted average or a weighted majority
vote among the models. We look at the simple Example 7.5 to illustrate this idea.

Example 7.5 Boosting illustration

We consider a binary classification problem with a two-dimensional input x =
[𝑥1 𝑥2]. The training data consists of 𝑛 = 10 data points, 5 from each of the two
classes. We use a decision stump, a classification tree of depth one, as a simple
(weak) base classifier. A decision stump amounts to selecting one of the input
variables, 𝑥1 or 𝑥2, and splitting the input space into two half spaces to minimise
the training error. The first panel in Figure 7.7 shows the training data, illustrated
by red and blue dots for the two classes. In the panel below that in Figure 7.7, the
coloured regions show the decision boundary for a decision stump �̂� (1) (x) trained
on this data.

0 2 4 6 8
0

2

4

6

𝑥 2

Initial data

0 2 4 6 8
0

2

4

6

Re-weighted data from �̂� (1)

0 2 4 6 8
0

2

4

6

Re-weighted data from �̂� (2)

0 2 4 6 8
0

2

4

6

𝑥1

𝑥 2

�̂� (1)

0 2 4 6 8
0

2

4

6

𝑥1

�̂� (2)

0 2 4 6 8
0

2

4

6

𝑥1

�̂� (3)

0 2 4 6 8
0

2

4

6

𝑥1

𝑥 2

�̂�boost

Fig.
7.7

The model �̂� (1) (x) incorrectly classifies three data points (red dots falling in the
blue region), which are circled in the figure. To improve the performance of the
classifier, we want to find a model that can distinguish these three points from the
blue class. To put emphasis on the three misclassified points when training the next
decision stump, we assign weights {𝑤 (2)𝑖 }𝑛𝑖=1 to the data, which are shown in the
upper middle panel in Figure 7.7 (larger radius = higher weight). The points correctly
classified by �̂� (1) (x) are down-weighted, whereas the three points misclassified by
�̂� (1) (x) are up-weighted. We train another decision stump, �̂� (2) (x), on the weighted
data. The classifier �̂� (2) (x) is found by minimising the weighted misclassification

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
175

7 Ensemble Methods: Bagging and Boosting

error, 1
𝑛

∑𝑛
𝑖=1 𝑤

(2)
𝑖 I{�̂� (2) (x𝑖) ≠ 𝑦𝑖}, resulting in the decision boundary shown in the

lower middle panel. This procedure is repeated for a third and final iteration: we
update the weights based on the hits and misses of �̂� (2) (x) and train a third decision
stump �̂� (3) (x) shown in the lower right panel in Figure 7.7.

The final classifier �̂�boost (x), in the bottom panel in Figure 7.7, is then obtained
as a weighted majority vote of the three decision stumps. Note that its decision
boundary is non-linear, whereas the decision boundary for each ensemble member is
linear. This illustrates the concept of turning an ensemble of three weak (high-bias)
base models into a stronger (low-bias) model.

The example illustrates the idea of boosting, but there are still important details
left to be specified in order to have a complete algorithm. Specifically, how to
compute the weights of the training data points at each iteration and how to combine
the ensemble members to get the final model. Next, we will have a look at the
AdaBoost algorithm, which is one approach for filling in these missing details.
AdaBoost was the first successful implementation of the boosting idea, so it is
interesting in its own right but also because it is simple enough to allow for closed
form derivations. However, there are also more modern approaches to boosting,
so after discussing AdaBoost, we will introduce the more general framework of
gradient boosting.

Throughout this section, we will restrict our attention to binary classification, but
boosting is also applicable to multiclass classification and regression problems.

AdaBoost

What we have discussed so far is a general idea, but there are still a few technical
design choices left. Let us now derive an actual boosting method, the AdaBoost
(Adaptive Boosting) algorithm for binary classification. AdaBoost was the first
successful practical implementation of the boosting idea and led the way for its
popularity.

As we outlined in Example 7.5, boosting attempts to construct a sequence of 𝐵
(weak) binary classifiers �̂� (1) (x), �̂� (2) (x), . . . , �̂� (𝐵) (x). In this procedure, we will
only consider the final ‘hard’ prediction �̂�(x) from the base models and not their
predicted class probabilities 𝑔(x). Any classification model can, in principle, be
used as base classifier – shallow classification trees are common in practice. The
individual predictions of the 𝐵 ensemble members are then combined into a final
prediction. Unlike bagging, all ensemble members are not treated equally. Instead,
we assign some positive coefficients {𝛼 (𝑏) }𝐵𝑏=1 and construct the boosted classifier
using a weighted majority vote:

�̂� (𝐵)boost(x) = sign

{
𝐵∑︁

𝑏=1
𝛼 (𝑏) �̂� (𝑏) (x)

}
. (7.4)

Each ensemble member votes either −1 or +1, and the output from the boosted
classifier is +1 if the weighted sum of the individual votes is positive and −1 if it is

176
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.3 Boosting and AdaBoost

negative. The coefficient 𝛼 (𝑏) can be thought of as a degree of confidence in the
predictions made by the 𝑏th ensemble member.

The construction of the AdaBoost classifier in (7.4) follows the general form of a
binary classifier from (5.12). That is, we obtain the class prediction by thresholding
a real-valued function 𝑓 (x) at zero, where in this case the function is given by the
weighted sum of predictions made by all the ensemble members. In AdaBoost, the
ensemble members and their coefficients 𝛼 (𝑏) are trained greedily by minimising
the exponential loss of the boosted classifier at each iteration. Recall from (5.15)
that the exponential loss is given by

𝐿 (𝑦 · 𝑓 (x)) = exp(−𝑦 · 𝑓 (x)), (7.5)

where 𝑦 · 𝑓 (x) is the margin of the classifier. The ensemble members are added one
at a time, and when member 𝑏 is added, this is done to minimise the exponential
loss (7.5) of the entire ensemble constructed so far (that is, the boosted classifier
consisting of the first 𝑏 members). The main reason for choosing the exponential
loss, and not one of the other loss functions discussed in Section 5.2, is that it results
in convenient closed form expressions (much like the squared error loss in linear
regression), as we will see when deriving the AdaBoost procedure below.

Let us write the boosted classifier after 𝑏 iterations as �̂� (𝑏)boost(x) = sign{ 𝑓 (𝑏) (x)},
where 𝑓 (𝑏) (x) = ∑𝑏

𝑗=1 𝛼
(𝑗) �̂� (𝑗) (x). We can express 𝑓 (𝑏) (x) iteratively as

𝑓 (𝑏) (x) = 𝑓 (𝑏−1) (x) + 𝛼 (𝑏) �̂� (𝑏) (x), (7.6)

initialised with 𝑓 0(x) = 0. The ensemble members (as well as the coefficients
𝛼 (𝑏) [𝑗]) are constructed sequentially, meaning that at iteration 𝑏 of the procedure,
the function 𝑓 (𝑏−1) (x) is known and fixed. This is what makes this construction
‘greedy’. Consequently, what remains to be learned at iteration 𝑏 is the ensemble
member �̂� (𝑏) (x) and its coefficient 𝛼 (𝑏) . We do this by minimising the exponential
loss of the training data,

(𝛼 (𝑏) , �̂� (𝑏)) = arg min
(𝛼,�̂�)

𝑛∑︁
𝑖=1

𝐿 (𝑦𝑖 · 𝑓 (𝑏) (x𝑖)) (7.7a)

= arg min
(𝛼,�̂�)

𝑛∑︁
𝑖=1

exp
(
−𝑦𝑖

(
𝑓 (𝑏−1) (x𝑖) + 𝛼�̂�(x𝑖)

))
(7.7b)

= arg min
(𝛼,�̂�)

𝑛∑︁
𝑖=1

exp
(
−𝑦𝑖 𝑓 (𝑏−1) (x𝑖)

)
︸ ︷︷ ︸

=𝑤 (𝑏)𝑖

exp (−𝑦𝑖𝛼�̂�(x𝑖)) , (7.7c)

where for the first equality, we have used the definition of the exponential loss
function (7.5) and the sequential structure of the boosted classifier (7.6). The last
equality is where the convenience of the exponential loss appears, namely the fact

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
177

7 Ensemble Methods: Bagging and Boosting

that exp(𝑎 + 𝑏) = exp(𝑎) exp(𝑏). This allows us to define the quantities

𝑤 (𝑏)𝑖

def
= exp

(− 𝑦𝑖 𝑓
(𝑏−1) (x𝑖)

)
, (7.8)

which can be interpreted as weights for the individual data points in the training
dataset. Note that the weights 𝑤 (𝑏)𝑖 are independent of 𝛼 and �̂�. That is, when
learning �̂� (𝑏) (x) and its coefficient 𝛼 (𝑏) by solving (7.7c), we can regard {𝑤 (𝑏)𝑖 }𝑛𝑖=1
as constants.

To solve (7.7), we start by rewriting the objective function as

𝑛∑︁
𝑖=1

𝑤 (𝑏)𝑖 exp (−𝑦𝑖𝛼�̂�(x𝑖)) = 𝑒−𝛼
𝑛∑︁
𝑖=1

𝑤 (𝑏)𝑖 I{𝑦𝑖 = �̂�(x𝑖)}
︸ ︷︷ ︸

=𝑊𝑐

+ 𝑒𝛼
𝑛∑︁
𝑖=1

𝑤 (𝑏)𝑖 I{𝑦𝑖 ≠ �̂�(x𝑖)}
︸ ︷︷ ︸

=𝑊𝑒

,

(7.9)

where we have used the indicator function to split the sum into two parts: the first
ranging over all training data points correctly classified by �̂� and the second ranging
over all points misclassified by �̂�. (Remember that �̂� is the ensemble member we
are to learn at this step.) Furthermore, for notational simplicity, we define 𝑊𝑐

and 𝑊𝑒 as the sums of weights of correctly classified and erroneously classified
data points, respectively. Furthermore, let 𝑊 = 𝑊𝑐 +𝑊𝑒 be the total weight sum,
𝑊 =

∑𝑛
𝑖=1 𝑤

(𝑏)
𝑖 .

Minimising (7.9) is done in two stages: first with respect to �̂� and then with
respect to 𝛼. This is possible since the minimising argument in �̂� turns out to be
independent of the actual value of 𝛼 > 0, another convenient effect of using the
exponential loss function. To see this, note that we can write the objective function
(7.9) as

𝑒−𝛼𝑊 + (𝑒𝛼 − 𝑒−𝛼)𝑊𝑒 . (7.10)

Since the total weight sum 𝑊 is independent of �̂�, and since 𝑒𝛼 − 𝑒−𝛼 > 0 for any
𝛼 > 0, minimising this expression with respect to �̂� is equivalent to minimising 𝑊𝑒

with respect to �̂�. That is,

�̂� (𝑏) = arg min
�̂�

𝑛∑︁
𝑖=1

𝑤 (𝑏)𝑖 I{𝑦𝑖 ≠ �̂�(x𝑖)}. (7.11)

In words, the 𝑏th ensemble member should be trained by minimising the weighted
misclassification loss, where each data point (x𝑖 , 𝑦𝑖) is assigned a weight 𝑤 (𝑏)𝑖 . The
intuition for these weights is that, at iteration 𝑏, we should focus our attention on
the data points previously misclassified in order to ‘correct the mistakes’ made by
the ensemble of the first 𝑏 − 1 classifiers.

178
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.3 Boosting and AdaBoost

Time to reflect 7.2 In AdaBoost, we use the exponential loss for training the
boosting ensemble. How come we end up training the individual ensemble
members using a weighted misclassification loss (and not the unweighted
exponential loss)?

How the problem (7.11) is solved in practice depends on the choice of base
classifier that we use, that is, on the specific restrictions that we put on the
function �̂� (for example a shallow classification tree). However, solving (7.11) is
almost our standard classification problem, except for the weights 𝑤 (𝑏)𝑖 . Training
the ensemble member 𝑏 on a weighted classification problem is, for most base
classifiers, straightforward. Since most classifiers are trained by minimising some
cost function, this simply boils down to weighting the individual terms of the cost
function and solving that slightly modified problem instead.

Once the 𝑏th ensemble member, �̂� (𝑏) (x), has been trained for solving the weighted
classification problem (7.11), it remains to learn its coefficient 𝛼 (𝑏) . This is done
by solving (7.7), which amounts to minimising (7.10) once �̂� has been trained. By
differentiating (7.10) with respect to 𝛼 and setting the derivative to zero, we get the
equation

−𝛼𝑒−𝛼𝑊 + 𝛼(𝑒𝛼 + 𝑒−𝛼)𝑊𝑒 = 0⇔ 𝑊 =
(
𝑒2𝛼 + 1

)
𝑊𝑒 ⇔ 𝛼 =

1
2

ln
(
𝑊

𝑊𝑒
− 1

)
.

Thus, by defining

𝐸 (𝑏)train
def
=

𝑊𝑒

𝑊
=

𝑛∑︁
𝑖=1

𝑤 (𝑏)𝑖∑𝑛
𝑗=1 𝑤

(𝑏)
𝑗

I{𝑦𝑖 ≠ �̂� (𝑏) (x𝑖)} (7.12)

to be the weighted misclassification error for the 𝑏th classifier, we can express the
optimal value for its coefficient as

𝛼 (𝑏) =
1
2

ln

(
1 − 𝐸 (𝑏)train

𝐸 (𝑏)train

)
. (7.13)

The fact that 𝛼 (𝑏) depends on the training error of the 𝑏th ensemble member is
natural since, as mentioned above, we can interpret 𝛼 (𝑏) as the confidence in this
member’s predictions. This completes the derivation of the AdaBoost algorithm,
which is summarised in Method 7.2. In the algorithm we exploit the fact that the
weights (7.8) can be computed recursively by using the expression (7.6) in line 6 in
the learning section. Furthermore, we have added an explicit weight normalisation
(line 7), which is convenient in practice and which does not affect the derivation of
the method above.

The derivation of AdaBoost assumes that all coefficients {𝛼 (𝑏) } (𝐵)𝑏=1 are positive.
To see that this is indeed the case when the coefficients are computed according to

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
179

7 Ensemble Methods: Bagging and Boosting

(7.13), note that the function ln((1 − 𝑥)/𝑥) is positive for any 0 < 𝑥 < 0.5. Thus,
𝛼 (𝑏) will be positive as long as the weighted training error for the 𝑏th classifier,
𝐸 (𝑏)train, is less than 0.5. That is, the classifier just has to be slightly better than a
coin flip, which is always the case in practice (note that 𝐸 (𝑏)train is the training error).
(Indeed, if 𝐸 (𝑏)train > 0.5, then we could simply flip the sign of all predictions made
by �̂� (𝑏) (x) to reduce the error below 0.5.)

Learn an AdaBoost classifier
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: 𝐵 weak classifiers

1 Assign weights 𝑤 (1)𝑖 = 1/𝑛 to all data points.
2 for 𝑏 = 1, . . . , 𝐵 do
3 Train a weak classifier �̂� (𝑏) (x) on the weighted training data

{(x𝑖 , 𝑦𝑖 , 𝑤 (𝑏)𝑖)}𝑛𝑖=1.
4 Compute 𝐸 (𝑏)train =

∑𝑛
𝑖=1 𝑤

(𝑏)
𝑖 I{𝑦𝑖 ≠ �̂� (𝑏) (x𝑖)}.

5 Compute 𝛼 (𝑏) = 0.5 ln((1 − 𝐸 (𝑏)train)/𝐸
(𝑏)
train).

6 Compute 𝑤 (𝑏+1)𝑖 = 𝑤 (𝑏)𝑖 exp(−𝛼 (𝑏) 𝑦𝑖 �̂� (𝑏) (x𝑖)), 𝑖 = 1, . . . , 𝑛.
7 Set 𝑤 (𝑏+1)𝑖 ← 𝑤 (𝑏+1)𝑖 /∑𝑛

𝑗=1 𝑤
(𝑏+1)
𝑗 , for 𝑖 = 1, . . . , 𝑛.

8 end

Predict with the AdaBoost classifier
Data: 𝐵 weak classifiers with confidence values {�̂� (𝑏) (x), 𝛼 (𝑏) }𝐵𝑏=1 and test

input x★
Result: Prediction �̂� (𝐵)boost(x★)

1 Output �̂� (𝐵)boost(x★) = sign
{∑𝐵

𝑏=1 𝛼
(𝑏) �̂� (𝑏) (x★)

}
.

Method 7.2: AdaBoost

Example 7.6 AdaBoost and bagging for a binary classification example

Consider the same binary classification problem as in Example 7.4. We now
compare how AdaBoost and bagging perform on this problem, when using trees
of depth one (decision stumps) and three. It should be noted that this comparison
is made to illustrate the difference between the methods. In practice, we would
typically not use bagging with such shallow trees.

The decision boundaries for each method with 𝐵 = 1, 5, 20, and 100 ensemble
members are shown in Figure 7.8. Despite using quite weak ensemble mem-
bers (a shallow tree has high bias), AdaBoost adapts quite well to the data.
This is in contrast to bagging, where the decision boundary does not become
much more flexible despite using many ensemble members. In other words, Ad-
aBoost reduces the bias of the base model, whereas bagging only has minor effect
on the bias.

180
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.3 Boosting and AdaBoost

A
da

Bo
os

t
0 1 2

0

1

2

Tr
ee

de
pt

h
1

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2
Tr

ee
de

pt
h

3

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2
Ba

gg
in

g

0 1 2
0

1

2

Tr
ee

de
pt

h
1

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

𝐵 = 1

Tr
ee

de
pt

h
3

0 1 2
0

1

2

𝐵 = 5
0 1 2

0

1

2

𝐵 = 20
0 1 2

0

1

2

𝐵 = 100

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

𝐵

𝐸
ne

w

AdaBoost, tree depth 1
Bagging, tree depth 1
AdaBoost, tree depth 3
Bagging, tree depth 3

Fig.
7.8

We also numerically compute �̄�new for this problem, as a function of 𝐵, which is
shown at the bottom of Figure 7.8. Remember that �̄�new depends on both the bias
and the variance. As discussed, the main effect of bagging is variance reduction,
but that does not help much since the base model is already quite low-variance (but
high-bias). Boosting, on the other hand, reduces bias, which has a much bigger
effect in this case. Furthermore, bagging does not overfit as 𝐵 → ∞, but that is
not the case for boosting! We can indeed see that for trees of depth 3, the smallest
�̄�new is obtained for 𝐵 ≈ 25, and there is actually a slight increase in �̄�new for larger
values of 𝐵. Hence, AdaBoost with depth-3 trees suffers from a (minor) overfit as
𝐵 & 25 in this problem.

Design Choices for AdaBoost

AdaBoost, and in fact any boosting algorithm, has two important design choices:
(i) which base classifier to use and (ii) how many iterations 𝐵 to run the boosting
algorithm for. As previously pointed out, we can use essentially any classification

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
181

7 Ensemble Methods: Bagging and Boosting

method as the base classifier. However, the most common choice in practice is to
use a shallow classification tree, or even a decision stump (a tree of depth one; see
Example 7.5). This choice is guided by the fact that boosting reduces bias efficiently
and can thereby learn good models despite using a very weak (high-bias) base model.
Since shallow trees can be trained quickly, they are a good default choice. Practical
experience suggests that trees with a handful of terminal nodes may work well as base
models, but trees of depth one (only 𝑀 = 2 terminal nodes in binary classification)
are perhaps even more commonly used. In fact, using deep classification trees
(high-variance models) as base classifiers typically deteriorates performance.

The base models are trained sequentially in boosting: each iteration introduces
a new base model aiming at reducing the errors made by the current model. As a
consequence, the boosting model becomes more and more flexible as the number of
iterations 𝐵 increases, and using too many base models can result in overfitting (in
contrast to bagging, where increased 𝐵 cannot lead to overfit). It has been observed
in practice, however, that this overfitting often occurs slowly, and the performance
tends to be rather insensitive to the choice of 𝐵. Nevertheless, it is a good practice
to select 𝐵 in some systematic way, for instance using early stopping during training.
Another unfortunate aspect of the sequential nature of boosting is that it is not
possible to parallelise the training.

In the method discussed above, we have assumed that each base classifier outputs
a class prediction, �̂� (𝑏) (x) ∈ {−1, 1}. However, many classification models output
𝑔(x), which is an estimate of the class probability 𝑝(𝑦 = 1 | x). In AdaBoost it is
possible to use the predicted probabilities 𝑔(x) (instead of the binary prediction
�̂�(x)) when constructing the prediction; however, this is at the cost of a more
complicated expression than (7.4). This extension of Method 7.2 is referred to as
Real AdaBoost.

7.4 Gradient Boosting

It has been seen in practice that AdaBoost often performs well if there is little
noise in the data. However, as the data becomes more noisy, either due to outliers
(mislabelled data) or high uncertainty in the true input–output relationship, the
performance of the method can deteriorate. This is not an artefact of the boosting
idea but rather of the exponential loss function used in the construction of AdaBoost.
As we discussed in Section 5.2, the exponential loss will heavily penalise large
negative margins, making it sensitive to noise; see Figure 5.2. To mitigate this issue
and construct more robust boosting algorithms, we can consider choosing some
other (more robust) loss function. However, this will be at the expense of a more
computationally involved training procedure.

To lay the foundation for more general boosting algorithms, we will start by
presenting a slightly different view on boosting. In the discussion above, we
have described boosting as learning a sequence of weak classifiers, where each
classifier tries to correct the mistakes made by the previous ones. This is an

182
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.4 Gradient Boosting

intuitive interpretation, but from a mathematical perspective, a perhaps more useful
interpretation is that boosting is as a way to train an additive model. The fundamental
task of supervised learning is to approximate some unknown function, mapping
inputs to outputs, based on observed data. A very useful – and indeed common –
way of constructing a flexible function approximator is by using an additive model
of the form

𝑓 (𝐵) (x) =
𝐵∑︁

𝑏=1
𝛼 (𝑏) 𝑓 (𝑏) (x), (7.14)

where 𝛼 (𝑏) are real-valued coefficients and 𝑓 (𝑏) (x) are some ‘basis functions’. For
a regression problem, the function 𝑓 (𝐵) (x) can be used directly as the model’s
prediction. For a classification problem, it can be thresholded by a sign function to
obtain a hard class prediction or transformed into a class probability by passing it
through a logistic function.4

Comparing (7.14) with (7.4), it is clear that AdaBoost follows this additive form,
where the weak learners (ensemble members) are the basis functions, and their
confidence scores are the coefficients. However, we have in fact seen other examples
of additive models before. To put boosting algorithms in a broader context, we
provide a couple of examples:

If the basis functions 𝑓 (𝑏) (x) are fixed a priori, then the only learnable parameters
are the coefficients 𝛼 (𝑏) . The model (7.14) is then nothing but a linear regression,
or generalised linear model. For instance, in Chapter 3, we discussed polynomial
regression, where the basis functions are defined as polynomial transformations
of the input. In Chapter 8, we will discuss more systematic ways of constructing
(fixed) basis functions for additive models.

A more flexible model can be obtained if we also allow the basis functions them-
selves to be learnable. This is also something that we have come across before. In
Chapter 6, we introduced the neural network model, and writing out the expression for
a two-layer regression network, it can be seen that it corresponds to an additive model.

Time to reflect 7.3 If we write a two-layer regression neural network in the
form of an additive model, then what do 𝐵, 𝛼 (𝑏) , and 𝑓 (𝑏) (x) correspond to?

An important consequence of this interpretation of boosting as an additive model
is that the individual ensemble members do not necessarily have to correspond
to ‘weak learners’ for the specific problem under study. Put differently, for a
classification problem, each ensemble member does not have to correspond to a
classifier trained to solve (some modified version of) the original problem. What is
important is just that the sum over all ensemble members in (7.14) results in a useful

4Similarly, we can use other link functions to turn the additive model 𝑓 (𝐵) (x) into a likelihood
that is suitable for the properties of the data under study, akin to generalised linear models (see
Section 3.4).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
183

7 Ensemble Methods: Bagging and Boosting

model! We will see an example of this below, when we discuss how regression
trees can be used to solve classification problems in the context of gradient boosting.
This is also the reason why we use 𝑓 instead of �̂� in the notation above. Even for
a classification problem, the outputs from the ensemble members do not have to
correspond to class predictions in general.

Instead, there are two properties that distinguish boosting from other additive
models.

(i) The basis functions are learned from data and, specifically, each function
(that is ensemble member) corresponds to a machine learning model itself –
the base model of the boosting procedure.

(ii) The basis functions and their coefficients are learned sequentially. That is,
we add one component to the sum in (7.14) at each iteration, and after 𝐵
iterations the learning algorithm terminates.

The goal when training an additive model is to select {𝛼 (𝑏) , 𝑓 (𝑏) (x)}𝐵𝑏=1 such
that the final 𝑓 (𝐵) (x) minimises

𝐽 (𝑓 (X)) = 1
𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝑓 (x𝑖)) (7.15)

for some arbitrary loss function 𝐿; see Section 5.2. For instance, in a binary
classification setting, choosing the logistic loss (or some other robust loss function)
instead of the exponential loss will result in a model which is less sensitive to
outliers. Here we define 𝑓 (X) = [𝑓 (x1) · · · 𝑓 (x𝑛)]T as the vector of function
values obtained by evaluating the model 𝑓 (x) at the 𝑛 training data points. Since
we do not have an explicit parametric form for 𝑓 (x), we consider 𝐽 to be a function
of the model 𝑓 (x) itself.

A consequence of the first point in the list above – that the basis function
themselves are generic machine learning models – is that the objective (7.15) will
lack a closed form minimiser, and we thus need to resort to some approximate
numerical solution. The sequential learning (second point above) can be viewed as
one way of handling this, by using ‘greedy’ step-wise training. Connecting this back
to the AdaBoost algorithm, using the exponential loss function is convenient since
it results in tractable expressions for each step of this iterative training procedure.
However, this is not strictly necessary. Indeed, by similar arguments as in numerical
optimisation, we can improve the model at each iteration as long as we ‘move in the
right direction’. That is, at iteration 𝑏 we introduce a new ensemble member with
the objective of reducing the value of the cost function (7.15) but without requiring
that it is (greedily) minimised. This leads us in to the idea of gradient boosting.

Consider the 𝑏th iteration of the training procedure. As before, we can use the
sequential nature of the method to write

𝑓 (𝑏) (x) = 𝑓 (𝑏−1) (x) + 𝛼 (𝑏) 𝑓 (𝑏) (x), (7.16)

184
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.4 Gradient Boosting

and the goal is to select {𝛼 (𝑏) , 𝑓 (𝑏) (x)} to reduce the value of the cost function
(7.15). That is, we want to choose the 𝑏th ensemble member such that

𝐽
(
𝑓 (𝑏−1) (X) + 𝛼 (𝑏) 𝑓 (𝑏) (X)

)
< 𝐽

(
𝑓 (𝑏−1) (X)

)
. (7.17)

Akin to the gradient descent algorithm (see Section 5.4), we do this by taking a step
in the negative direction of the gradient of the cost function.

However, in the context of boosting, we do not assume a specific parametric form
for the basis function but rather construct each ensemble member using a learnable
base model, such as a tree. What, then, should we compute the gradient of the cost
function with respect to? The idea behind gradient boosting, which allows us to
address this question, is to take a non-parametric approach and represent the model
𝑐(x) by the values it assigns to the 𝑛 training data points. That is, we compute the
gradient of the cost function directly with respect to the (vector of) function values
𝑓 (X). This gives us an 𝑛-dimensional gradient vector

∇𝑐𝐽 (𝑐 (𝑏−1) (X)) def
=

𝜕𝐽 (𝑓 (X))
𝜕 𝑓 (x1)

...
𝜕𝐽 (𝑓 (X))
𝜕 𝑓 (x𝑛)

 | 𝑓 (X)= 𝑓 (𝑏−1) (X)

=
1
𝑛

𝜕𝐿 (𝑦1, 𝑓)
𝜕 𝑓 | 𝑓 = 𝑓 (𝑏−1) (x1)

...
𝜕𝐿 (𝑦𝑛 , 𝑓)

𝜕 𝑓 | 𝑓 = 𝑓 (𝑏−1) (x𝑛)

,

(7.18)
where we have assumed that the loss function 𝐿 is differentiable. Hence, to satisfy
(7.17), we should select 𝑓 (𝑏) (X) = −∇𝑐𝐽 (𝑐 (𝑏−1) (X)) and then pick the coefficient
𝛼 (𝑏) – which takes the role of the step length in the gradient descent analogy – in
some suitable way, for instance by line search.

However, selecting the 𝑏th ensemble member 𝑓 (𝑏) (X) so that it exactly matches
the negative gradient is typically not possible. The reason is that the ensemble
members 𝑓 (x) are restricted to some specific functional form, for instance the set of
functions that can be represented by a tree-based model of a certain depth. Neither
would it be desirable in general, since exactly matching the gradient at all training
data points could easily lead to overfitting. Indeed, as usual we are not primarily
interested in finding a model that fits the training data as well as possible but rather
one that generalises to new data. Restricting our attention to a class of functions
that generalise beyond the observed training data is therefore a key requirement.

To proceed, we will therefore train the 𝑏th ensemble member 𝑓 (𝑏) (x) as a
machine learning model, with the training objective that its predictions on the
training data points (that is, the vector 𝑓 (𝑏) (X)) are close to the negative gradient
(7.18). Closeness can be evaluated by any suitable distance function, such as the
squared distance. This corresponds to solving a regression problem where the
target values are the elements of the gradient, and the loss function (for example
squared loss) determines how we measure closeness. Note that, even when the
actual problem under study is classification, the gradient values in (7.18) will be
real-valued in general.

Having found the 𝑏th ensemble member, it remains to compute the coefficient
𝛼 (𝑏) . As pointed out above, this corresponds to the step size (or learning rate)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
185

7 Ensemble Methods: Bagging and Boosting

in gradient descent. In the simplest version of gradient descent, it is considered
a tuning parameter left to the user. However, it can also be found by solving a
line-search optimisation problem at each iteration. For gradient boosting, it is most
often handled in the latter way. If multiplying the optimal 𝛼 (𝑏) with a constant <1, a
regularising effect is obtained which has proven useful in practice. We summarise
gradient boosting in Method 7.3.

Learn a simple gradient boosting classifier
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1, step size multiplier 𝛾 < 1
Result: A boosted classifier 𝑓 (𝐵) (x)

1 Initialise (as a constant) 𝑓 0(x) ≡ arg min𝑐
∑𝑛

𝑖=1 𝐿 (𝑦𝑖 , 𝑐).
2 for 𝑏 = 1, . . . , 𝐵 do
3 Compute the negative gradient of the loss function

𝑑 (𝑏)𝑖 = − 1
𝑛

[
𝜕𝐿 (𝑦𝑖 ,𝑐)

𝜕𝑐

]
𝑐= 𝑓 (𝑏−1) (x𝑖)

.

4 Learn a regression model 𝑓 (𝑏) (x) from the input-output training data
{x𝑖 , 𝑑 (𝑏)𝑖 }𝑛𝑖=1.

5 Compute 𝛼 (𝑏) = arg min𝛼
∑𝑛

𝑖=1 𝐿 (𝑦𝑖 , 𝑓 (𝑏−1) (x𝑖) + 𝛼 𝑓 (𝑏) (x𝑖)).
6 Update the boosted model 𝑓 (𝑏) (x) = 𝑓 (𝑏−1) (x) + 𝛾𝛼 (𝑏) 𝑓 (𝑏) (x).
7 end

Predict with the gradient boosting classifier
Data: 𝐵 weak classifiers and test input x★
Result: Prediction �̂� (𝐵)boost(x★)

1 Output �̂� (𝐵)boost(x) = sign{ 𝑓 (𝐵) (x)}.

Method 7.3: A simple gradient boosting algorithm

When using trees as base models, optimising 𝛼 (𝑏) can be done jointly with
learning 𝑓 (𝑏) (x). Specifically, instead of first computing constant predictions for all
terminal nodes of the tree (see Section 2.3) and then multiplying these by a constant
𝛼 (𝑏) , we can solve one separate line search problem for each terminal node in the
tree directly.

Time to reflect 7.4 We have described boosting algorithms as greedy step-wise
training of an additive model. Based on this interpretation, another approach
for training these models is by coordinate ascent (see Section 5.4). That is,
instead of adding a new component at each iteration of the training algorithm
and stopping after 𝐵 iterations, we can fix the number of components and
cycle through them (updating one component at a time) until convergence.
What are the possible drawbacks and benefits of this alternative training
approach?

186
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

7.5 Further Reading

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

(a) AdaBoost

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

(b) A gradient boosting classifier

Figure 7.9: Two boosting algorithms applied to the music classification problem from
Example 2.1.

While presented for classification in Method 7.3, gradient boosting can also
be used for regression, with minor modifications. As mentioned above, gradient
boosting requires a certain amount of smoothness in the loss function. A minimal
requirement is that it is differentiable almost everywhere, so that it is possible to
compute the gradient of the loss function. However, some implementations of
gradient boosting require stronger conditions, such as second order differentiability.
The logistic loss (see Section 5.2) is in this respect a ‘safe choice’ as it is infinitely
differentiable and strongly convex while still enjoying good statistical properties.
As a consequence, the logistic loss is one of the most commonly used loss functions
in practice.

We conclude this chapter by applying AdaBoost and gradient boosting to the
music classification problem from Example 2.1; see Figure 7.9.

7.5 Further Reading

The general bagging idea was initially proposed by Breiman (1996), whereas the
more specific random forest algorithm dates back to Ho (1995), who essentially
proposed to limit the set of possible splitting variables for each tree. The idea to
also use a bootstraped data set (that is, bagging) is due to Breiman (2001).

Boosting was popularised by the introduction of AdaBoost by Freund and
Schapire (1996), who were also awarded the prestigious Gödel Prize in 2003 for
their algorithm. Real AdaBoost was proposed by Friedman et al. (2000), and
gradient boosting by Friedman (2001) and Mason et al. (1999). Efficient and widely
used implementations of gradient boosting include the XGBoost package by T. Chen
and Guestrin (2016) and LightGBM by Ke et al. (2017).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
187

8 Non-linear Input Transformations
and Kernels

In this chapter, we will continue to develop the idea from Chapter 3 of creating new
input features by using non-linear transformations 𝝓(x). It turns out that by the
so-called kernel trick, we can have infinitely many such non-linear transformations,
and we can extend our basic methods, such as linear regression and 𝑘-NN, into
more versatile and flexible ones. When we also change the loss function of linear
regression, we obtain support vector regression and its classification counterpart
support vector classification, two powerful off-the-shelf machine learning methods.
The concept of kernels is important also to the next chapter (9), where a Bayesian
perspective of linear regression and kernels leads us to the Gaussian process model.

8.1 Creating Features by Non-linear
Input Transformations

The reason for the word ‘linear’ in the name ‘linear regression’ is that the output is
modelled as a linear combination of the inputs. However, we have not provided
a clear definition of what an input is. Recall the car stopping distance problem in
Example 2.2. If the speed is an input in that example, then could the kinetic energy
– the square of the speed – not also be considered as another input? The answer is:
yes, it can. We can in fact make use of arbitrary non-linear transformations of the
‘original’ input variables in any model, including linear regression. For example, if
we only have a one-dimensional input 𝑥, the vanilla linear regression model (3.2) is

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀. (8.1)

Starting from this, we can extend the model with 𝑥2, 𝑥3, . . . , 𝑥𝑑−1 as inputs (𝑑 is a
user-choice) and thus obtain a linear regression model which is a polynomial in 𝑥:

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + · · · + 𝜃𝑑−1𝑥

𝑑−1 + 𝜀 = 𝜽T𝝓(𝑥) + 𝜀. (8.2)

Since 𝑥 is known, we can directly compute 𝑥2, . . . , 𝑥𝑑−1. Note that this is still a
linear regression model since the parameters 𝜽 appear in a linear fashion with
𝝓(𝑥) = [1 𝑥 𝑥2 . . . 𝑥𝑑−1]T as a new input vector. We refer to a transformation of x

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
189

8 Non-linear Input Transformations and Kernels

input 𝑥

ou
tp

ut
𝑦

Model
Data

(a) A linear regression model with a 2nd order
polynomial, trained with squared error loss. The
line is no longer straight (as in Figure 3.1), but
this is merely an artifact of the plot: in a three-
dimensional plot with each feature (here, 𝑥 and
𝑥2) on a separate axis, it would still be an affine
model.

input 𝑥

ou
tp

ut
𝑦

Model
Data

(b) A linear regression model with a 4th order
polynomial, trained with squared error loss. Note
that a 4th order polynomial implies five unknown
parameters, which roughly means that we can
expect the learned model to fit five data points
exactly, a typical case of overfitting.

Figure 8.1: A linear regression model with 2nd and 4th order polynomials in the input 𝑥, as
in (8.2).

as a feature1 and the vector of transformed inputs 𝝓(x), a vector of dimension 𝑑 × 1,
as a feature vector. The parameters �̂� are still learned in the same way, but we

replace the original X =

xT
1

xT
2
...

xT
𝑛

︸ ︷︷ ︸
𝑛×𝑝+1

with the transformed 𝚽(X) =

𝝓(x1)T
𝝓(x2)T

...
𝝓(x𝑛)T

︸ ︷︷ ︸
𝑛×𝑑

.

(8.3)

For linear regression, this means that we can learn the parameters by making the
substitution (8.3) directly in the normal equations (3.13).

The idea of non-linear input transformations is not unique to linear regression,
and any choice of non-linear transformation 𝝓(·) can be used with any supervised
machine learning method. The non-linear transformation is first applied to the
input, like a pre-processing step, and the transformed input is thereafter used when
training, evaluating, and using the model. We illustrated this for regression already
in Example 3.5 in Chapter 3 and for classification in Example 8.1.

1The original input x is sometimes also referred to as a feature.

190
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.1 Creating Features by Non-linear Input Transformations

Time to reflect 8.1 Figure 8.1 shows an example of two linear regression
models with transformed (polynomial) inputs. When studying the figure, one
may ask how a linear regression model can result in a curved line? Are
linear regression models not restricted to linear (or affine) straight lines?

Example 8.1 Non-linear feature transformations for classification

Consider the data for a binary classification problem in the left panel of Figure 8.2,
with x = [𝑥1 𝑥2]T and with a blue and a red class. By just looking at the data,
we can conclude that a linear classifier would not be able to perform well on this
problem.

−2 0 2

−0.5

0

0.5

𝑥1

𝑥 2

−2
0

2 −0.5

0
0.5−0.5

0

0.5

𝑥1
𝑥2

𝑥 1
𝑥 2

Fig.
8.2

However, by adding the non-linear transformation 𝑥1𝑥2 as a feature, such that
𝝓(x) = [𝑥1 𝑥2 𝑥1𝑥2]T, we get the situation in the right panel in Figure 8.2. With
this relatively simple introduction of an extra feature, the problem now appears to
be much better suited to a linear classifier, since the data can be separated relatively
well by the sketched plane. The conclusion here is that one strategy for increasing
the capability of otherwise relatively simple methods is to introduce non-linear
feature transformations.

Polynomials are only one out of (infinitely) many possible choices of features
𝝓(x). One should take care when using polynomials higher than second order in
practice because of their behavior outside the range where the data is observed
(recall Figure 8.1b). Instead, there are several alternatives that are often more
useful in practice, such as Fourier series, essentially corresponding to (for scalar
𝑥) 𝝓(𝑥) = [1 sin(𝑥) cos(𝑥) sin(2𝑥) cos(2𝑥) · · ·]T, step functions, regression
splines, etc. The use of non-linear input transformations 𝝓(x) arguably makes
simple models more flexible and applicable to real-world problems with non-linear
characteristics. In order to obtain good performance, it is important to chose 𝝓(x)
such that enough flexibility is obtained but overfitting avoided. With a very careful
choice of 𝝓(x), good performance can be obtained for many problems, but that
choice is problem-specific and requires some craftmanship. Let us instead explore
the conceptual idea of letting the number of features 𝑑 →∞ and combine this with
regularisation. In a sense this will automate the choice of features, and it leads us to
a family of powerful off-the-shelf machine learning tools called kernel methods.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
191

8 Non-linear Input Transformations and Kernels

8.2 Kernel Ridge Regression

A carefully engineered transformation 𝝓(𝑥) in linear regression, or any other method
for that matter, may indeed perform well for a specific machine learning problem.
However, we would like 𝝓(𝑥) to contain a lot of transformations that could possibly
be of interest for most problems, in order to obtain a general off-the-shelf method.
We will, therefore, explore the idea of choosing 𝑑 really large, much larger than
the number of data points 𝑛, and eventually even let 𝑑 → ∞. The derivation and
reasoning will be done using 𝐿2-regularised linear regression, but we will later see
that the idea is also applicable to other model types.

Re-formulating Linear Regression

First of all, we have to use some kind of regularisation if we are going to increase
𝑑 in linear regression, in order to avoid overfitting when 𝑑 > 𝑛. For reasons that
we will discuss later, we chose to use 𝐿2-regularisation. Recall the equation for
𝐿2-regularised linear regression:

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

(
𝜽T𝝓(x𝑖)︸ ︷︷ ︸

�̂� (x𝑖)

−𝑦𝑖
)2 + 𝜆‖𝜽 ‖22 = (𝚽(X)T𝚽(X) + 𝑛𝜆I)−1𝚽(X)Ty,

(8.4a)

We have not fixed the non-linear transformations 𝝓(x) to anything specific yet, but
we are preparing for choosing 𝑑 � 𝑛 in these transformations. The downside of
choosing 𝑑, the dimension of 𝝓(x), large is that we also have to learn 𝑑 parameters
when training. In linear regression, we usually first learn and store the 𝑑-dimensional
vector �̂� , and thereafter we use it for computing a prediction

�̂�(x★) = �̂�
T
𝝓(x★). (8.5)

To be able to choose 𝑑 really large, conceptually even 𝑑 → ∞, we have to re-
formulate the model such that there are no computations or storage demands that
scale with 𝑑. The first step is to realise that the prediction �̂�(x★) can be rewritten as

�̂�(x★) = �̂�
T︸︷︷︸

1×𝑑

𝝓(x★)︸︷︷︸
𝑑×1

=
(
𝚽(X)T𝚽(X) + 𝑛𝜆I)−1𝚽(X)Ty

)T
𝝓(x★)

= yT︸︷︷︸
1×𝑛

𝚽(X)︸︷︷︸
𝑛×𝑑

(𝚽(X)T𝚽(X) + 𝑛𝜆I︸ ︷︷ ︸
𝑑×𝑑

)−1 𝝓(x★)︸︷︷︸
𝑑×1︸ ︷︷ ︸

𝑛×1

, (8.6)

where the underbraces give the sizes of the corresponding vectors and matrices.
This expression for �̂�(x★) suggests that, instead of computing and storing the
𝑑-dimensional �̂� once (independently of x★), we could, for each test input x★,

192
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.2 Kernel Ridge Regression

compute the 𝑛-dimensional vector 𝚽(X) (𝚽(X)T𝚽(X) +𝑛𝜆I)−1𝝓(x★). By doing so,
we avoid storing a 𝑑-dimensional vector. But this would still require the inversion
of a 𝑑 × 𝑑 matrix. We therefore have some more work to do before we have a
practically useful method where we can select 𝑑 arbitrarily large.

The push-through matrix identity says that A(ATA + I)−1 = (AAT + I)−1A holds
for any matrix A. By using it in (8.6), we can further rewrite �̂�(x★) as

�̂�(x★) = yT︸︷︷︸
1×𝑛

(𝚽(X)𝚽(X)T + 𝑛𝜆I︸ ︷︷ ︸
𝑛×𝑛

)−1 𝚽(X)𝝓(x★)︸ ︷︷ ︸
𝑛×1

. (8.7)

It appears in (8.7) as if we can compute �̂�(x★) without having to deal with
any 𝑑-dimensional vectors or matrices, provided that the matrix multiplications
𝚽(X)𝚽(X)T and 𝚽(X)𝝓(x★) in (8.7) can somehow be computed. Let us therefore
have a closer look at these:

𝚽(X)𝚽(X)T =

𝝓(x1)T𝝓(x1) 𝝓(x1)T𝝓(x2) . . . 𝝓(x1)T𝝓(x𝑛)
𝝓(x2)T𝝓(x1) 𝝓(x2)T𝝓(x2) . . . 𝝓(x2)T𝝓(x𝑛)

...
. . .

...
𝝓(x𝑛)T𝝓(x1) 𝝓(x𝑛)T𝝓(x2) . . . 𝝓(x𝑛)T𝝓(x𝑛)

and (8.8)

𝚽(X)𝝓(x★) =

𝝓(x1)T𝝓(x★)
𝝓(x2)T𝝓(x★)

...
𝝓(x𝑛)T𝝓(x★)

. (8.9)

Remember that 𝝓(x)T𝝓(x′) is an inner product between the two 𝑑-dimensional
vectors 𝝓(x) and 𝝓(x′). The key insight here is to note that the transformed inputs
𝝓(x) enter into (8.7) only as inner products 𝝓(x)T𝝓(x′), where each inner product
is a scalar. That is, if we are able to compute the inner product 𝝓(x)T𝝓(x′) directly,
without first explicitly computing the 𝑑-dimensional 𝝓(x), we have reached our
goal.

As a concrete illustration, let us for simplicity consider polynomials. With 𝑝 = 1,
meaning x is a scalar 𝑥, and 𝝓(𝑥) is a third-order polynomial (𝑑 = 4) with the
second and third-term scaled by

√
3,2 we have

𝝓(𝑥)T𝝓(𝑥 ′) = [
1
√

3𝑥
√

3𝑥2 𝑥3]

1√
3𝑥 ′√
3𝑥 ′2
𝑥 ′3

= 1 + 3𝑥𝑥 ′ + 3𝑥2𝑥 ′2 + 𝑥3𝑥 ′3 = (1 + 𝑥𝑥 ′)3. (8.10)

It can generally be shown that if 𝝓(𝑥) is a (suitably re-scaled) polynomial of order
𝑑 − 1, then 𝝓(𝑥)T𝝓(𝑥 ′) = (1 + 𝑥𝑥 ′)𝑑−1. The point we want to make is that instead
of first computing the two 𝑑-dimensional vectors 𝝓(𝑥) and 𝝓(𝑥 ′) and thereafter

2The scaling
√

3 can be compensated for by an inverse scaling of the second and third element in 𝜽 .

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
193

8 Non-linear Input Transformations and Kernels

computing their inner product, we could just evaluate the expression (1 + 𝑥𝑥 ′)𝑑−1

directly instead. With a second- or third-order polynomial, this might not make
much of a difference, but consider the computational scaling in a situation where it
is of interest to use 𝑑 in the hundreds or thousands.

The main point we are getting at is that if we just make the choice of 𝝓(x) such
that the inner product 𝝓(x)T𝝓(x′) can be computed without first computing 𝝓(x),
we can let 𝑑 be arbitrary big. Since it is possible to define inner products between
infinite-dimensional vectors, there is nothing preventing us from letting 𝑑 →∞.

We have now derived a version of 𝐿2-regularised linear regression that we can use
in practice with an unbounded number of features 𝑑 in 𝝓(x), if we restrict ourselves
to 𝝓(x) such that its inner product 𝝓(x)T𝝓(x′) has a closed-form expression (or
can, at least, be computed in such a way that it does not scale with 𝑑). This might
appear to be of rather limited interest for a machine learning engineer, since one still
has to come up with a non-linear transformation 𝝓(x), choose 𝑑 (possibly∞), and
thereafter make a pen-and-paper derivation (like (8.10)) of 𝝓(x)T𝝓(x′). Fortunately
it is possible to bypass this by introducing the concept of a kernel.

Introducing the Kernel Idea

A kernel 𝜅(x, x′) is (in this book) any function that takes two arguments x and x′ from
the same space and returns a scalar. Throughout this book, we will limit ourselves
to kernels that are real-valued and symmetric, that is, 𝜅(x, x′) = 𝜅(x′, x) ∈ R for all
x and x′. Equation (8.10), for example, is such a kernel. And more generally, the
inner product of two non-linear input transformations is an example of a kernel:

𝜅(x, x′) = 𝝓(x)T𝝓(x′). (8.11)

The important point at this stage is that since 𝝓(x) only appears in the linear
regression model (8.7) via inner products, we do not have to design a 𝑑-dimensional
vector 𝝓(x) and derive its inner product. Instead, we can just choose a kernel
𝜅(x, x′) directly. This is known as the kernel trick:

If x enters the model as 𝝓(x)T𝝓(x′) only, we can choose a kernel 𝜅(x, x′) instead
of chosing 𝝓(x).

To be clear on what this means in practice, we rewrite (8.7) using the kernel
(8.11):

�̂�(x★) = yT︸︷︷︸
1×𝑛

(𝑲 (X,X) + 𝑛𝜆I︸ ︷︷ ︸
𝑛×𝑛

)−1 𝑲 (X, x★)︸ ︷︷ ︸
𝑛×1

, (8.12a)

where 𝑲 (X,X) =

𝜅(x1, x1) 𝜅(x1, x2) . . . 𝜅(x1, x𝑛)
𝜅(x2, x1) 𝜅(x2, x2) . . . 𝜅(x2, x𝑛)

...
. . .

...
𝜅(x𝑛, x1) 𝜅(x𝑛, x2) . . . 𝜅(x𝑛, x𝑛)

and (8.12b)

194
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.2 Kernel Ridge Regression

𝑲 (X, x★) =

𝜅(x1, x★)
𝜅(x2, x★)

...
𝜅(x𝑛, x★)

. (8.12c)

These equations describe linear regression with 𝐿2-regularisation using a kernel
𝜅(x, x′). Since 𝐿2-regularisation is also called ridge regression, we refer to (8.12)
as kernel ridge regression. The 𝑛 × 𝑛 matrix 𝑲 (X,X) is obtained by evaluating the
kernel at all pairs of training inputs and is called the Gram matrix. We initially argued
that linear regression with a possibly infinite-dimensional non-linear transformation
vector 𝝓(x) could be an interesting model, and (8.12) is (for certain choices of 𝝓(x)
and 𝜅(x, x′)) equivalent to this. The design choice for the user is now to select a
kernel 𝜅(x, x′) instead of 𝝓(x). In practice, choosing 𝜅(x, x′) is a much less tedious
problem than choosing 𝝓(x).

As users, we may in principle choose the kernel 𝜅(x, x′) arbitrarily, as long as we
can compute (8.12a). This requires that the inverse of 𝑲 (X,X) + 𝑛𝜆I exists. We
are, therefore, on the safe side if we restrict ourselves to kernels for which the Gram
matrix 𝑲 (X,X) is always positive semidefinite. Such kernels are called positive
semidefinite kernels.3 Hence, the user of kernel ridge regression chooses a positive
semidefinite kernel 𝜅(x, x′) and neither has to select nor compute 𝝓(x). However,
a corresponding 𝝓(x) always exists for a positive semidefinite kernel, as we will
discuss in Section 8.4.

There is a number of positive semidefinite kernels commonly used in practice.
One positive semidefinite kernel is the squared exponential kernel (also known as
the RBF, exponentiated quadratic or Gaussian kernel),

𝜅(x, x′) = exp

(
− ‖x − x′‖22

2ℓ2

)
, (8.13)

where the hyperparameter ℓ > 0 is a design choice left to the user, for example to be
chosen using cross validation. Another example of a positive semidefinite kernel
mentioned earlier is the polynomial kernel 𝜅(x, x′) = (𝑐 + xTx′)𝑑−1. A special case
thereof is the linear kernel 𝜅(x, x′) = xTx′. We will give more examples later.

From the formulation (8.12), it may seem as if we have to compute the inverse
of 𝑲 (X,X) + 𝑛𝜆I every time we want to make a prediction. That is, however, not
necessary since it does not depend on the test input x★. It is, therefore, wise to
introduce the 𝑛-dimensional vector

�̂� =

�̂�1
�̂�2
...
�̂�𝑛

= yT (𝑲 (X,X) + 𝑛𝜆I)−1, (8.14a)

3Confusingly enough, such kernels are called positive definite in some texts.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
195

8 Non-linear Input Transformations and Kernels

which allows us to rewrite kernel ridge regression (8.12) as

�̂�(x★) = �̂�T𝑲 (X, x★). (8.14b)

That is, instead of computing and storing a 𝑑-dimensional vector �̂� as in standard
linear regression, we now compute and store an 𝑛-dimensional vector �̂�. However,
we also need to store X, since we have to compute 𝑲 (X, x★) for every prediction.

We summarise kernel ridge regression in Method 8.1 and illustrate it by Exam-
ple 8.2. Kernel ridge regression is in itself a practically useful method. That being
said, we will next take a step back and discuss what we have derived, in order to
prepare for more kernel methods. We will also come back to kernel ridge regression
in Chapter 9, where it is used as a stepping stone in deriving the Gaussian process
regression model.

Example 8.2 Linear regression with kernels

We consider again the car stopping distance problem from Example 2.2 and apply
kernel ridge regression to it. We use 𝜆 = 0.01 here and explore what happens when
using different kernels.

We start, in the left panel in Figure 8.3, using the squared exponential kernel with
ℓ = 1 (blue line). We see that it does not really interpolate well between the data
points, whereas ℓ = 3 (green line) gives a more sensible behavior. (We could select
ℓ using cross validation, but we do not pursue that any further here.)

It is interesting to note that prediction reverts to zero when extrapolating beyond
the range of the training data. This is, in fact, a general property of the squared
exponential kernel as well as many other commonly used kernels. The reason for
this behavior is that, by construction, the kernel 𝜅(x, x′) drops to zero as the distance
between x and x′ increases. Intuitively, this means that the resulting predictions
are based on local interpolation, and as we extrapolate far beyond the range of the
training data, the method will revert to a ‘default prediction’ of zero. This can be
seen from (8.14b) – if x★ is far from the training data points, then all elements of
the vector 𝑲 (X, x★) will be close to zero (for a kernel with the aforementioned
property) and so will the resulting prediction.

We have previously seen that this data, to some extent, follows a quadratic function.
As we will discuss in Section 8.4, the sum of two kernels is another kernel. In the
right panel in Figure 8.3, we therefore try using the sum of the squared exponential
kernel (with ℓ = 3) and the polynomial kernel of degree 2 (𝑑 = 3) (red line). As a
reference, we also include kernel ridge regression with only the polynomial kernel
of degree 2 (𝑑 = 3) (dashed blue line; equivalent to 𝐿2-regularised polynomial
regression). The combined kernel gives a more flexible model than only a quadratic
function, but it also (for this example) seems to extrapolate better than only using
the squared exponential kernel.

This can be understood by noting that the polynomial kernel is not local (in the
sense discussed above). That is, it does not drop to zero for test data points that are
far from the training data. Instead it corresponds to a polynomial trend, and the
predictions will follow this trend when extrapolating. Note that the two kernels
considered here result in very similar extrapolations. The reason for this is that the

196
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.3 Support Vector Regression

0 10 20 30 40 50
0

100

200

Speed (mph)

D
ist

an
ce

(fe
et

)

Kernel ridge with squared exponential kernel, ℓ = 1
Kernel ridge with squared exponential kernel, ℓ = 3
Data

0 10 20 30 40 50
0

100

200

Speed (mph)

Squared exponential (ℓ = 3) plus polynomial (𝑑 = 3)
Polynomial kernel (𝑑 = 3)
Data

Fig.
8.3

squared exponential component of the combined kernel will only ‘be active’ when
interpolating. For extrapolation, the combined kernel will thus revert to using only
the polynomial component.

By studying Figure 8.3, we can see that kernel ridge regression is a very flexible
model, and the result is highly dependent on the choice of kernel. As we will stress
throughout this (and the next) chapter, the kernel is indeed a crucial choice for the
machine learning engineer when using kernel methods.

Time to reflect 8.2 Verify that you retrieve 𝐿2-regularised linear regression,
without any non-linear transformations, by using the linear kernel 𝜅(x, x′) =
xTx in (8.12).

Learn Kernel ridge regression
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 and a kernel 𝜅
Result: Learned dual parameters �̂�

1 Compute �̂� as per (8.14a)

Predict with Kernel ridge regression
Data: Learned dual parameters �̂� and test input x★
Result: Prediction �̂�(x★)

1 Compute �̂�(x★) as (8.14b).

Method 8.1: Kernel ridge regression.

8.3 Support Vector Regression

Kernel ridge regression, as we just derived, is our fist kernel method for regression,
which is a useful method on its own. We will now extend kernel ridge regression

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
197

8 Non-linear Input Transformations and Kernels

into support vector regression by replacing the loss function. First, however, we
take a step back and make an interesting observation that suggests the so-called
representer theorem, which will be useful later in this chapter.

Preparing for More Kernel Methods: The Representer Theorem

The formulation (8.14) is not only practical for implementation; it is also important
for theoretical understanding. We can interpret (8.14) as a dual formulation of linear
regression, where we have the dual parameters 𝜶 instead of the primal formulation
(8.4) with primal parameters 𝜽. Remember that 𝑑, the (possibly infinite) number
of primal parameters in 𝜽, is a user design choice, whereas 𝑛, the number of dual
parameters in 𝜶, is the number of data points.

By comparing (8.14b) and (8.5), we have that

�̂�(x★) = �̂�
T
𝝓(x★) = �̂�T 𝚽(X)𝝓(x★)︸ ︷︷ ︸

𝑲 (X,x★)

(8.15)

for all x★, which suggests that

�̂� = 𝚽(X)T�̂�. (8.16)

This relationship between the primal parameters 𝜽 and the dual parameters 𝜶 is not
specific for kernel ridge regression, but (8.16) is the consequence of a general result
called the representer theorem.

In essence, the representer theorem states that if �̂�(x) = 𝜽T𝝓(x), the equation
(8.16) holds when 𝜽 is learned using (almost) any loss function and 𝐿2-regularisation.
A full treatment is beyond the scope of this chapter, but we give a complete statement
of the theorem in Section 8.A. An implication of the representer theorem is that
𝐿2-regularisation is crucial in order to obtain kernel ridge regression (8.14), and we
could not have achieved it using, say, 𝐿1 regularisation instead. The representer
theorem is a cornerstone of most kernel methods, since it tells us that we can express
some models in terms of dual parameters 𝜶 (of finite length 𝑛) and a kernel 𝜅(x, x′),
instead of the primal parameters 𝜽 (possibly of infinite length 𝑑) and a non-linear
feature transformation 𝝓(x), just like we did with linear regression in (8.14).

Support Vector Regression

We will now look at support vector regression, another off-the-shelf kernel method
for regression. From a model perspective, the only difference to kernel ridge
regression is a change of loss function. This new loss function has an interesting
effect in that the dual parameter vector �̂� in support vector regression becomes
sparse, meaning that several elements of �̂� are exactly zero. Recall that we can
associate each element in �̂� with one training data point. The training data points

198
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.3 Support Vector Regression

corresponding to the non-zero elements of �̂� are referred to as support vectors, and
the prediction �̂�(x★) will depend only on these (in contrast to kernel ridge regression
(8.14b), where all training data points are needed to compute �̂�(x★)). This makes
support vector regression an example of a so-called support vector machine (SVM),
a family of methods with sparse dual parameter vectors.

The loss function we will use for support vector regression is the 𝜖-insensitive
loss,

𝐿 (𝑦, �̂�) =
{

0 if |𝑦 − �̂� | < 𝜖,

|𝑦 − �̂� | − 𝜖 otherwise,
, (8.17)

or equivalently 𝐿 (𝑦, �̂�) = max 0, |𝑦 − �̂� | − 𝜖 , which was introduced in (5.9) in
Chapter 5. The parameter 𝜖 is a user design choice. In its primal formulation,
support vector regression also makes use of the linear regression model

�̂�(x★) = 𝜽T𝝓(x★), (8.18a)

but instead of the least square cost function in (8.4), we now have

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

max{0, |𝑦𝑖 − 𝜽T𝝓(x𝑖)︸ ︷︷ ︸
�̂� (x𝑖)

| − 𝜖} + 𝜆‖𝜽 ‖22. (8.18b)

As with kernel ridge regression, we reformulate the primal formulation (8.18) into
a dual formulation with 𝜶 instead of 𝜽 and use the kernel trick. For the dual
formulation, we cannot repeat the convenient closed-form derivation along the
lines of (8.4–8.14) since there is no closed-form solution for �̂� . Instead we have to
use optimisation theory, introduce slack variables, and construct the Lagrangian
of (8.18b). We do not give the full derivation here (it is similar to the derivation
of support vector classification in Appendix 8.B), but as it turns out, the dual
formulation becomes

�̂�(x★) = �̂�T𝑲 (X, x★), (8.19a)

where �̂� is the solution to the optimisation problem

�̂� = arg min
𝜶

1
2
𝜶T𝑲 (X,X)𝜶 − 𝜶Ty + 𝜖 ‖𝜶‖1, (8.19b)

subject to |𝛼𝑖 | ≤ 1
2𝑛𝜆

. (8.19c)

Note that (8.19a) is identical to the corresponding expression for kernel ridge
regression (8.14b). This is a consequence of the representer theorem. The only
difference to kernel ridge regression is how the dual parameters 𝜶 are learned:
by numerically solving the optimisation problem (8.19b) instead of using the
closed-form solution in (8.14a).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
199

8 Non-linear Input Transformations and Kernels

The 𝜖-insensitive loss function could be used for any regression model, but it
is particularly interesting in this kernel context since the dual parameter vector 𝜶
becomes sparse (meaning that only some elements are non-zero). Remember that
𝜶 has one entry per training data point. This implies that the prediction (8.19a)
depends only on some of the training data points, namely those whose corresponding
𝛼𝑖 is non-zero, the so-called support vectors. In fact it can be shown that the support
vectors are the data points for which the loss function is non-zero, that is, the
data points for which | �̂�(x𝑖) − 𝑦𝑖 | ≥ 𝜖 . That is, a larger 𝜖 results in fewer support
vectors, and vice versa. This effect can also be understood by interpreting 𝜖 as a
regularisation parameter in an 𝐿1 penalty in the dual formulation (8.19b). (The
number of support vectors is, however, also affected by 𝜆, since 𝜆 influences the
shape of �̂�(x).) We illustrate this in Example 8.3.

All training data is indeed used at training time (that is, solving (8.19b)), but
when making predictions (using (8.19a)), only the support vectors contribute. This
can significantly reduce the computational burden. The larger 𝜖 chosen by the
user, the fewer support vectors and the fewer computations needed when making
predictions. It can, therefore, be said that 𝜖 has a regularising effect, in the sense
that the more/fewer support vectors that are used, the more/less complicated model.
We summarise support vector regression in Method 8.2.

Learn support vector regression
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Learned parameters �̂�

1 Compute �̂� by numerically solving (8.19b–8.19c)

Predict with kernel ridge regression
Data: Learned parameters �̂� and test input x★
Result: Prediction �̂�(x★)

1 Compute �̂�(x★) as per (8.19a).

Method 8.2: Support vector regression.

Example 8.3 Support vector regression and kernel ridge regression

We consider yet again the car stopping distance problem from Example 2.2 in
Figure 8.4. With the combined squared exponential and polynomial kernel from
Example 8.2, 𝜆 = 0.01 and 𝜖 = 15, we apply support vector regression to the data
(red line). As a reference, we also show the corresponding kernel ridge regression
(blue line).

200
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.3 Support Vector Regression

0 10 20 30 40 50
0

50

100

150

200

Speed (mph)

D
ist

an
ce

(fe
et

)

Kernel ridge regression
Support vector regression
𝜖-tube
Support vectors
Data

Fig.
8.4

In Figure 8.4, we have circled (in red) all data points for which 𝛼𝑖 ≠ 0, the
so-called support vectors. We have also included the ‘𝜖-tube’ (�̂�(x) ±𝜖 ; dotted lines),
and we can confirm that all support vectors are located outside the ‘𝜖-tube’. This is
a direct effect of using the 𝜖-insensitive loss, which explicitly encodes that the loss
function for data points within 𝜖 from �̂�(x) is exactly zero. If choosing a smaller
𝜖 , we would have more support vectors, and vice versa. Another consequence of
the sparsity of 𝜶 is that when computing a prediction (8.19a) with support vector
regression, it is sufficient to do the computation using (in this case) only five data
points. For kernel ridge regression, which does not have a sparse 𝜶, the prediction
(8.14b) depends on all 62 data points.

The 𝜖-insensitive loss makes the dual parameter vector 𝜶 sparse. Note, however,
that this does not mean that the corresponding primal parameter vector 𝜽 is sparse
(their relationship is given by (8.16)). Also note that (8.19b) is a constrained
optimisation problem (there is a constraint given by (8.19c)), and more theory than
we presented in Section 5.4 is needed to derive a good solver.

The feature vector 𝚽(x) corresponding to some kernels, such as the squared
exponential kernel (8.13), does not have a constant offset term. Therefore, an
additional 𝜃0 is sometimes included in (8.19a) for support vector regression, which
adds the constraint

∑
𝑖 𝛼𝑖 = 0 to the optimisation problem in (8.19b). The same

addition could also be made to kernel ridge regression (8.14b), but that would break
the closed-form calculation of 𝜶 (8.14b).

Conclusions on Using Kernels for Regression

With kernel ridge regression and support vector regression, we have been dealing
with the interplay between three different concepts, each of them interesting on its
own. To clarify this, we repeat them in an ordered list:

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
201

8 Non-linear Input Transformations and Kernels

(i) We have considered the primal and dual formulations of a model. The
primal formulation expresses the model in terms of 𝜽 (fixed size 𝑑), whereas
the dual formulation uses 𝜶 (one 𝛼𝑖 per data point 𝑖, hence 𝜶 has size is
𝑛 no matter what 𝑑 happens to be). Both formulations are mathematically
equivalent but more or less useful in practice depending on whether 𝑑 > 𝑛 or
𝑛 > 𝑑.

(ii) We have introduced kernels 𝜅(x, x′), which allows us to let 𝑑 →∞ without
explicitly formulating an infinite vector of non-linear transformations 𝝓(x).
This idea is practically useful only when using the dual formulation with 𝜶,
since 𝑑 is the dimension of 𝜽 .

(iii) We have used different loss functions. Kernel ridge regression makes use of
squared error loss, whereas support vector regression uses the 𝜖-insensitive
loss. The 𝜖-insensitive loss is particularly interesting in the dual formulation,
since it gives sparse 𝜶. (We will later also use the hinge loss for support
vector classification in Section 8.5, which has a similar effect.)

We will now spend some additional effort on understanding the kernel concept in
Section 8.4 and thereafter introduce support vector classification in Section 8.5.

8.4 Kernel Theory

We have defined a kernel as being any function taking two arguments from the same
space and returning a scalar. We have also suggested that we can often restrict
ourselves to positive semidefinite kernels, and presented two practically useful
algorithms – kernel ridge regression and support vector regression. Before we
continue and introduce support vector classification, we will discuss the kernel
concept further and also give a flavour of the available theory behind it. To make
the discussion more concrete, let us start by introducing another kernel method,
namely a kernel version of 𝑘-NN.

Introducing Kernel k-NN

As you know from Chapter 2, 𝑘-NN constructs the prediction for x★ by taking the
average or a majority vote among the 𝑘 nearest neighbours to x★. In its standard

202
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.4 Kernel Theory

formulation, ‘nearest’ is defined by the Euclidean distance. Since the Euclidean
distance is always positive, we can equivalently consider the squared Euclidean
distance instead, which can be written in terms of the linear kernel 𝜅(x, x′) = xTx′
as

‖x − x′‖22 = (x − x′)T (x − x′) = xTx + x′Tx′ − 2xTx′

= 𝜅(x, x) + 𝜅(x′, x′) − 2𝜅(x, x′). (8.20)

To generalise the 𝑘-NN algorithm to use kernels, we allow the linear kernel to be
replaced by any, say, positive semidefinite kernel 𝜅(x, x′) in (8.20). Kernel 𝑘-NN
thus works the same as standard 𝑘-NN but determines proximity between the data
points using the right hand side of (8.20) with a user-chosen kernel 𝜅(x, x′) instead
of the left hand side of (8.20).

For many (but not all) kernels, it holds that 𝜅(x, x) = 𝜅(x′, x′) = constant for all
x and x′, suggesting that the most interesting part of the right hand side of (8.20) is
the term −2𝜅(x, x′). Thus, if 𝜅(x, x′) takes a large value, the two data points x and
x′ are considered to be close, and vice versa. That is, the kernel determines how
close any two data points are.

Furthermore, kernel 𝑘-NN allows us to also use 𝑘-NN for data where the Euclidean
distance has no natural meaning. As long as we have a kernel which acts on the
input space, we can apply kernel 𝑘-NN even if the Euclidean distance is not defined
for that input type. We can thereby apply kernel 𝑘-NN to input data that is neither
numerical nor categorical, such as text snippets, as illustrated by Example 8.4.

Example 8.4 Kernel 𝑘-NN for interpreting words

This example illustrates how kernel 𝑘-NN can be applied to text data, where the
Euclidean distance has no meaning, and standard 𝑘-NN therefore cannot be applied.
In this example, the input is single words (or more technically, character strings), and
we use the so-called Levenshtein distance to construct a kernel. The Levenshtein
distance is the number of single-character edits needed to transform one word
(string) into another. It takes two strings and returns a non-negative integer, which
is zero only if the two strings are equivalent. It fulfills the properties of being a
metric on the space of character strings, and we can thereby use it, for example,
in the squared exponential to construct a kernel as 𝜅(𝑥, 𝑥 ′) = exp

(
− (LD(𝑥,𝑥′))2

2ℓ2

)
(where LD is the Levenshtein distance) with, say, ℓ = 5.

In this very small example, we consider a training dataset of 10 adjectives shown
below (𝑥𝑖), each labelled (𝑦𝑖) Positive or Negative, according to their meaning.
We will now use kernel 𝑘-NN (with the kernel defined above) to predict whether the
word ‘horrendous’ (𝑥★) is a positive or negative word. In the third column below,
we have therefore computed the Levenshtein distance (LD) between each labelled
word (𝑥𝑖) and ‘horrendous’ (𝑥★). The rightmost column shows the value of the right
hand side of (8.20), which is the value that kernel 𝑘-NN uses to determine how
close two data points are.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
203

8 Non-linear Input Transformations and Kernels

Word, 𝑥𝑖 Meaning, 𝑦𝑖 Levenshtein dist. 𝜅(𝑥𝑖 , 𝑥𝑖) + 𝜅(𝑥★, 𝑥★)−
from 𝑥𝑖 to 𝑥★ 2𝜅(𝑥𝑖 , 𝑥★)

Awesome Positive 8 1.44
Excellent Positive 10 1.73
Spotless Positive 9 1.60
Terrific Positive 8 1.44
Tremendous Positive 4 0.55
Awful Negative 9 1.60
Dreadful Negative 6 1.03
Horrific Negative 6 1.03
Outrageous Negative 6 1.03
Terrible Negative 8 1.44

Inspecting the rightmost column, the closest word to horrendous is the positive word
tremendous. Thus, if we use 𝑘 = 1, the conclusion would be that horrendous is a
positive word. However, the second, third, and fourth closest words are all negative
(dreadful, horrific, outrageous), and with 𝑘 = 3 or 𝑘 = 4, the conclusion thereby
becomes that horrendous is a negative word (which also happens to be correct in
this case).

The purpose of this example is to illustrate how a kernel allows a basic method
such as 𝑘-NN to be used for a problem where the input has a more intricate
structure than just being numerical. For the particular application of predicting
word semantics, the character-by-character similarity is clearly an oversimplified
approach, and more elaborate machine learning methods exist.

The Meaning of a Kernel

From kernel 𝑘-NN we got (at least) two lessons about kernels that are generally
applicable to all supervised machine learning methods that use kernels:

• The kernel defines how close/similar any two data points are. If, say,
𝜅(x𝑖 , x★) > 𝜅(x 𝑗 , x★), then x★ is considered to be more similar to x𝑖 than
x 𝑗 . Intuitively speaking, for most methods, the prediction �̂�(x★) is most
influenced by the training data points that are closest/most similar to x★. The
kernel thereby plays an important role in determining the individual influence
of each training data point when making a prediction.

• Even though we started by introducing kernels via the inner product𝝓(x)T𝝓(x′),
we do not have to bother about inner product for the space in which x itself
lives. As we saw in Example 8.4, we can also apply a positive semidefinite
kernel method to text strings without worrying about inner products of strings,
as long as we have a kernel for that type of data.

In addition to this, the kernel also plays a somewhat more subtle role in methods
that build on the representer theorem (such as kernel ridge regression, support vector
regression, and support vector classification, but not kernel 𝑘-NN). Remember

204
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.4 Kernel Theory

that the primal formulation of those methods, by virtue of the representer theorem,
contains the 𝐿2-regularisation term 𝜆‖𝜽 ‖22. Even though we do not solve the
primal formulation explicitly when using kernels (we solve the dual instead), it
is nevertheless an equivalent representation, and we may ask what impact the
regularisation 𝜆‖𝜽 ‖22 has on the solution?

The 𝐿2-regularisation means that primal parameter values 𝜽 close to zero are
favoured. Besides the regularisation term, 𝜽 only appears in the expression 𝜽T𝝓(x).
The solution �̂� to the primal problem is therefore an interplay between the feature
vector 𝝓(x) and the 𝐿2-regularisation term. Consider two different choices of feature
vectors, 𝝓1(x) and 𝝓2(x). If they both span the same space of functions, there exist
𝜽1 and 𝜽2 such that 𝜽T

1𝝓1(x) = 𝜽T
2𝝓2(x) for all x, and it might appear irrelevant

which feature vector that is used. However, the 𝐿2-regularisation complicates the
situation because it acts directly on 𝜽 , and it therefore matters whether we use 𝝓1(x)
or 𝝓2(x). In the dual formulation, we choose the kernel 𝜅(x, x′) instead of feature
vector 𝝓(x), but since that choice implicitly corresponds to a feature vector, the
effect is still present, and we may add one more bullet point about the meaning
of a kernel:

• The choice of kernel corresponds to a choice of a regularisation functional.
That is, the kernel implies a preference for certain functions in the space of
all functions that are spanned by the feature vector. For example, the squared
exponential kernel implies a preference for smooth functions.

Using a kernel makes a method quite flexible, and one could perhaps expect it to
suffer heavily from overfitting. However, the regularising role of the kernel explains
why that rarely is the case in practice.

All three bullet points above are central to understanding the usefulness and
versatility of kernel methods. They also highlight the importance for the machine
learning engineer of choosing the kernel wisely and not simply resorting to ‘default’
choices.

Valid Choices of Kernels

We introduced kernels as a way to compactly work with non-linear feature trans-
formations like (8.11). A direct consequence of this is that it is now sufficient to
consider 𝜅(x, x′), and not 𝝓(x). A natural question to ask is whether an arbitrary
kernel 𝜅(x, x′) always corresponds to a feature transformation 𝝓(x), such that it can
be written as the inner product

𝜅(x, x′) = 𝝓(x)T𝝓(x′)? (8.21)

Before answering the question, we have to be aware that this question is primarily
of theoretical nature. As long as we can use 𝜅(x, x′) when computing predictions, it
serves its purpose, no matter whether it admits the factorisation (8.21) or not. The
specific requirements on 𝜅(x, x′) are different for different methods – for example,

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
205

8 Non-linear Input Transformations and Kernels

the inverse (𝑲 (X,X) + 𝑛𝜆I)−1 is needed for kernel ridge regression but not for
support vector regression. Furthermore, whether a kernel admits the factorisation
(8.21) or not has no direct correspondence to how well it performs in terms of
𝐸new. For any practical machine learning problem, the performance still has to be
evaluated using cross-validation or similarly.

That being said, we will now have a closer look at the important family of positive
semidefinite kernels. A kernel is said to be positive semidefinite if the Gram matrix
𝑲 (X,X) as defined in (8.12b) is positive semidefinite (has no negative eigenvalues)
for any choice of X.

First, it holds that any kernel 𝜅(x, x′) that is defined as an inner product between
feature vectors 𝝓(x), as in (8.21), is always positive semidefinite. It can, for
example, be shown from the equivalent definition of positive semidefinite that
vT𝑲 (X,X)v ≥ 0 holds for any vector v = [𝑣1 . . . 𝑣𝑛]T. By using (8.12b), the
definition of matrix multiplication (first equality below), and properties of the inner
product (second equality below), we can indeed conclude that

vT𝑲 (X,X)v =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑣𝑖 (𝝓(x𝑖))T𝝓(x 𝑗)𝑣 𝑗 =

(
𝑛∑︁
𝑖=1

𝑣𝑖𝝓(x𝑖)
)T ©«

𝑛∑︁
𝑗=1

𝑣 𝑗𝝓(x 𝑗)ª®¬
≥ 0.

(8.22)

Less trivially, the other direction also holds – that is, for any positive semidefinite
kernel 𝜅(x, x′), there always exists a feature vector 𝝓(x) such that 𝜅(x, x′) can
be written as an inner product (8.21). Technically it can be shown that for any
positive semidefinite kernel 𝜅(x, x′), it is possible to construct a function space,
more specifically a Hilbert space, that is spanned by a feature vector 𝝓(x) for
which (8.21) holds. The dimensionality of the Hilbert space, and thereby also the
dimension of 𝝓(x), can, however, be infinite.

Give a kernel 𝜅(x, x′), there are multiple ways to construct a Hilbert space
spanned by 𝝓(x), and we will only mention some directions here. One alternative
is to consider the so-called reproducing kernel map. The reproducing kernel map is
obtained by consider one argument, say the latter, to 𝜅(x, x′) fixed and let 𝜅(·, x′) span
the Hilbert space with an inner product 〈·, ·〉 such that 〈𝜅(·, x), 𝜅(·, x′)〉 = 𝜅(x, x′).
This inner product has a so-called reproducing property, and it is the main building
block for the so-called reproducing kernel Hilbert space. Another alternative is
to use the so-called Mercer kernel map, which constructs the Hilbert space using
eigenfunctions to an integral operator which is related to the kernel.

A given Hilbert space uniquely defines a kernel, but for a given kernel, there exist
multiple Hilbert spaces which correspond to it. In practice this means that given
a kernel 𝜅(x, x′), the corresponding feature vector 𝝓(x) is not unique; in fact not
even its dimensionality is unique. As a simple example, consider the linear kernel
𝜅(x, x′) = xTx′, which can either be expressed as an inner product between 𝝓(x) = x
(one-dimensional 𝝓(x)) or as an inner product between 𝝓(x) =

[
1√
2
x 1√

2
x
]T

(two-dimensional 𝝓(x)).

206
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.4 Kernel Theory

Examples of Kernels

We will now give a list of some commonly used kernels, of which we have already
introduced some. These examples are only for the case where x is a numeric variable.
For other types of input variables (such as in Example 8.4), we have to resort to
the more application-specific literature. We start with some positive semidefinite
kernels, where the linear kernel might be the simplest one:

𝜅(x, x′) = xTx′. (8.23)

A generalisation thereof, still positive semidefinite, is the polynomial kernel,

𝜅(x, x′) = (𝑐 + xTx′)𝑑−1, (8.24)

with hyperparameter 𝑐 ≥ 0 and polynomial order 𝑑 − 1 (integer). The polynomial
kernel corresponds to a finite-dimensional feature vector 𝝓(x) of monomials up to
order 𝑑 − 1. The polynomial kernel does not therefore conceptually enable anything
that could not be achieved by instead implementing the primal formulation and the
finite-dimensional 𝝓(x) explicitly. The other positive semidefinite kernels below,
on the other hand, all correspond to infinite-dimensional feature vectors 𝝓(x).

We have previously mentioned the squared exponential kernel,

𝜅(x, x′) = exp

(
− ‖x − x′‖22

2ℓ2

)
, (8.25)

with hyperparameter ℓ > 0 (usually called lengthscale). As we saw in Example 8.2,
this kernel has more of a ‘local’ nature compared to the polynomial since 𝜅(x, x′) →
0 as ‖x − x′‖ → ∞. This property makes sense in many problems and is perhaps
the reason why this might be the most commonly used kernel.

Somewhat related to the squared exponential, we have the family of Matérn
kernels,

𝜅(x, x′) = 21−𝜈

Γ(𝜈)

(√
2𝜈‖x − x′‖2

ℓ

)𝜈
𝑘𝜈

(√
2𝜈‖x − x′‖

ℓ

)
, (8.26)

with hyperparameters ℓ > 0 and 𝜈 > 0, where the latter is a type of smoothness
parameter. Here, Γ is the Gamma function and 𝑘𝜈 is a modified Bessel function of
the second kind. All Matérn kernels are positive semidefinite. Of particular interest
are the cases 𝜈 = 1

2 ,
3
2 , and 5

2 , when (8.26) simplifies to

𝜈 =
1
2
⇒ 𝜅(x, x′) = exp

(
− ‖x − x′‖2

ℓ

)
, (8.27)

𝜈 =
3
2
⇒ 𝜅(x, x′) =

(
1 +
√

3‖x − x′‖2
ℓ

)
exp

(
−
√

3‖x − x′‖2
ℓ

)
, (8.28)

𝜈 =
5
2
⇒ 𝜅(x, x′) =

(
1 +
√

5‖x − x′‖2
ℓ

+ 5‖x − x′‖22
3ℓ2

)
exp

(
−
√

5‖x − x′‖2
ℓ

)
.

(8.29)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
207

8 Non-linear Input Transformations and Kernels

The Matérn kernel with 𝜈 = 1
2 is also called the exponential kernel. It can

furthermore be shown that the Matérn kernel (8.26) equals the squared exponential
(8.25) when 𝜈 →∞.

As a final example of a positive semidefinite kernel, we mention the rational
quadratic kernel,

𝜅(x, x′) =
(
1 + ‖x − x′‖22

2𝑎ℓ2

)−𝑎
, (8.30)

with hyperparameters ℓ > 0 and 𝑎 > 0. The squared exponential, Matérn, and
rational quadratic kernel are all examples of stationary kernels, since they are
functions of only x − x′. In fact they are also isotropic kernels, since they are only
functions of ‖x − x′‖2. The linear kernel is neither isotropic nor stationary.

Going back to the discussion in connection to (8.21), positive semidefinite kernels
are a subset of all kernels, for which we know that certain theoretical properties
hold. In practice, however, a kernel is potentially useful as long as we can compute a
prediction using it, regardless of its theoretical properties. One (at least historically)
popular kernel for SVMs which is not positive semidefinite is the sigmoid kernel

𝜅(x, x′) = tanh
(
𝑎xTx′ + 𝑏) , (8.31)

where 𝑎 > 0 and 𝑏 < 0 are hyperparameters. The fact that it is not positive
semidefinite can, for example, be seen by computing the eigenvalues of 𝑲 (X,X)
with 𝑎 = 1, 𝑏 = −1, and X = [1 2]T. Since this kernel is not positive semidefinite,
the inverse (𝑲 (X,X) + 𝑛𝜆I)−1 does not always exists, and it is therefore not suitable
for kernel ridge regression. It can, however, be used in support vector regression
and classification, where that inverse is not needed. For certain values of 𝑏, it can be
shown to be a so-called conditional positive semidefinite kernel (a weaker property
than positive semidefinite).

It is possible to construct ‘new’ kernels by modifying or combining existing
ones. In particular there is a set of operations that preserve the positive semidefinite
property: If 𝜅(x, x′) is a positive semidefinite kernel, then so is 𝑎𝜅(x, x′) if 𝑎 > 0
(scaling). Furthermore, if both 𝜅1(x, x′) and 𝜅2(x, x′) are positive semidefinite
kernels, then so are 𝜅1(x, x′) + 𝜅2(x, x′) (addition) and 𝜅1(x, x′)𝜅2(x, x′) (multipli-
cation).

Most kernels contain a few hyperparameters that are left for the user to choose.
Much as cross-validation can provide valuable help in choosing between different
kernels, it can also help in choosing hyperparameters with grid search, as discussed
in Chapter 5.

8.5 Support Vector Classification

We have spent most of our time so far deriving two kernel versions of linear
regression: kernel ridge regression and support vector regression. We will now

208
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.5 Support Vector Classification

focus on classification. Unfortunately the derivations become more technically
involved than for kernel ridge regression, and we have placed the details in the
chapter appendix. However, the intuition carries over from regression, as well as the
main ideas of the dual formulation, the kernel trick, and the change of loss function.

It is possible to derive a kernel version of logistic regression with 𝐿2-regularisation.
The derivation can be made by first replacing x with 𝝓(x), and then using the
representer theorem to derive its dual formulation and applying the kernel trick.
However, since kernel logistic regression is rarely used in practice, we will instead
go straight to support vector classification. As the name suggests, support vector
classification is the classification counterpart of support vector regression. Both
support vector regression and classification are SVMs since they both have sparse
dual parameter vectors.

We consider the binary classification problem 𝑦 ∈ {−1, 1} and start with the
margin formulation (see (5.12) in Chapter 5) of the logistic regression classifier

�̂�(x★) = sign
{
𝜽T𝝓(x★)

}
. (8.32)

If we now were to learn 𝜽 using the logistic loss (5.13), we would obtain logistic
regression with a non-linear feature transformation 𝝓(x), from which kernel logistic
regression eventually would follow. However, inspired by support vector regression,
we will instead make use of the hinge loss function (5.16),

𝐿 (x, 𝑦, 𝜽) = max
{
0, 1 − 𝑦𝑖𝜽

T𝝓(x𝑖)
}
=

{
1 − 𝑦𝜽T𝝓(x) if 𝑦𝜽T𝝓(x) < 1
0, otherwise

. (8.33)

From Figure 5.2, it is not immediately clear what advantages the hinge loss has
over the logistic loss. Analogously to the 𝜖-insensitive loss, the main advantage of
the hinge loss comes when we look at the dual formulation using 𝜶 instead of the
primal formulation with 𝜽 . But before introducing a dual formulation, we first have
to consider the primal one. Since the representer theorem is behind all this, we have
to use 𝐿2-regularisation, which together with (8.33) gives the primal formulation

�̂� = arg min
𝜽

1
𝑛

𝑛∑︁
𝑖=1

max
{
0, 1 − 𝑦𝑖𝜽

T𝝓(x𝑖)
} + 𝜆‖𝜽 ‖22. (8.34)

The primal formulation does not allow for the kernel trick, since the feature vector
does not appear as 𝝓(x)T𝝓(x). By using optimisation theory and constructing the
Lagrangian (the details can be found in Appendix 8.B), we can arrive at the dual
formulation of (8.34),4

�̂� = arg min
𝜶

1
2
𝜶T𝑲 (X,X)𝜶 − 𝜶Ty (8.35a)

4In other texts, it is common to let the Lagrange multipliers (see Appendix 8.B) also be the dual
variables. It is mathematically equivalent, but we have instead chosen this formulation to highlight
the similarities to the other kernel methods and the importance of the representer theorem.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
209

8 Non-linear Input Transformations and Kernels

subject to |𝛼𝑖 | ≤ 1
2𝑛𝜆

and 0 ≤ 𝛼𝑖𝑦𝑖 (8.35b)

with

�̂�(x★) = sign
(
�̂�T𝑲 (X, x★)

)
(8.35c)

instead of (8.32). Note that we have also made use of the kernel trick here by
replacing 𝝓(x)T𝝓(x′) with 𝜅(x, x′), which gives 𝑲 (X,X) in (8.35a) and 𝑲 (X, x★)
in (8.35c). As for support vector regression, adding an offset term 𝜃0 to (8.32)
corresponds to enforcing an additional constraint

∑𝑛
𝑖=1 𝛼𝑖 = 0 in (8.35).

Because of the representer theorem, the formulation (8.35c) should come as no
surprise to us, since it simply corresponds to inserting (8.16) into (8.32). However,
the representer theorem only tells us that this dual formulation exists; the solution
(8.35a)–(8.35b) does not follow automatically from the representer theorem but
requires its own derivation.

Perhaps the most interesting property of the constrained optimisation problem
(8.35) is that its solution �̂� turns out to be sparse. This is exactly the same
phenomenon as with support vector regression, and it explains why (8.35) is also an
SVM. More specifically, (8.35) is called support vector classification. The strength
of this method, like support vector regression, is that the model has the full flexibility
of being a kernel method, and yet the prediction (8.35c) only explicitly depends on
a subset of the training data points (the support vectors). It is, however, important to
realise that all training data points are needed when solving (8.35a). We summarise
as Method 8.3.

The support vector property is due to the fact that the loss function is exactly
equal to zero when the margin (see Chapter 5) is ≥1. In the dual formulation, the
parameter 𝛼𝑖 becomes nonzero only if the margin for data point 𝑖 is ≤1, which
makes �̂� sparse. It can be shown that this corresponds to data points being either
on the ‘wrong side’ of the decision boundary or within 1

‖𝜽 ‖2 = 1
‖𝚽(X)T𝜶 ‖2 of the

decision boundary in the feature space 𝝓(x). We illustrate this by Example 8.5.

Example 8.5 Support vector classification

We consider the binary classification problem with
the data given in Figure 8.5 and apply support vec-
tor classification with linear and squared exponential
kernels, respectively, in Figure 8.6. We mark the sup-
port vectors with yellow circles. For the linear kernel,
the locations of the support vectors are either on the
‘wrong side’ of the decision boundary or within 1

‖𝜽 ‖2
of it, marked with dashed white lines. As we decrease,
𝜆 we allow for larger 𝜽 and thereby a smaller band

1
‖𝜽 ‖2 and consequently fewer support vectors.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

𝑥1

𝑥 2

Fig.
8.5

210
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.5 Support Vector Classification

Li
ne

ar
ke

rn
el

0 0.5 1 1.5 2
0

0.5

1

1.5

2

𝜆 = 1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

𝜆 = 0.1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

𝜆 = 0.01

Sq
ua

re
d

ex
po

ne
nt

ia
l

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Fig.
8.6

When using the (indeed non-linear) squared exponential kernel, the situation
becomes somewhat harder to interpret. It still holds that the support vectors are
either on the ‘wrong side’ of the decision boundary or within 1

‖𝜽 ‖2 of it, but the
distance is measured in infinite dimensional 𝝓(x)-space. Mapping this back to the
original input space, we observe this heavily non-linear behavior. The meaning of
the dashed white lines is the same as above. This also serves as a good illustration
of the power of using kernels.

Learn Support vector classification
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Learned parameters �̂�

1 Compute �̂� by numerically solving (8.35a)–(8.35b)

Predict with Support vector classification
Data: Learned parameters �̂� and test input x★
Result: Prediction �̂�(x★)

1 Compute �̂�(x★) as per (8.35c).

Method 8.3: Support vector classification.

In the SVM literature, it is common to use an equivalent formulation with 𝐶 = 1
2𝜆

or𝐶 = 1
2𝑛𝜆 as the regularisation hyperparameter. There also exists a slightly different

formulation using another hyperparameter called 𝜈 as, effectively, a regularisation
hyperparameter. Those primal and dual problems become slightly more involved,
and we do not include them here, but 𝜈 has a somewhat more natural interpretation
as it bounds the number of support vectors. To distinguish between the different

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
211

8 Non-linear Input Transformations and Kernels

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

(a) Linear kernel.

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

Beatles
Kiss
Bob Dylan

(b) Squared exponential kernel.

Figure 8.7: The decision boundaries for support vector classification with linear and squared
exponential kernels, respectively. In this multiclass problem, the one-versus-one strategy
has been used. It is clear from this figure that the support vector classification is a linear
classifier when using a linear kernel and otherwise is a non-linear classifier.

versions, (8.35) is commonly referred to as 𝐶-support vector classification and the
other version as 𝜈-support vector classification. A corresponding ‘𝜈-version’ also
exists for support vector regression.

As a consequence of using the hinge loss, as we discussed in Chapter 5, support
vector classification does not provide probability estimates 𝑔(x) but only a ‘hard’
classification �̂�(x★). The predicted margin, which is �̂�𝑲 (X, x★) for support vector
classification, is not possible to interpret as a class probability estimate, because of
the asymptotic minimiser of the hinge loss. As an alternative, it is instead possible
to use the squared hinge loss or the Huberised squared hinge loss, which allows
for a probability interpretation of the margin. Since all these loss functions are
exactly zero for margins ≥1, they retain the support vector property with a sparse �̂�.
However, by using a different loss function than the hinge loss, we will obtain a
different optimisation problem and a different solution to the one discussed above.

The support vector classifier is most often formulated as a solution to the
binary classification problem. The generalisation to the multiclass problem is,
unfortunately, not straightforward, since it requires a multiclass generalisation of
the loss function, as discussed in Chapter 5. In practice, it is common to construct a
multiclass classifier from multiple binary ones using either the one-versus-rest or
the one-versus-one strategy (see page 102). The latter is used when we apply it to
the music classification problem in Figure 8.7.

It is not necessary to make use of kernels in support vector classification. It
is perfectly possible to use the linear kernel 𝜅(x, x′) = xTx′ or any other kernel
corresponding to a finite dimensional 𝝓(x) in (8.35). That would indeed limit the
flexibility of the classifier; the linear kernel limits the classifier to linear decision
boundaries, as was illustrated in Example 8.5. The possible benefit of not making
full use of kernels, however, is that it suffices to implement and solve the primal

212
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.A The Representer Theorem

(and not the dual) formulation (8.34), since 𝜽 is of finite dimension. The support
vector property would still be present but much less visible since 𝜶 is not explicitly
computed. If only using the primal formulation, the representer theorem is not
needed, and one could therefore also replace the 𝐿2-regularisation with any other
regularisation method.

8.6 Further Reading

A comprehensive textbook on kernel methods is Schölkopf and Smola (2002),
which includes a thorough discussion on SVM and kernel theory as well as several
references to original work which we do not repeat here. A commonly used software
package for solving SVM problems is Chang and Lin (2011). Kernel 𝑘-NN is
described by Yu et al. (2002) (and the specific kernel based on the Levenshtein
distance in example Example 8.4 is found in Xu and X. Zhang (2004)) and kernel
logistic regression by Zhu and Hastie (2005). Some more discussion related to the
comment about the presence or absence of the offset term in the SVM formulation
on page 201 is found in Poggio et al. (2001) and Steinwart et al. (2011).

8.A The Representer Theorem

We give a slightly simplified version of the representer theorem by Schölkopf,
Herbrich, et al. (2001) adapted to our notation and terminology, without using the
reproducing kernel Hilbert space formalism. It is stated in a regression-like setting,
since �̂�(x) = 𝜽T𝝓(x), and we discuss how it also applies to classification below.

Theorem 8.1 (The representer theorem) Let �̂�(x) = 𝜽T𝝓(x) with fixed non-
linear feature transformations 𝝓(x) and 𝜽 to be learned from training data {x𝑖 , 𝑦𝑖}𝑛𝑖=1.
(The dimensionality of 𝜽 and 𝝓(x) does not have to be finite.) Furthermore, let
𝐿 (𝑦, �̂�) be any arbitrary loss function and ℎ : [0,∞] ↦→ R a strictly monotonically
increasing function. Then each minimiser 𝜽 to the regularised cost function

1
𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝜽T𝝓(x𝑖)︸ ︷︷ ︸
�̂� (x𝑖)

) + ℎ(‖𝜽 ‖22) (8.36)

can be written as 𝜽 = 𝚽(X)T𝜶 (or, equivalently, �̂�(x) = 𝜶𝑲 (X, x★)) with some
𝑛-dimensional vector 𝜶.
Proof: For a given X, any 𝜽 can be decomposed into one part 𝚽(X)T𝜶 (with
some 𝜶) that lives in the row span of 𝚽(X) and one part v orthogonal to it, that is,
𝜽 = 𝚽(X)T𝜶 + v with v being orthogonal to all rows 𝝓(x𝑖) of 𝚽(X).

For any x𝑖 in {x𝑖 , 𝑦𝑖}𝑛𝑖=1, it therefore holds that

�̂�(x𝑖) = 𝜽T𝝓(x𝑖) = (𝚽(X)T𝜶 + v)T𝝓(x𝑖)
= 𝜶T𝚽(X)𝝓(x𝑖) + vT𝝓(x𝑖)︸ ︷︷ ︸

= 0

= 𝜶T𝚽(X)𝝓(x𝑖). (8.37)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
213

8 Non-linear Input Transformations and Kernels

The first term in (8.36) is therefore independent of v. Concerning the second term
in (8.36), we have

ℎ
(
‖𝜽 ‖22

)
= ℎ

(
‖𝚽(X)T𝜶 + v‖22

)
= ℎ

(
‖𝚽(X)T𝜶‖22 + ‖v‖22

)
≥ ℎ

(
‖𝚽(X)T𝜶‖22

)
,

(8.38)

where the second inequality follows from the fact that v is orthogonal to 𝚽(X)T𝜶,
and equality in the last step only holds if v = 0. The equation (8.38) therefore
implies that the minimum of (8.36) is found for v = 0, from which the theorem
follows. �

The assumption that the model is linear in both parameters and features, 𝜽T𝝓(x),
is indeed crucial for Theorem 8.1. That is not an issue when we consider models of
linear regression type, but in order to apply it to, for example, logistic regression,
we have to find a linear formulation of that model. Not all models are possible to
formulate as linear, but logistic regression can (instead of (3.29a)) be understood
as a linear model predicting the so-called log-odds, 𝜽T𝝓(x) = ln

(
𝑝 (𝑦=1 | x)
𝑝 (𝑦=−1 | x)

)
, and

the representer theorem is therefore applicable to it. Furthermore, support vector
classification is also a linear model if we consider the function 𝑐(x) = 𝜽T𝝓(x) rather
than the predicted class �̂�(x★) = sign

{
𝜽T𝝓(x)}.

8.B Derivation of Support Vector Classification

We will derive (8.35) from (8.34),

minimise
𝜽

1
𝑛

𝑛∑︁
𝑖=1

max
{
0, 1 − 𝑦𝑖𝜽

T𝝓(x𝑖)
} + 𝜆‖𝜽 ‖22,

by first re-formulating it into an equivalent formulation using slack variables
𝝃 = [𝜉1 . . . 𝜉𝑛]T:

minimise
𝜽,𝝃

1
𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 + 𝜆‖𝜽 ‖22, (8.39a)

subject to 𝜉𝑖 ≥ 1 − 𝑦𝑖𝜽
T𝝓(x𝑖), (8.39b)

(𝑖 = 1, . . . , 𝑛) 𝜉𝑖 ≥ 0. (8.39c)

The Lagrangian for (8.39) is then

𝐿 (𝜽 , 𝝃, 𝜷, 𝜸) = 1
𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 + 𝜆‖𝜽 ‖22 −
𝑛∑︁
𝑖=1

𝛽𝑖 (𝜉𝑖 + 𝑦𝑖𝜽T𝝓(x𝑖) − 1) −
𝑛∑︁
𝑖=1

𝛾𝑖𝜉𝑖 , (8.40)

with Lagrange multipliers 𝛽𝑖 ≥ 0 and 𝛾𝑖 ≥ 0. According to Lagrange duality
theory, instead of solving (8.34), we can minimise (8.40) with respect to 𝜽 and 𝝃
and maximise it with respect to 𝜷 and 𝜸. Two necessary conditions for optimality
of (8.40) are

𝜕

𝜕𝜽
𝐿 (𝜽 , 𝝃, 𝜷, 𝜸) = 0, (8.41a)

214
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

8.B Derivation of Support Vector Classification

𝜕

𝜕𝝃
𝐿 (𝜽 , 𝝃, 𝜷, 𝜸) = 0. (8.41b)

In more detail, and using the fact that ‖𝜽 ‖22 = 𝜽T𝜽 , and hence 𝜕
𝜕𝜽 ‖𝜽 ‖22 = 2𝜽 , (8.41a)

gives

𝜽 =
1
2𝜆

𝑛∑︁
𝑖=1

𝑦𝑖𝛽𝑖𝝓(x𝑖), (8.41c)

and (8.41b) gives

𝛾𝑖 =
1
𝑛
− 𝛽𝑖 . (8.41d)

Inserting (8.41c) and (8.41d) into (8.40) and scaling it with 1
2𝜆 (assuming 𝜆 > 0),

we now seek to maximise

�̃� (𝜷) =
𝑛∑︁
𝑖=1

𝛽𝑖
2𝜆
− 1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑦𝑖𝑦 𝑗
𝛽𝑖𝛽 𝑗

4𝜆2 𝝓T (x𝑖)𝝓(x 𝑗). (8.42)

For (8.42), we have the constraint 0 ≤ 𝛽𝑖 ≤ 1
𝑛 , where the upper bound on 𝑏𝑖 comes

from (8.41d) and the fact that 𝛾𝑖 ≥ 0. With 𝛼𝑖 =
𝑦𝑖𝛽𝑖
2𝜆 , we see (noting that 𝑦𝑖 = 1/𝑦𝑖

since 𝑦𝑖 ∈ −1, 1) that maximising (8.42) is equivalent to solving

minimise
𝜶

1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖𝛼 𝑗𝝓
T (x𝑖)𝝓(x 𝑗) −

𝑛∑︁
𝑖=1

𝑦𝑖𝛼𝑖 (8.43)

or, using matrix notation,

minimise
𝜶

1
2
𝜶T𝑲 (X,X)𝜶 − 𝜶Ty. (8.44)

Finally, we note that by (8.41c) we have

sign(𝜽T𝝓(x★)) = sign

(
1
2𝜆

𝑛∑︁
𝑖=1

𝑦𝑖𝛽𝑖𝝓
T (x𝑖)𝝓(x★)

)
= sign

(
𝜶T𝑲 (X, x★)

)
, (8.45)

and we have arrived at (8.35).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
215

9 The Bayesian Approach and
Gaussian Processes

So far, learning a parametric model has amounted to somehow finding a param-
eter value �̂� that best fits the training data. With the Bayesian approach (also
called the probabilistic approach), learning amounts to instead finding the distri-
bution of parameter values 𝜽 conditioned on the observed training data T , that is,
𝑝(𝜽 | T). Furthermore, with the Bayesian approach, the prediction is a distribution
𝑝(𝑦★ | x★,T) instead of a single value. Before we get into the details, let us just say
that on a theoretical (or even philosophical) level, the Bayesian approach is rather
different to what we have previously seen in this book. However, it opens up for a
family of new, versatile, and practically useful methods, and the extra effort required
to understand this somewhat different approach pays off well and provides another
interesting perspective on supervised machine learning. As the Bayesian approach
makes repeated use of probability distributions, it is also natural that this chapter
will be heavier on the probability theory side compared to the rest of the book.

We will start this chapter by first giving a general introduction to the Bayesian
idea. We thereafter go back to basics and apply the Bayesian approach to linear
regression, which we thereafter extend to the non-parametric Gaussian process
model.

9.1 The Bayesian Idea

In the Bayesian approach, the parameters 𝜽 of any model are consistently treated
as being random variables. As a consequence, in this chapter we will use the
term model with a very specific meaning. A model, in this chapter, refers to the
joint distribution over all outputs y and the parameters 𝜽 given all inputs X, that
is, 𝑝(y, 𝜽 |X). To ease the notation, we will, however, consistently omit X in the
conditioning (mathematically we motivate this by the fact that we only consider y,
and not X, to be a random variable) and simply write 𝑝(y, 𝜽).

Learning in the Bayesian setting amounts to computing the distribution of 𝜽
conditional on training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 = {X, y}. Since we omit X, we denote
this distribution as 𝑝(𝜽 | y). The computation of 𝑝(𝜽 | y) is done using the laws of
probabilities. First, we use the rule of conditioning to factorise the joint distribution
into two factors: 𝑝(y, 𝜽) = 𝑝(y | 𝜽)𝑝(𝜽). By using the rule of conditioning once
more, now conditioning on y, we arrive at Bayes’ theorem,

𝑝(𝜽 | y) = 𝑝(y | 𝜽)𝑝(𝜽)
𝑝(y) , (9.1)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
217

9 The Bayesian Approach and Gaussian Processes

which is the reason why it is called the Bayesian approach. The left hand side of
(9.1) is the sought-after distribution 𝑝(𝜽 | y). The right hand side of (9.1) contains
some important elements: 𝑝(y | 𝜽) is the distribution of the observations in view of
the parameters, and 𝑝(𝜽) is the distribution of 𝜽 before any observations are made
(that is, not conditional on training data). By definition 𝑝(𝜽) cannot be computed
but has to be postulated by the user. Finally 𝑝(y) can, by the laws of probabilities,
be rewritten as

𝑝(y) =
∫

𝑝(y, 𝜽)𝑑𝜽 =
∫

𝑝(y | 𝜽)𝑝(𝜽)𝑑𝜽 , (9.2)

which is an integral that, at least in theory, can be computed. In other words,
training a parametric model (in the Bayesian fashion) amounts to conditioning 𝜽 on
y, that is, computing 𝑝(𝜽 | y). After being trained, a model can be used to compute
predictions. Again this is a matter of computing a distribution 𝑝(𝑦★ | y) (rather
than a point prediction �̂�) for a test input x★, which, since 𝜽 is a random variable,
connects to 𝑝(𝜽 | y) via the marginalisation

𝑝(𝑦★ | y) =
∫

𝑝(𝑦★ | 𝜽)𝑝(𝜽 | y)𝑑𝜽 . (9.3)

Here 𝑝(𝑦★ | 𝜽) encodes the distribution of the test data output 𝑦★ (again the
corresponding input x★ is omitted in the notation).

Often 𝑝(y | 𝜽) is referred to as the likelihood.1 The other elements involved in
the Bayesian approach are traditionally given the names

• 𝑝(𝜽) prior,

• 𝑝(𝜽 | y) posterior,

• 𝑝(𝑦★ | y) posterior predictive.

These names are useful when talking about the various component of the Bayesian
approach, but it is important to remember that they are nothing but different
probability distributions connected to each other via the likelihood 𝑝(y | 𝜽). In
addition, 𝑝(y) is often called the marginal likelihood or evidence.

A Representation of Beliefs

The main feature of the Bayesian approach is its use of probability distributions. It
is possible to interpret those distributions as representing beliefs in the following

1Remember that 𝑝(y | 𝜽) was also used for the maximum likelihood perspective; one example of
𝑝(y | 𝜽) is linear regression (3.17)–(3.18).

218
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.1 The Bayesian Idea

sense: The prior 𝑝(𝜽) represents our beliefs about 𝜽 a priori, that is, before any
data has been observed. The likelihood, encoded as 𝑝(y | 𝜽), defines how data y
relates to the parameter 𝜽 . Using Bayes’ theorem (9.1), we update the belief about
𝜽 to the posterior 𝑝(𝜽 | y) which also takes the observed data y into account. In
everyday language, these distributions could be said to represent the uncertainty
about 𝜽 before and after observing the data y, respectively.

An interesting and practically relevant consequence is that the Bayesian approach
is less prone to overfitting, compared to using a maximum-likelihood based method.
In maximum-likelihood, we obtain a single value �̂� and use that value to make our
prediction according to 𝑝(𝑦★ | �̂�). In the Bayesian approach, we instead obtained
an entire distribution 𝑝(𝜽 | y) representing different hypotheses of the value for our
model parameters. We account for all of these hypotheses we do the marginalisation
in (9.3) to compute the posterior predictive. In the regime of small datasets in
particular, the ‘uncertainty’ seen in the posterior 𝑝(𝜽 | y) reflects how much (or little)
can be said about 𝜽 from the (presumably) limited information in y, under the
assumed conditions.

The posterior 𝑝(𝜽 | y) is a combination of the prior belief 𝑝(𝜽) and the information
about 𝜽 carried by y through the likelihood. Without a meaningful prior 𝑝(𝜽),
the posterior 𝑝(𝜽 | y) is not meaningful either. In some applications it can be
hard to make a choice of 𝑝(𝜽) that is not influenced by the personal experience
of the machine learning engineer, which is sometimes emphasised by saying that
𝑝(𝜽), and thereby also 𝑝(𝜽 | y), represents a subjective belief. This notion is
meant to reflect that the result is not independent of the human that designed
the solution. However, no matter whether or not the Bayesian approach is used,
the likelihood is often chosen based on the personal experience of the machine
learning engineer, meaning that most machine learning results are in that sense
subjective anyway.

An interesting situation for the Bayesian approach is when data arrives in a
sequential fashion, that is, one data point after the other. Say that we have two sets
of data, y1 and y2. Starting with a prior 𝑝(𝜽), we can condition on y1 by computing
𝑝(𝜽 | y1) using Bayes’ theorem (9.1). However, if we thereafter want to condition on
all data, y1 and y2 as 𝑝(𝜽 | y1, y2), we do not have to start over again. We can instead
replace the prior 𝑝(𝜽) with 𝑝(𝜽 | y1) in Bayes’ theorem to compute 𝑝(𝜽 | y1, y2). In
a sense, the ‘old posterior’ becomes the ‘new prior’ when data arrives sequentially.

The Marginal Likelihood as a Model Selection Tool

When using the Bayesian approach, there are often some hyperparameters in the
likelihood or the prior, say 𝜂, that need to be chosen. It is an option to assume a
‘hyper’-prior 𝑝(𝜂) and compute the posterior also for the hyperparameters, 𝑝(𝜂 | y).
That would be the fully Bayesian solution, but sometimes this is too computationally
challenging.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
219

9 The Bayesian Approach and Gaussian Processes

A more pragmatic solution is to select a value 𝜂 using cross-validation instead. It
is perfectly possible to use cross-validation, but the Bayesian approach also comes
with an alternative for selecting hyperparameters 𝜂 by maximising the marginal
likelihood (9.2):

𝜂 = arg max
𝜂

𝑝𝜂 (y), (9.4)

where we have added an index 𝜂 to emphasise the fact that 𝑝(y) depends on 𝜂. This
approach is sometimes referred to as empirical Bayes. Choosing hyperparameter
𝜂 is, in a sense, a selection of a likelihood (and/or prior), and we can therefore
understand the marginal likelihood as a tool for selecting a likelihood. Maximising
the marginal likelihood is, however, not equivalent to using cross-validation (the
obtained hyperparameter value might differ), and unlike cross-validation, the
marginal likelihood does not give an estimate of 𝐸new. In many situations, however,
it is relatively easy to compute (and maximise) the marginal likelihood, compared
to employing a full cross-validation procedure.

In the previous section we argued that the Bayesian approach was less prone to
overfitting compared to the maximum likelihood approach. However, maximising
the marginal likelihood is, in a sense, a kind of a maximum likelihood approach,
and one may ask if there is a risk of overfitting when maximising the marginal
likelihood. To some extent that might be the case, but the key point is that handling
one (or, at most, a few) hyperparameters 𝜂 with maximum (marginal) likelihood
typically does not cause any severe overfitting, much like there rarely are overfitting
issues when learning a straight line with plain linear regression. In other words,
we can usually ‘afford’ to learn one or a few (hyper)parameters by maximising the
(marginal) likelihood; overfitting typically only becomes a potential issue when
learning a larger number of (hyper)parameters.

9.2 Bayesian Linear Regression

As a first example of the Bayesian approach, we will apply it to linear regression.
In itself Bayesian linear regression is perhaps not the most versatile method, but
just like ordinary linear regression, it is a good starting point and illustrates the
main concepts well. Just like ordinary linear regression, it is possible to extend it in
various directions. It also opens the way for the perhaps more interesting Gaussian
process model. Before we work out the details of the Bayesian approach applied
to linear regression, we will repeat some facts about the multivariate Gaussian
distribution that will be useful.

The Multivariate Gaussian Distribution

A central mathematical object for Bayesian linear regression (and later also the
Gaussian process) is the multivariate Gaussian distribution. We assume that
the reader already has some familiarity with multivariate random variables, or

220
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.2 Bayesian Linear Regression

equivalently random vectors, and repeat only the most important properties of the
multivariate Gaussian distribution here.

Let z denote a 𝑞-dimensional multivariate Gaussian random vector z=
[𝑧1 𝑧2 . . . 𝑧𝑞]T. The multivariate Gaussian distribution is parametrised by a
𝑞-dimensional mean vector 𝝁 and a 𝑞 × 𝑞 covariance matrix 𝚺,

𝝁 =

𝜇1
𝜇2
...
𝜇𝑞

, 𝚺 =

𝜎2
1 𝜎12 . . . 𝜎1𝑞

𝜎21 𝜎2
2 𝜎2𝑞

...
...

𝜎𝑞1 𝜎𝑞2 . . . 𝜎2
𝑞

.

The covariance matrix is a real-valued positive semidefinite matrix, that is, a
symmetric matrix with nonnegative eigenvalues. As a shorthand notation, we write
z ∼ N(𝝁,𝚺) or 𝑝(z) = N(z; 𝝁,𝚺). Note that we use the same symbolN to denote
the univariate as well as the multivariate Gaussian distribution. The reason is that
the former is just a special case of the latter.

The expected value of z is E[z] = 𝝁, and the variance of 𝑧1 is var(𝑧1) =
E
[(𝑧1 − E[𝑧1])2

]
= 𝜎2

1 , and similarly for 𝑧2, . . . , 𝑧𝑞. Moreover, the covariance
between 𝑧1 and 𝑧2 is cov(𝑧1, 𝑧2) = E[(𝑧1 − E[𝑧1]) (𝑧2 − E[𝑧2])] = 𝜎12 = 𝜎21, and
similarly for any other pair of 𝑧𝑖 , 𝑧 𝑗 . All these properties can be derived from the
probability density function of the multivariate Gaussian distribution, which is

N(z; 𝝁,𝚺) = (2𝜋)− 𝑞
2 det(𝚺)− 1

2 exp
(
−1

2
(z − 𝝁)T𝚺−1(z − 𝝁)

)
. (9.5)

If all off-diagonal elements of 𝚺 are 0, the elements of z are just independent
univariate Gaussian random variables. However, if some off-diagonal element, say
𝜎𝑖 𝑗 (𝑖 ≠ 𝑗), is nonzero, then there is a correlation between 𝑧𝑖 and 𝑧 𝑗 . Intuitively, the
correlation means that 𝑧𝑖 carries information also about 𝑧 𝑗 , and vice versa. Some
important results on how the multivariate Gaussian distribution can be manipulated
are summarised in Appendix 9.A.

Linear Regression with the Bayesian Approach

We will now apply the Bayesian approach to the linear regression model. We will
first spend some effort on mapping the elements of linear regression from Chapter 3
to the Bayesian terminology, and thereafter we will derive the solution.

From Chapter 3, we have that the linear regression model is

𝑦 = 𝑓 (x) + 𝜀, 𝑓 (x) = 𝜽Tx, 𝜀 ∼ N (
0, 𝜎2) , (9.6)

which can be written equivalently as

𝑝(𝑦 | 𝜽) = N (
𝑦; 𝜽Tx, 𝜎2) . (9.7)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
221

9 The Bayesian Approach and Gaussian Processes

This is an expression for one output data point 𝑦, and for the entire vector of all
training data outputs y, we can write

𝑝(y | 𝜽) =
𝑛∏
𝑖=1

𝑝(𝑦𝑖 | 𝜽) =
𝑛∏
𝑖=1
N (

𝑦𝑖; 𝜽Tx𝑖 , 𝜎2) = N (
y; X𝜽 , 𝜎2I

)
, (9.8)

where in the last step, we used the notation X from (3.5) and the fact that an
𝑛-dimensional Gaussian random vector with a diagonal covariance matrix is
equivalent to 𝑛 scalar Gaussian random variables.

In the Bayesian approach, there is also a need for a prior 𝑝(𝜽) for the unknown
parameters 𝜽. In Bayesian linear regression, the prior distribution is most often
chosen as a Gaussian with mean 𝝁0 and covariance 𝚺0,

𝑝(𝜽) = N (
𝜽; 𝝁0,𝚺0

)
, (9.9)

with, for example, 𝚺0 = I𝜎2
0 . The reason for this choice is frankly that it simplifies

the calculations, much like the squared error loss simplifies the computations for
plain linear regression.

The next step is now to compute the posterior. It is possible to derive it using Bayes’
theorem, but since 𝑝(y | 𝜽) as well as 𝑝(𝜽) are multivariate Gaussian distributions,
Corollary 9.1 in Appendix 9.A directly gives us that

𝑝(𝜽 | y) = N (
𝜽; 𝝁𝑛,𝚺𝑛

)
, (9.10a)

𝝁𝑛 = 𝚺𝑛

(
1
𝜎2

0
𝝁0 + 1

𝜎2 XTy
)
, (9.10b)

𝚺𝑛 =

(
1
𝜎2

0
I + 1

𝜎2 XTX
)−1

. (9.10c)

From (9.10), we can also derive the posterior predictive for 𝑓 (x★) by Corollary 9.2
in Appendix 9.A:

𝑝(𝑓 (x★) | y) = N(𝑓 (x★);𝑚★, 𝑠★) , (9.11a)
𝑚★ = xT

★𝝁𝑛, (9.11b)
𝑠★ = xT

★𝚺𝑛x★. (9.11c)

We have so far only derived the posterior predictive for 𝑓 (x★). Since we have
𝑦★ = 𝑓 (x★) + 𝜀 according to the linear regression model (9.10), where 𝜀 is assumed
to be independent of 𝑓 with variance 𝜎2, we can also compute the posterior
predictive for y★

𝑝(𝑦★ | y) = N
(
𝑦★;𝑚★, 𝑠★ + 𝜎2) . (9.11d)

Note, that only difference from 𝑝(𝑓 (x★) | y) is that we add the variance of the
measurement noise 𝜎2, which reflects the the additional uncertainty we expect to

222
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.2 Bayesian Linear Regression

get from the test data output. In both 𝑝(𝑓 (x★) | y) and 𝑝(𝑦★ | y), the measurement
noise of the training data output is reflected via the posterior.

We now have all the pieces of Bayesian linear regression in place. The main
difference to plain linear regression is that we compute a posterior distribution
𝑝(𝜽 | y) (instead of a single value �̂�) and a posterior predictive distribution 𝑝(𝑦★ | y)
instead of a prediction �̂�. We summarise it as Method 9.1 and illustrate it with
Example 9.1.

Learn Bayesian linear regression
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Posterior 𝑝(𝜽 | y) = N (

𝜽; 𝝁𝑛,𝚺𝑛
)

1 Compute 𝝁𝑛 and 𝚺𝑛 as (9.10).

Predict with Bayesian linear regression
Data: Posterior 𝑝(𝜽 | y) = N (

𝜽; 𝝁𝑛,𝚺𝑛
)

and test input x★
Result: Posterior predictive 𝑝(𝑓 (x★) | y) = N(𝑓 (x★);𝑚★, 𝑠★)

1 Compute 𝑚★ and 𝑠★ as (9.11).

Method 9.1: Bayesian linear regression.

We have so far assumed that the noise variance 𝜎2 is fixed. Most often 𝜎2 is also
a parameter the user has to decide, which can be done by maximising the marginal
likelihood. Corollary 9.2 gives us the marginal likelihood:

𝑝(y) = N
(
y; X𝝁0, 𝜎

2I + X𝚺0XT
)
. (9.12)

It is also possible to chose the prior variance 𝜎2
0 by maximising (9.12).

Just as for plain linear regression, it is possible to use non-linear input transfor-
mations, such as polynomials, in Bayesian linear regression. We give an example
of that in Example 9.2, where we return to the running regression example of car
stopping distances. We can, however, go one step further and also use the kernel
trick from Chapter 8. That will lead us to the Gaussian process, which is the topic
of Section 9.3.

Example 9.1 Bayesian linear regression

To illustrate the inner workings of Bayesian linear regression, we consider a one-
dimensional example with 𝑦 = 𝜃1 + 𝜃2𝑥 + 𝜀. In the first row of Figure 9.1, the left
panel shows the prior 𝑝(𝜽) (blue surface; a two-dimensional Gaussian distribution
over 𝜃1 and 𝜃2) from which 10 samples are drawn (blue dots). Each of these samples
correspond to a straight line in the plot to the right (blue lines).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
223

9 The Bayesian Approach and Gaussian Processes

−1
0

1
−1

0
1

𝜃1𝜃2

𝑝(𝜽)

−2 0 2

−4

−2

0

2

4

𝑥

𝑦

−1
0

1
−1

0
1

𝜃1𝜃2

𝑝(𝜽 | 𝑦1)

−2 0 2

−4

−2

0

2

4

𝑥
𝑦

−1
0

1
−1

0
1

𝜃1𝜃2

𝑝(𝜽 | {𝑦𝑖}3𝑖=1)

−2 0 2

−4

−2

0

2

4

𝑥

𝑦

−1
0

1
−1

0
1

𝜃1𝜃2

𝑝(𝜽 | {𝑦𝑖}30
𝑖=1)

−2 0 2

−4

−2

0

2

4

𝑥

𝑦

Samples from 𝑝 (𝑓 (𝑥★) | {𝑦𝑖 }30
𝑖=1)

Data {𝑥𝑖 , 𝑦𝑖 }30
𝑖=1

Fig.
9.1

In the second row of Figure 9.1 one (𝑛 = 1) data point {𝑥1, 𝑦1} is introduced. Its
value is shown in the right panel (black dot), and the posterior for 𝜽 in the left panel
(a Gaussian; blue surface). In addition, 10 samples are drawn from the posterior
(blue dots), each corresponding to a straight line in the right panel (blue lines). In
the Bayesian formulation, the sampled lines can be thought of as equally likely
posterior hypotheses about 𝑓 (𝑥★). This is repeated also with 𝑛 = 3 and 𝑛 = 30 data
points in Figure 9.1. We can in particular see how the posterior contracts (‘less
uncertainty’) as more data arrives, in terms of the blue surface being more peaked
as well as the blue lines being more concentrated.

224
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.2 Bayesian Linear Regression

Example 9.2 Car stopping distances

We consider the car stopping distance problem from Example 2.2 and apply
probabilistic linear regression with 𝑦 = 1 + 𝜃1𝑥 + 𝜀 and 𝑦 = 1 + 𝜃1𝑥 + 𝜃2𝑥

2 + 𝜀,
respectively. We set 𝜎2 and 𝜎2

0 by maximising the marginal likelihood, which gives
us 𝜎2 = 12.02 and 𝜎2

0 = 14.12 for the linear model, and 𝜎2 = 10.12 and 𝜎2
0 = 0.32

for the quadratic model.

0 20 40
0

50

100

150

200

Speed (mph)

D
ist

an
ce

(fe
et

)

𝑦 = 1 + 𝜃1𝑥 + 𝜀

0 20 40
0

50

100

150

200

Speed (mph)

𝑦 = 1 + 𝜃1𝑥 + 𝜃2𝑥
2 + 𝜀

Fig.
9.2

In Figure 9.2 we illustrate 𝑝(𝑓 (x★) | y) and 𝑝(𝑦★ | y) (9.11) using the somewhat
darker blue line for the mean (they both have the same mean) and the shaded blue
areas of different intensities to visualise two standard deviations of 𝑝(𝑓 (x★) | y)
and 𝑝(𝑦★ | y), respectively.

Connection to Regularised Linear Regression

The main feature of the Bayesian approach is that it provides a full distribution
𝑝(𝜽 | y) over the parameters 𝜽, rather than a single point estimate �̂�. There
is, however, also an interesting connection between the Bayesian approach and
regularisation. We will make this concrete by considering the posterior 𝑝(𝜽 | y) from
Bayesian linear regression and the point estimate �̂�𝐿2 obtained from 𝐿2-regularised
linear regression with squared error loss. Let us extract the so called maximum
a posteriori (MAP) point estimate �̂�MAP from the posterior 𝑝(𝜽 | y). The MAP
estimate is the value of 𝜽 for which the posterior reaches its maximum,

�̂�MAP = arg max
𝜽

𝑝(𝜽 | y) = arg max
𝜽

𝑝(y | 𝜽)𝑝(𝜽) = arg max
𝜽
[ln 𝑝(y | 𝜽) + ln 𝑝(𝜽)] ,

(9.13)

where the second equality follows from the fact that 𝑝(𝜽 | y) = 𝑝 (y | 𝜽) 𝑝 (𝜽)
𝑝 (y) and that

𝑝(y) does not depend on 𝜽 . Remember that 𝐿2-regularised linear regression can be
understood as using the cost function (3.48),

�̂�𝐿2 = arg max
𝜽

[
ln 𝑝(y | 𝜽) + 𝜆‖𝜽 ‖22

]
, (9.14)

with some regularisation parameter 𝜆. When comparing (9.14) to (9.13), we realise
that if ln 𝑝(𝜽) ∝ ‖𝜽 ‖22, the MAP estimate and the 𝐿2 regularised estimate of 𝜽 are

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
225

9 The Bayesian Approach and Gaussian Processes

identical for some value of 𝜆. With the prior 𝑝(𝜽) in (9.9), that is indeed the case,
and the MAP estimate is in that case identical to �̂�𝐿2 .

This connection between MAP estimates and regularised maximum likelihood
estimates holds as long as the regularisation is proportional to the logarithm of the
prior. If, for example, we instead chose a Laplace prior for 𝜽 , the MAP estimate would
be identical to 𝐿1 regularisation. In general there are many regularisation methods
that can be interpreted as implicitly choosing a certain prior. This connection to
regularisation gives another perspective as to why the Bayesian approach is less
prone to overfitting.

It is, however, important to note that the connection between the Bayesian
approach and the use of regularisation does not imply that the two approaches are
equivalent. The main point with the Bayesian approach is still that a posterior
distribution is computed for 𝜽 , instead of just a point estimate �̂� .

9.3 The Gaussian Process

We introduced the Bayesian approach as the idea of considering unknown parameters
𝜽 as random variables and consequently learning a posterior distribution 𝑝(𝜽 | y)
instead of a single value �̂�. However, the Bayesian idea does not only apply to
models with parameters but also to nonparametric models. We will now introduce
the Gaussian process, where instead of considering parameters 𝜽 as being random
variables, we effectively consider an entire function 𝑓 (x) to be a stochastic process
and compute the posterior 𝑝(𝑓 (x) | y). The Gaussian process is an interesting and
commonly used Bayesian nonparametric model. In a nutshell, it is the Bayesian
approach applied to kernel ridge regression (Chapter 8). We will present the
Gaussian process as a method for handling regression problems, but it is possible to
use it for classification problems as well (similarly to how linear regression can be
modified into logistic regression).

In this section we will introduce the fundamentals of the Gaussian process, and
thereafter, in Section 9.4, we describe how it can be used as a supervised machine
learning method. We will first discuss what a Gaussian process is and thereafter
see how we can construct a Gaussian process that connects closely to kernel ridge
regression from Section 8.2.

What Is a Gaussian Process?

A Gaussian process is a specific type of stochastic process. A stochastic process, in
turn, is a generalisation of a random variable. Most commonly we think about a
stochastic process as some random quantity that evolves over time. Mathematically
this corresponds to a collection of random variables {𝑧(𝑡) : 𝑡 ∈ R} indexed by time 𝑡.
That is, for each time point 𝑡, the value of the process 𝑧(𝑡) is a random variable.
Furthermore, most often, we assume that values at different time points, say 𝑧(𝑡)
and 𝑧(𝑠), are correlated and that the correlation depends on the time difference.

226
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.3 The Gaussian Process

More abstractly, however, we can view 𝑧(𝑡) as a random function, where the input
to the function is the index variable (time) 𝑡. With this interpretation it, is possible
to generalise the concept of a stochastic process to random functions with arbitrary
inputs, { 𝑓 (x) : x ∈ X}, where X denotes the (possibly high-dimensional) input
space. Similarly to above, this means that we view the function value 𝑓 (x) for any
input x as a random variable and that the function values 𝑓 (x) and 𝑓 (x′) for inputs
x and x′ are dependent. As we will see below, the dependencies can be used to
control certain properties of the function. For instance, if we expect the function
to be smooth (varies slowly), then the function values 𝑓 (x) and 𝑓 (x′) should be
highly correlated if x is close to x′. This generalisation opens the way for using
random functions as priors for unknown functions (such as a regression function) in
a Bayesian setting.

To introduce the Gaussian process as a random function, we will start by making
the simplifying assumption that the input variable x is discrete and can take only 𝑞
different values, x1, . . . , x𝑞. Hence, the function 𝑓 (x) is completely characterised
by the 𝑞-dimensional vector f = [𝑓1 · · · 𝑓𝑞]T = [𝑓 (x1) · · · 𝑓 (x𝑞)]T. We can then
model 𝑓 (x) as a random function by assigning a joint probability distribution to
this vector f. In the Gaussian process model, this distribution is the multivariate
Gaussian distribution,

𝑝(f) = N(f; 𝝁,𝚺) , (9.15)

with mean vector 𝝁 and covariance matrix 𝚺. Let us partition f into two vectors f1

and f2 such that f =
[
fT
1 fT

2
]T, and 𝝁 and 𝚺 similarly, allowing us to write

𝑝

([
f1
f2

])
= N

([
f1
f2

]
;
[
𝝁1
𝝁2

]
,

[
𝚺11 𝚺12
𝚺21 𝚺22

])
. (9.16)

If some elements of f, let us say the ones in f1, are observed, the conditional
distribution for f2 given the observation of f1 is, by Theorem 9.2 in Appendix 9.A,

𝑝 (f2 | f1) = N
(
f2; 𝝁2 + 𝚺21𝚺

−1
11 (f1 − 𝝁1),𝚺22 − 𝚺21𝚺

−1
11𝚺12

)
. (9.17)

The conditional distribution is nothing but another Gaussian distribution with
closed-form expressions for the mean and covariance.

Figure 9.3a shows a two-dimensional example (f1 is a scalar 𝑓1, and f2 is a scalar
𝑓2). For this model we choose the prior where the prior mean and variances for 𝑓1
and 𝑓2 are the same, that is 𝝁1 = 𝝁2 and 𝚺1 = 𝚺2. We also assume a positive prior
correlation between f1 and f2 before any observations have been received, reflecting
the smoothness assumption we have about the underlying random function 𝑓 (𝑥).
That is why the multivariate Gaussian distribution in Figure 9.3a is skewed in the
diagonal direction. This multivariate Gaussian distribution is now conditioned on an
observation of 𝑓1, which is reflected in Figure 9.3b. In Figure 9.4, we have plotted
the marginal distributions from Figure 9.3. Since f1 and f2 are correlated according
to the prior, the marginal distribution of 𝑓2 is also affected by this observation.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
227

9 The Bayesian Approach and Gaussian Processes

𝑓1
𝑓2

(a) A two-dimensional Gaussian distribution for
the random variables 𝑓1 and 𝑓2, with a blue
surface plot for the density, and the marginal
distribution for each component sketched using
blue lines along each axis. Note that the marginal
distributions do not contain all information about
the distribution of 𝑓1 and 𝑓2, since the covariance
information is lacking in that representation.

𝑓1
𝑓2

(b) The conditional distribution of 𝑓2 (red line)
when 𝑓1 is observed (black dot). The conditional
distribution of 𝑓2 is given by (9.17), which (apart
from a normalising constant) in this graphical
representation is the red ‘slice’ of the joint dis-
tribution (blue surface). The marginals of the
joint distribution from Figure 9.3a are kept for
reference (blue dashed lines).

Figure 9.3: A two-dimensional multivariate Gaussian distribution for 𝑓1 and 𝑓2 in (a), and
the conditional distribution for 𝑓2, when a particular value of 𝑓1 is observed, in (b).

𝑥1 𝑥2

𝑓1 𝑓2

𝑥

𝑓 (𝑥)

(a) The marginal distributions for 𝑓1 and 𝑓2 from
Figure 9.3a.

𝑥1 𝑥2

𝑓1 𝑓2

𝑥

𝑓 (𝑥)

(b) The distribution for 𝑓2 (red line) when 𝑓1 is
observed (black dot), as in Figure 9.3b.

Figure 9.4: The marginals of the distributions in Figure 9.3, here plotted slightly differently.
Note that this more compact plot comes at the cost of missing the information about the
covariance between 𝑓1 and 𝑓2.

In a similar fashion to Figure 9.4, we can plot a six-dimensional multivariate
Gaussian distribution by its marginal distributions in Figure 9.5. Also in this model
we assume a positive prior correlation between all elements 𝑓𝑖 and 𝑓 𝑗 which decays
with the distance between their corresponding inputs 𝑥𝑖 and 𝑥 𝑗 . Bear in mind that to
fully illustrate the joint distribution for 𝑓1, . . . , 𝑓6, a six-dimensional surface plot
would be needed, whereas Figure 9.5a only contains the marginal distributions for
each component. We may also condition the six-dimensional distribution underlying
Figure 9.5a on an observation of, say, 𝑓4. Once again, the conditional distribution is
another Gaussian distribution, and the marginal distributions of the five-dimensional

228
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.3 The Gaussian Process

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑥

𝑓 (𝑥)

(a) A six-dimensional Gaussian distribution, plot-
ted in the same way as Figure 9.4a, that is, only
its marginals are illustrated.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

𝑥

𝑓 (𝑥)

(b) The conditional distribution 𝑓1, 𝑓2, 𝑓3, 𝑓5, and
𝑓6 when 𝑓4 is observed (black dot), illustrated by
its marginals (red lines) similarly to Figure 9.4b.

Figure 9.5: A six-dimensional Gaussian distribution, illustrated in the same fashion as
Figure 9.4.

random variable [𝑓1, 𝑓2, 𝑓3, 𝑓5, 𝑓6]T are plotted in Figure 9.5b.
In Figures 9.4 and 9.5, we illustrated the marginal distributions for a finite-

dimensional multivariate Gaussian random variable. However, we are aiming for
the Gaussian process, which is a stochastic process on a continuous space.

The extension of the Gaussian distribution (defined on a finite set) to the Gaussian
process (defined on a continuous space) is achieved by replacing the discrete index
set {1, 2, 3, 4, 5, 6} in Figure 9.5 by a variable x taking values on a continuous
space, for example the real line. We then also have to replace the random variables
𝑓1, 𝑓2, . . . , 𝑓6 with a random function (that is, a stochastic process) 𝑓 which can be
evaluated at any x as 𝑓 (x). Furthermore, in the Gaussian multivariate distribution, 𝝁
is a vector with 𝑞 components, and Σ is a 𝑞 × 𝑞 matrix. Instead of having a separate
hyperparameter for each element in this mean vector and covariance matrix, in the
Gaussian process we replace 𝝁 by a mean function 𝜇(x) into which we can insert
any x, and the covariance matrix 𝚺 is replaced by a covariance function 𝜅(x, x′) into
which we can insert any pair x and x′. This mean function and covariance function
we can then parametrise with a few hyperparameters. In these functions we can also
encode certain properties that we want the Gaussian process to obey, for example
that two function values 𝑓 (x1) and 𝑓 (x2) should be more correlated if x1 and x2
are closer to each other than if they are further apart.

From this we can define the Gaussian process. If, for any arbitrary finite set of
points {x1, . . . , x𝑛}, it holds that

𝑝
©«

𝑓 (x1)
...

𝑓 (x𝑛)

ª®®¬
= N

©«

𝑓 (x1)
...

𝑓 (x𝑛)

;

𝜇(x1)
...

𝜇(x𝑛)

,

𝜅(x1, x1) · · · 𝜅(x1, x𝑛)

...
...

𝜅(x𝑛, x1) · · · 𝜅(x𝑛, x𝑛)

ª®®¬
, (9.18)

then 𝑓 is a Gaussian process.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
229

9 The Bayesian Approach and Gaussian Processes

That is, with a Gaussian process 𝑓 and any choice of {x1, . . . , x𝑛}, the vector of
function values [𝑓 (x1), . . . , 𝑓 (x𝑛)] has a multivariate Gaussian distribution, just
like the one in Figure 9.5. Since {x1, . . . , x𝑛} can be chosen arbitrarily from the
continuous space on which it lives, the Gaussian process defines a distribution for
all points in that space. For this definition to make sense, 𝜅(x, x′) has to be such that
a positive semidefinite covariance matrix is obtained for any choice of {x1, . . . , x𝑛}.

We will use the notation

𝑓 ∼ GP (𝝁, 𝜅) (9.19)

to express that the function 𝑓 (x) is distributed according to a Gaussian process
with mean function 𝜇(x) and covariance function 𝜅(x, x′). If we want to illustrate
a Gaussian process, which we do in Figure 9.6, we can choose {x1, . . . , x𝑛} to
correspond to the pixels on the screen or the printer dots on the paper and print the
marginal distributions for each {x1, . . . , x𝑛} so that it appears as a continuous line
to the eye (despite the fact that we can only actually access the distribution in a
finite, but arbitrary, set of points).

It is no coincidence that we use the same symbol 𝜅 for covariance functions as
we used for kernels in Chapter 8. As we will soon discuss, applying the Bayesian
approach to kernel ridge regression will result in a Gaussian process where the
covariance function is the kernel.

We can also condition the Gaussian process on some observations { 𝑓 (x𝑖), x𝑖}𝑛𝑖=1,
the Gaussian process counterpart to Figures 9.3b, 9.4b, and 9.5b. As usual we stack
the observed inputs in X and let 𝑓 (X) denote the vector of observed outputs (we
assume for now that the observations are made without any noise). We use the
notations 𝑲 (X,X) and 𝑲 (X, x★) as defined by (8.12b) and (8.12c) to write the joint
distribution between the observed values 𝑓 (X) and the test value 𝑓 (x★) as

𝑝

([
𝑓 (x★)
𝑓 (X)

])
= N

([
𝑓 (x★)
𝑓 (X)

]
;
[
𝜇(x★)
𝜇(X)

]
,

[
𝜅(x★, x★) 𝑲 (X, x★)T
𝑲 (X, x★) 𝑲 (X,X)

])
. (9.20)

Now, as we have observed 𝑓 (X), we use the expressions for the Gaussian distribution
to write the distribution for 𝑓 (x★) conditional on the observations of 𝑓 (X) as

𝑝 (𝑓 (x★) | 𝑓 (X)) = N
(
𝑓 (x★); 𝜇(x★) + 𝑲 (X, x★)T𝑲 (X,X)−1 (9.21)

× (𝑓 (X) − 𝜇(X)) , 𝜅(x★, x★) − 𝑲 (X, x★)T𝑲 (X,X)−1𝑲 (X, x★)
)
,

which is another Gaussian distribution for any test input x★. We illustrate this in
Figure 9.6.

We have now introduced the somewhat abstract concept of a Gaussian process.
In some subjects, such as signal processing, so-called white Gaussian processes are
common. A white Gaussian process has a white covariance function

𝜅(x, x′) = I{x = x′} =
{

1 if x = x′,
0 otherwise,

(9.22)

230
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.3 The Gaussian Process

𝑥1 𝑥2

𝑓 (𝑥1) 𝑓 (𝑥2)

𝑥

𝑓 (𝑥)

(a) A Gaussian process defined on the real line,
parameterised by 𝑥, not conditioned on any ob-
servations. The intensity of the blue colour is
proportional to the (marginal) density, and the
marginal distributions for two test inputs 𝑥1 and
𝑥2 are shown in red. Similarly to Figure 9.5, we
only plot the marginal distribution for each test
input, but the Gaussian process defines a full joint
distribution for all points on the 𝑥-axis.

𝑥1 𝑥2

𝑓 (𝑥1) 𝑓 (𝑥2)

𝑥

𝑓 (𝑥)

(b) The conditional Gaussian process given the
observation of 𝑓 (𝑥1) in the point 𝑥1. The prior
distribution from Figure (a) is shown in dashed
grey. Note how the conditional distribution ad-
justs to the observation, both in terms of mean
(closer to the observation) and (marginal) vari-
ance (smaller in the proximity of the observation,
but it remains more or less unchanged in areas
far from it).

Figure 9.6: A Gaussian process. Figure (a) shows the prior distribution, whereas (b) shows
the posterior distribution after conditioning on one observation (black dot).

which implies that 𝑓 (x) is uncorrelated to 𝑓 (x′) unless x = x′. White Gaussian
processes are of less use in supervised machine learning, but we will instead have a
look at how kernel ridge regression can be turned into a Gaussian process, where
the mean function becomes zero, and the covariance function becomes the kernel
from Chapter 8.

Extending Kernel Ridge Regression into a Gaussian Process

An alternative way to obtain the Gaussian process construction is to apply the kernel
trick from Section 8.2 to Bayesian linear regression from (9.11). The connection
between linear regression, Bayesian linear regression, kernel ridge regression, and
the Gaussian process is summarised in Figure 9.7. This will essentially lead us
back to (9.21), with the kernel being the covariance function 𝜅(x, x′), and the mean
function being 𝜇(x) = 0.

Let us now repeat the posterior predictive for Bayesian linear regression (9.11),
but with two changes. The first change is that we assume the prior mean and
covariance for 𝜽 are 𝝁0 = 0 and 𝚺0 = I, respectively. This assumption is not strictly
needed for our purposes but simplifies the expressions. The second change is that,
as in Section 8.1, we introduce non-linear feature transformations 𝝓(x) of the input
variable x in the linear regression model. We therefore replace X with 𝚽(X) in the
notation. Altogether, (9.11) becomes

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
231

9 The Bayesian Approach and Gaussian Processes

(Regularised)
linear regression

Bayesian linear
regression

Kernel ridge
regression

The Gaussian process

Ba
ye

sia
n

ap
pr

oa
ch

Using kernels

Using kernels

Ba
ye

sia
n

ap
pr

oa
ch

Figure 9.7: A graphical summary of the connections between linear regression, Bayesian
linear regression, kernel ridge regression, and the Gaussian process.

𝑝(𝑓 (x★) | y) = N(𝑓 (x★);𝑚★, 𝑠★) , (9.23a)

𝑚★ = 𝝓(x★)T
(
𝜎2I +𝚽(X)T𝚽(X)

)−1
𝚽(X)Ty, (9.23b)

𝑠★ = 𝝓(x★)T
(
I + 1

𝜎2𝚽(X)T𝚽(X)
)−1

𝝓(x★). (9.23c)

In a similar fashion to the derivation of kernel ridge regression, we use the push-
through matrix identity A(ATA + I)−1 = (AAT + I)−1A to re-write 𝑚★ with the aim
of having 𝝓(x) only appearing through inner products:

𝑚★ = 𝝓(x★)T𝚽(X)T
(
𝜎2I +𝚽(X)𝚽(X)T

)−1
y. (9.24a)

To re-write 𝑠★ in a similar fashion, we have to use the matrix inversion lemma
(I −UV)−1 = I −U(I +VU)−1V (which holds for any matrices U,V of compatible
dimensions):

𝑠★ = 𝝓(x★)T𝝓(x★) − 𝝓(x★)T𝚽(X)T
(
𝜎2I +𝚽(X)𝚽(X)T

)−1
𝚽(X)𝝓(x★).

(9.24b)

Analogously to the derivation of kernel ridge regression as in (8.12), we are now
ready to apply the kernel trick and replace all instances of 𝝓(x)T𝝓(x′) with a kernel
𝜅(x, x′). With the same notation as in (8.12), we get

𝑚★ = 𝑲 (X, x★)T
(
𝜎2I + 𝑲 (X,X)

)−1
y, (9.25a)

𝑠★ = 𝜅(x★, x★) − 𝑲 (X, x★)T
(
𝜎2I + 𝑲 (X,X)

)−1
𝑲 (X, x★). (9.25b)

232
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.3 The Gaussian Process

The posterior predictive that is defined by (9.23a) and (9.25) is the Gaussian process
model again, identical to (9.21) if 𝜇(x★) = 0 and 𝜎2 = 0. The reason for 𝜇(x★) = 0
is that we made this derivation starting with 𝝁0 = 0. When we derived (9.21),
we assumed that we observed 𝑓 (x★) (rather than 𝑦★ = 𝑓 (x★) + 𝜀), which is the
reason why 𝜎2 = 0 in (9.21). The Gaussian process is thus a kernel version of
Bayesian linear regression, much like kernel ridge regression is a kernel version
of (regularised) linear regression, as illustrated in Figure 9.7. In order to see the
connection to kernel ridge regression, note that (9.25a) is identical to (8.14) with
𝜎2 = 𝑛𝜆. It is, however, also important to note the difference in that there is no
counterpart to (9.25b) for kernel ridge regression, simply because kernel ridge
regression does not predict a probability distribution.

The fact that the kernel plays the role of a covariance function in the Gaussian
process gives us another interpretation of the kernel in addition to the ones in
Section 8.4, namely that the kernel 𝜅(x, x′) determines how strong the correlation
between 𝑓 (x) and 𝑓 (x′) is assumed to be.

Time to reflect 9.1 Verify that you retrieve Bayesian linear regression when
using the linear kernel (8.23) in the Gaussian process. Why is that?

It is common not to write out the addition of 𝜎2I to the Gram matrix 𝑲 (X,X)
but instead to add a white noise kernel (9.22) multiplied by 𝜎2 to the original
kernel: as 𝜅(x, x′) = 𝜅(x, x′) +𝜎2I{x, x′}. We can then replace 𝜎2I+𝑲 (X,X) with
�̃� (X,X), where �̃� is built up using 𝜅(x, x′) rather than 𝜅(x, x′). In this notation,
(9.25) simplifies to

𝑚★ = �̃� (X, x★)T�̃� (X,X)−1y, (9.26a)
𝑠★ = 𝜅(x★, x★) − �̃� (X, x★)T�̃� (X,X)−1�̃� (X, x★) − 𝜎2. (9.26b)

As in Bayesian linear regression, if we are interested in the posterior predictive
𝑝(𝑦★ | y) instead of 𝑝(𝑓 (x★) | y), we add 𝜎2 to the variance of the prediction; see
(9.11d). We summarise the Gaussian process as Method 9.2.

Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1, kernel 𝜅(x, x′), noise variance 𝜎2 and
test input x★

Result: Posterior predictive 𝑝(𝑓 (x★) | y) = N(𝑓 (x★);𝑚★, 𝑠★)
1 Compute 𝑚★ and 𝑠★ according to (9.25)

Method 9.2: Gaussian process regression.

A Nonparametric Distribution over Functions

As a supervised machine learning tool, we use the Gaussian process for making
predictions, that is, computing the posterior predictive 𝑝(𝑓 (x★) | y) (or 𝑝(𝑦★ | y)).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
233

9 The Bayesian Approach and Gaussian Processes

𝑥1 𝑥2 𝑥3

𝑦1

𝑦2

𝑦3

𝑥

𝑦

(a) The training data {𝑥𝑖 , 𝑦𝑖}3𝑖=1 of a regression
problem is given to us.

𝑥1 𝑥2 𝑥3

𝑓 ?

𝑓 ?

𝑓 ?

𝑥

𝑦

(b) The underlying assumption when we do re-
gression is that there exists some function 𝑓 ,
which describes the data as 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀. It is
unknown to us, but the purpose of regression (no
matter which method is used) is to determine 𝑓 .

𝑥★

𝑥★★

𝑓 ?
𝑓 ?

𝑝(𝑓 (𝑥★★) | y)
𝑝(𝑓 (𝑥★) | y)

𝑥

𝑦

s
(c) The Gaussian process defines a distribution over 𝑓 . We can condition that distribution on training
data (that is, learning) and access it for any input, say 𝑥★ and 𝑥★★. That is, we make a prediction for
𝑥★ and 𝑥★★. The Gaussian process gives us a Gaussian distribution for 𝑓 (𝑥★) and 𝑓 (𝑥★★), illustrated
by solid red lines. That distribution is heavily influenced by the choice of kernel, which is a design
choice in the Gaussian process.

Figure 9.8: The Gaussian process defines a distribution over functions, which we can
condition on training data and access at arbitrary points (such as 𝑥★ and 𝑥★★) in order to
compute predictions.

However, unlike most other methods, which only deliver a point prediction �̂�(x★),
the posterior predictive is a distribution. Since we can compute the posterior
predictive for any x★, the Gaussian process actually defines a distribution over
functions, as we illustrate in Figure 9.8.

Much like we could derive a connection between Bayesian linear regression and
𝐿2 regularised linear regression, we have also seen a similar connection between
the Gaussian process and kernel ridge regression. If we only consider the mean
𝑚★ of the posterior predictive, we recover kernel ridge regression. To take full
advantage of the Bayesian perspective, we also have to consider the posterior
predictive variance 𝑠★. With most kernels, the predictive variance is smaller if there
is a training data point nearby and larger if the closest training data point is distant.
Hence, the predictive variance provides a quantification of the ‘uncertainty’ in the

234
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.3 The Gaussian Process

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

Figure 9.9: The Gaussian process as a supervised machine learning method: we can learn
(that is, compute (9.23a) and (9.25)) the posterior predictive for 𝑓 (𝑥★) and 𝑦★ (shaded blue;
darker blue for two standard deviations for 𝑝(𝑦★ | y), lighter blue for two standard deviations
for 𝑝(𝑓 (𝑥★) | y), and solid blue line for the mean) learned from 0 (upper), 2 (middle), and
30 (bottom) observations (black dots). We see how the model adapts to training data, and
note in particular that the variance shrinks in the regions where observations are made but
remains larger in regions where no observations are made.

prediction. Altogether, the Gaussian process is another useful tool for regression
problems, as we illustrate in Figure 9.9.

Drawing Samples from a Gaussian Process

When computing a prediction of 𝑓 (x★) for a single input point x★, the posterior
predictive 𝑝(𝑓 (x★) | y) captures all information the Gaussian process has about

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
235

9 The Bayesian Approach and Gaussian Processes

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

0

2

𝑥

𝑦

Figure 9.10: Figure 9.9 again, this time appended also with samples from 𝑝(𝑓 (𝑥★) | y).

𝑓 (x★). However, if we are interested not only in predicting 𝑓 (x★), but also
𝑓 (x★ + 𝜹), the Gaussian process contains more information than is present in the
two posterior predictive distributions 𝑝(𝑓 (x★) | y) and 𝑝(𝑓 (x★ + 𝜹) | y) separately.
This is because the Gaussian process also contains information about the corre-
lation between the function values 𝑓 (x★) and 𝑓 (x★ + 𝜹), and the pitfall is that
𝑝(𝑓 (x★) | y) and 𝑝(𝑓 (x★ + 𝜹) | y) are only the marginal distributions of the joint
distribution 𝑝(𝑓 (x★), 𝑓 (x★ + 𝜹) | y), just as the joint distribution in Figure 9.3
contains more information than only the marginal distributions in Figure 9.4.

If we are interested in computing predictions for a larger set of input values, it can
be rather cumbersome to grasp and visualise the resulting high-dimensional posterior
predictive distribution. An useful alternative can therefore be to visualise the Gaus-
sian process posterior by samples from it. Technically this simply amounts to drawing
a sample from the posterior predictive distribution, which we illustrate in Figure 9.10.

236
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.4 Practical Aspects of the Gaussian Process

9.4 Practical Aspects of the Gaussian Process

When using the Gaussian process as a method for supervised machine learning,
there are a few important design choices left to the user. Like the methods presented
in Chapter 8, the Gaussian process is a kernel method, and the choice of kernel is
very important. Most kernels contain a few hyperparameters, which also have to be
chosen. That choice can be done by maximising the marginal likelihood, which we
will discuss now.

Kernel Choice

Since the Gaussian process can be understood as the Bayesian version of kernel
ridge regression, the Gaussian process also requires a positive semidefinite kernel.
Any of the positive semidefinite kernels presented in Section 8.4 can also be used
for Gaussian processes.

Among all kernel methods presented in this book, the Gaussian process could
be the method where the exact choice of kernel has the biggest impact since the
Gaussian posterior predictive 𝑝(𝑓 (x★ | y)) has a mean and a variance, both of
which are heavily affected by the choice of kernel. It is therefore important to
make a good choice, and besides the discussion in Section 8.4, it can also be
instructive to visually compare different kernel choices as in Figure 9.11, at least
when working with one-dimensional problems where that visualisation is possible.
For example, as can be seen from Figure 9.11, the squared exponential and the
Matérn kernel with 𝜈 = 1

2 correspond to drastically different assumptions about the
smoothness of 𝑓 (x).

A positive semidefinite kernel 𝜅(x, x′) remains a positive semidefinite kernel
when multiplied with a positive constant 𝜍2, 𝜍2𝜅(x, x′). For the kernel methods in
Chapter 8, such a scaling has effectively no impact beyond what can be achieved
by tuning the regularisation parameter 𝜆. However, for the Gaussian process, it is
important to choose a constant 𝜍2 wisely since it becomes an important factor in
the predicted variance.

In the end, the kernel, with all its hyperparameters including 𝜍2 and 𝜎2, is a
design choice left to the machine learing engineer. In the Bayesian perspective, the
kernel is an important part of the prior that implements crucial assumptions about
the function 𝑓 .

Hyperparameter Tuning

Most kernels 𝜅(x, x′) contain a few hyperparameters, such as ℓ and 𝛼 and some
possible scaling 𝜍2, in addition to the noise variance 𝜎2. Some of the hyperpa-
rameters might be possible to set manually, for example if they have a natural
interpretation, but most often some hyperparameters are left as tuning parameters
for the user. We jointly refer to all those hyperparameters that need to be chosen as
𝜂, meaning that 𝜂 could be a vector. Cross-validation can indeed be used for this
purpose, but the Bayesian approach also comes with the option to maximise the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
237

9 The Bayesian Approach and Gaussian Processes

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Squared exponential, ℓ = 0.5

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Squared exponential, ℓ = 2

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Matérn 𝜈 = 1
2 , ℓ = 2

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Matérn 𝜈 = 3
2 , ℓ = 2

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Matérn 𝜈 = 5
2 , ℓ = 2

−4 −2 0 2 4 6 8
−2

0

2

𝑥

𝑦

Rational Quadratic 𝛼 = 2, ℓ = 2

Figure 9.11: The Gaussian process applied to the same data with different kernels and
hyperparameters, in order to illustrate what assumptions are made by the different kernels.
The data is marked with black dots, and the Gaussian process is illustrated by its mean
(blue thick line), variance (blue areas; darker for one standard deviation and lighter for two
standard deviations), and samples (thin lines).

238
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.4 Practical Aspects of the Gaussian Process

1 2 3
0

1

2

3

ℓ

𝜎
2

ln 𝑝(y)

0 5

−4

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −7.18

0 5

−4

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −8.52

0 5

−4

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −8.59

0 5

−4

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −7.38

0 5

−4

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −49.36

Figure 9.12: To choose hyperparameters 𝜂 = (ℓ, 𝜎2) for the Gaussian process kernel, the
marginal likelihood 𝑝𝜂 (y) can be maximised. For a given dataset of five points (black dots)
and the squared exponential kernel, the landscape of the logarithm of the marginal likelihood
(as a function of the hyperparameters lengthscale ℓ and noise variance 𝜎2) is shown as
a contour plot in the upper left panel. Each point in that plot corresponds to a certain
selection of the hyperparameters ℓ, 𝜎2. For five such points (grey, purple, blue, green, and
orange dots), the corresponding Gaussian process is shown in separate panels with the same
colour. Note that the orange dot is located at the maximum of 𝑝𝜂 (y). The orange upper
right plot therefore corresponds to a Gaussian process where the hyperparameters have
been maximised using marginal likelihood. It is clear that optimising 𝑝𝜂 (y) does not mean
selecting hyperparameters such that the Gaussian process follows the data as closely as
possible (as the blue one does).

marginal likelihood 𝑝(y) as a method for selecting hyperparameters, as in (9.4). To
emphasise how 𝜂 enters into the marginal likelihood, we add the subscript 𝜂 to all
terms that depends on it. From the construction of the Gaussian process, we have
that 𝑝𝜂 (y) = N

(
y; 0, �̃�𝜂 (X,X)) , and consequently

ln 𝑝𝜂 (y) = −1
2

yT�̃�𝜂 (X,X)−1y − 1
2

ln det
(
�̃�𝜂 (X,X)) − 𝑛

2
log 2𝜋. (9.27)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
239

9 The Bayesian Approach and Gaussian Processes

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ℓ

𝜎
2

ln 𝑝(y)

0 5

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −8.06

0 5

−2

0

2

𝑥

𝑦

ln 𝑝(y) = −8.13

Figure 9.13: The landscape of 𝑝(y) may have several local maxima. In this case there is
one local maximum at the blue dot, with relatively large noise variance and length scale.
There is also another local maximum, which also is the global one, at the green dot, with
much less noise variance and a shorter lengthscale. There is also a third local maximum
in between (not shown). It is not uncommon that the different maxima provide different
‘interpretations’ of the data. As a machine learning engineer, it is important to be aware that
this can happen; the green one does indeed optimise the marginal likelihood, but the blue
one can also be practically useful.

In other words, the hyperparameters of the Gaussian process kernel can be chosen
by solving the optimisation problem of maximising (9.27) with respect to 𝜂. If using
this approach, solving the optimisation problem can be seen as a part of learning
the Gaussian process, which is illustrated in Figure 9.12.

When selecting hyperarameters 𝜂 of a kernel, it is important to be aware that
(9.27) (as a function of the hyperparameters) may have multiple local maxima,
as we illustrate in Figure 9.13. It is therefore important to carefully choose the
initialisation of the optimisation procedure. The challenge with local maxima
is not unique to using the marginal likelihood approach but can also arise when
cross-validation is used to choose hyperparameters.

We conclude this part about the Gaussian process by applying it to the car stopping
distance problem in Example 9.3.

240
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.4 Practical Aspects of the Gaussian Process

Example 9.3 Car stopping distances

We again consider the car stopping distance problem from Example 2.2. We
have already discussed the application of the other kernel methods, kernel ridge
regression, and support vector regression in Examples 8.2 and 8.3, respectively,
both in Chapter 8. Since the results in the previous examples looked reasonable, we
use the same kernel and hyperparameters again, meaning that we have

𝜅(𝑥, 𝑥 ′) = exp
(
− |𝑥 − 𝑥

′ |2
2ℓ2

)
+ (1 + 𝑥𝑥 ′)2 + 𝜎2I{𝑥 = 𝑥 ′},

with ℓ = 3 and 𝜎2 = 𝜆𝑛 (with 𝜆 = 0.01 and 𝑛 = 62 data points). However, we also
have the option to introduce yet another hyperparameter 𝜍2 as 𝜍2𝜅(x, x′). In the
top part of Figure 9.14, we use 𝜍2 = 22 and 𝜍2 = 402 to illustrate the fundamental
impact that 𝜍2 has on the posterior predictive. (Note that only the variance, and
not the mean, is affected by 𝜍2. This can be confirmed by the fact that 𝜍2 cancels
algebraically in (9.26a) but not in (9.26b).)

0 20 40
0

50

100

150

200

Speed (mph)

D
ist

an
ce

(fe
et

)

𝜍2 = 22

0 20 40
0

50

100

150

200

Speed (mph)

𝜍2 = 402

0 10 20 30 40 50
0

50

100

150

200

Speed (mph)

D
ist

an
ce

(fe
et

)

𝜍2 = 122

Fig.
9.14

To select 𝜍2, we therefore maximise the marginal likelihood with respect to it,
which gives us 𝜍2 = 122, as shown in the bottom panel of Figure 9.14. Indeed, it
seems to have a very reasonable variance (‘uncertainty’) in the posterior predictive
distribution.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
241

9 The Bayesian Approach and Gaussian Processes

9.5 Other Bayesian Methods in Machine Learning

Besides introducing the Bayesian approach in general, this chapter contains the
Bayesian treatment of linear regression (Bayesian linear regression, Section 9.2)
and kernel ridge regression (Gaussian processes, Section 9.3–9.4). The Bayesian
approach is, however, applicable to all methods that somehow learn a model from
training data. The reason for the selection of methods in this chapter is frankly
that Bayesian linear regression and Gaussian process regression are among the
few Bayesian supervised machine learning methods where the posterior and/or the
posterior predictive are easy to compute.

Most often, the Bayesian approach requires numerical integration routines as
well as numerical methods for representing the posterior distribution (the posterior
does not have to be a Gaussian or any other standard distribution) when applied
to various models. There are two major families of such numerical methods,
called variational inference and Monte Carlo methods. The idea of variational
inference is to approximate probability distributions in such a way that the problem
becomes sufficiently tractable, whereas Monte Carlo methods represent probability
distributions using random samples from them.

The Gaussian process model is an example of a method belonging to the family
of Bayesian nonparametric methods. Another method in that family is the Dirichlet
process, which can be used for the unsupervised clustering problem (see Chapter 10),
with no need to specify the number of clusters beforehand.

Another direction is the Bayesian approach applied to deep learning, often
referred to as Bayesian deep learning. In short, Bayesian deep learning amounts to
computing the posterior 𝑝(𝜽 | y), instead of only parameter values �̂�. In doing so,
stochastic gradient descent has to be replaced with either some version of variational
inference or some Monte Carlo method. Due to the massive number of parameters
often used in deep learning, that is a computationally challenging problem.

9.6 Further Reading

The Bayesian approach has a long history within statistics. The name originates
from Thomas Bayes and his 1763 posthumously published work ‘An Essay towards
solving a Problem in the Doctrine of Chances’, but Pierre-Simon Laplace also made
significant contributions to the idea in the late 18th and early 19th century. For an
overview of its use in statistics and its historical controversies, we refer to Efron and
Hastie (2016, Part I).

A relatively short review article on modern Bayesian machine learning with
many suggestions for further reading is Ghahramani (2015). There are also several
textbooks on the modern use of the Bayesian approach in machine learning, including
Barber (2012), Gelman et al. (2014), and Rogers and Girolami (2017), and for some
aspects also Bishop (2006) and Murphy (2012).

242
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.A The Multivariate Gaussian Distribution

Gaussian processes are covered in depth by the textbook Rasmussen and Williams
(2006). Other Bayesian nonparametric models in general and the Dirichlet process
in particular are introduced in Gershman and Blei (2012), Ghahramani (2013), and
Hjort et al. (2010).

As mentioned above, the Bayesian approach often requires more advanced
computational methods not discussed in this chapter. Two entry points for further
studies of variational inference are Bishop (2006, Chapter 10) and Blei et al. (2017).
Introductions to Monte Carlo methods are found in Owen (2013), Robert and Casella
(2004), and Gelman et al. (2014, Part III).

Although a very recent research topic, the idea of Bayesian learning of neural
networks was laid out already in the 90s (R. M. Neal 1996). Some more recent
contributions include Blundell et al. (2015), Dusenberry et al. (2020), Fort et al.
(2019), Kendall and Gal (2017), and R. Zhang et al. (2020).

9.A The Multivariate Gaussian Distribution

This appendix contains some results on the multivariate Gaussian distribution that
are essential for Bayesian linear regression and the Gaussian process. Figure 9.15
summarises how they relate to each other.

𝑝(z𝑎, z𝑏)

𝑝(z𝑎)

𝑝(z𝑏)

Theorem 9.1

𝑝(z𝑏 |z𝑎)

𝑝(z𝑎 |z𝑏)

Theorem 9.2

Theorem 9.3

Corollary 9.1 =
Theorem 9.2 + Theorem 9.3

Corollary 9.2 =
Theorem 9.1 + Theorem 9.3

Figure 9.15: A graphical summary of how Theorems 9.1–9.3 and Corollaries 9.1–9.2
relate to each other. In all results, z𝑎 and z𝑏 are dependent multivariate Gaussian random
variables.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
243

9 The Bayesian Approach and Gaussian Processes

Theorem 9.1 (Marginalisation) Partition the Gaussian random vector z∼N(𝝁,𝚺)
according to

z =

(
z𝑎
z𝑏

)
, 𝝁 =

(
𝝁𝑎

𝝁𝑏

)
, 𝚺 =

(
𝚺𝑎𝑎 𝚺𝑎𝑏

𝚺𝑏𝑎 𝚺𝑏𝑏

)
. (9.28)

The marginal distribution 𝑝(z𝑎) is then given by

𝑝(z𝑎) = N
(
z𝑎; 𝝁𝑎,𝚺𝑎𝑎

)
. (9.29)

Theorem 9.2 (Conditioning) Partition the Gaussian random vector z ∼ N(𝝁,𝚺)
according to

z =

(
z𝑎
z𝑏

)
, 𝝁 =

(
𝝁𝑎

𝝁𝑏

)
, 𝚺 =

(
𝚺𝑎𝑎 𝚺𝑎𝑏

𝚺𝑏𝑎 𝚺𝑏𝑏

)
. (9.30)

The conditional distribution 𝑝(z𝑎 | z𝑏) is then given by

𝑝(z𝑎 | z𝑏) = N
(
z𝑎; 𝝁𝑎 |𝑏,𝚺𝑎 |𝑏

)
, (9.31a)

where

𝝁𝑎 |𝑏 = 𝝁𝑎 + 𝚺𝑎𝑏𝚺
−1
𝑏𝑏 (z𝑏 − 𝝁𝑏), (9.31b)

𝚺𝑎 |𝑏 = 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺
−1
𝑏𝑏𝚺𝑏𝑎 . (9.31c)

Theorem 9.3 (Affine transformation) Assume that z𝑎 as well as z𝑏 | z𝑎 are both
Gaussian distributed according to

𝑝(z𝑎) = N
(
z𝑎; 𝝁𝑎,𝚺𝑎

)
, (9.32a)

𝑝(z𝑏 | z𝑎) = N
(
z𝑏; Az𝑎 + b,𝚺𝑏 |𝑎

)
. (9.32b)

Then the joint distribution of z𝑎 and z𝑏 is

𝑝(z𝑎, z𝑏) = N
([

z𝑎
z𝑏

]
;
[

𝝁𝑎

A𝝁𝑎 + b

]
,R

)
(9.33a)

with

R =

[
𝚺𝑎 𝚺𝑎AT

A𝚺𝑎 𝚺𝑏 |𝑎 + A𝚺𝑎AT

]
. (9.33b)

244
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

9.A The Multivariate Gaussian Distribution

Corollary 9.1 (Affine transformation – conditional) Assume that z𝑎 as well as
z𝑏 | z𝑎 are both Gaussian distributed according to

𝑝(z𝑎) = N
(
z𝑎; 𝝁𝑎,𝚺𝑎

)
, (9.34a)

𝑝(z𝑏 | z𝑎) = N
(
z𝑏; Az𝑎 + b,𝚺𝑏 |𝑎

)
. (9.34b)

Then the conditional distribution of z𝑎 given z𝑏 is

𝑝(z𝑎 | z𝑏) = N
(
z𝑎; 𝝁𝑎 |𝑏,𝚺𝑎 |𝑏

)
, (9.35a)

with

𝝁𝑎 |𝑏 = 𝚺𝑎 |𝑏
(
𝚺−1
𝑎 𝝁𝑎 + AT𝚺−1

𝑏 |𝑎 (z𝑏 − b)
)
, (9.35b)

𝚺𝑎 |𝑏 =
(
𝚺−1
𝑎 + AT𝚺−1

𝑏 |𝑎A
)−1

. (9.35c)

Corollary 9.2 (Affine transformation – Marginalisation) Assume that z𝑎 as well
as z𝑏 | z𝑎 are both Gaussian distributed according to

𝑝(z𝑎) = N
(
z𝑎; 𝝁𝑎,𝚺𝑎

)
, (9.36a)

𝑝(z𝑏 | z𝑎) = N
(
z𝑏; Az𝑎 + b,𝚺𝑏 |𝑎

)
. (9.36b)

Then the marginal distribution of z𝑏 is given by

𝑝(z𝑏) = N
(
z𝑏; 𝝁𝑏,𝚺𝑏

)
, (9.37a)

where

𝝁𝑏 = A𝝁𝑎 + b, (9.37b)
𝚺𝑏 = 𝚺𝑏 |𝑎 + A𝚺𝑎AT. (9.37c)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
245

10 Generative Models and Learning
from Unlabelled Data

The models introduced so far in this book are so-called discriminative models, also
referred to as conditional models. These models are designed to learn from data
how to predict the output conditionally on a given input. Hence, they distinguish (or
discriminate between) different inputs only in terms of their corresponding outputs.
In the first half of this chapter, we will introduce another modelling paradigm,
so-called generative modelling. Generative models are also learned from data, but
their scope is wider. In contrast to discriminative models, which only describe
the conditional distribution of the output for a given input, a generative model
describes the joint distribution of both inputs and outputs. Also having access to
a probabilistic model for the input variables allows synthetic data to be simulated
from the model, for instance. However, perhaps more interestingly, it can be argued
that a generative model has a ‘deeper understanding’ of the data. For instance, it can
be used to reason about whether or not a certain input variable is typical, and it can
be used to find patterns among input variables even in the absence of corresponding
output values. Generative modelling is therefore a natural way to take us beyond
supervised learning, which we will do in the second half of this chapter.

Specifically, a generative model aims to describe the distribution 𝑝(x, 𝑦). That is,
it provides a probabilistic description of how both the input and the output data is
generated. Perhaps we should write 𝑝(x, 𝑦 | 𝜽) to emphasise that generative models
also contain some parameters that we will learn from data, but to ease the notation,
we settle for 𝑝(x, 𝑦). To use a generative model for predicting the value of 𝑦 for
a given input x, the expression for the conditional distribution 𝑝(𝑦 | x) has to be
derived from 𝑝(x, 𝑦) using probability theory. We will make this idea concrete
by considering the rather simple, yet useful, generative Gaussian mixture model
(GMM). The GMM can be used for different purposes. When trained in a supervised
way, from fully labelled data, it results in methods traditionally called linear or
quadratic discriminant analysis. We will then see how the generative nature of the
GMM naturally opens up for semi-supervised learning (where labels 𝑦 are partly
missing) and unsupervised learning (where no labels at all are present; there are
only x and no 𝑦) as well. In the latter case, the GMM can be used for solving the
so-called clustering problem, which amounts to grouping similar x-values together
in clusters.

We will then extend the idea of generative models beyond the Gaussian case,
by describing deep generative models that make use of deep neural networks (see
Chapter 6) for modelling 𝑝(x). Specifically, we will discuss two such models:

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
247

10 Generative Models and Learning from Unlabelled Data

normalising flows and generative adversarial networks. Both types are capable of
learning the distribution of high-dimensional data with complicated dependencies
in an unsupervised way, that is, based only on observed x-values.

Generative models bridge the gap between supervised and unsupervised machine
learning, but not all methods for unsupervised learning come from generative
models. We therefore end this chapter by introducing (non-generative) methods
for unsupervised representation learning. Specifically, we introduce the nonlinear
auto-encoder and its linear counterpart, principal component analysis (PCA),
both of which are useful for learning a low-dimensional representation of high-
dimensional data.

10.1 The Gaussian Mixture Model and
Discriminant Analysis

We will now introduce a generative model, the GMM, from which we will derive
several methods for different purposes. We assume that x is numerical and 𝑦 is a
categorical variable, that is, we are considering a situation similar to classification.
The GMM attempts to model 𝑝(x, 𝑦), that is, the joint distribution between inputs
x and outputs 𝑦. This is a more ambitious goal than the discriminative classifiers
encountered in previous chapters, which only attempt to model the conditional
distribution 𝑝(𝑦 | x), since 𝑝(𝑦 | x) can be derived from 𝑝(x, 𝑦) but not vice versa.

The Gaussian Mixture Model

The GMM makes use of the factorisation

𝑝(x, 𝑦) = 𝑝(x | 𝑦)𝑝(𝑦) (10.1a)

of the joint probability density function. The second factor is the marginal
distribution of 𝑦. Since 𝑦 is categorical, and thereby takes values in the set
{1, . . . , 𝑀}, this is given by a categorical distribution with 𝑀 parameters {𝜋𝑚}𝑀𝑚=1:

𝑝(𝑦 = 1) = 𝜋1,

... (10.1b)
𝑝(𝑦 = 𝑀) = 𝜋𝑀 .

The first factor in (10.1a) is the class-conditional distribution of the input x
for a certain class 𝑦. In a classification setting, it is natural to assume that these
distributions are different for different classes 𝑦. Indeed, if it is possible to predict
the class 𝑦 based on the information contained in x, then the characteristics (that
is, the distribution) of x should depend on 𝑦. However, to complete the model, we
need to make additional assumptions on these class-conditional distributions. The
basic assumption for a GMM is that each 𝑝(x | 𝑦) is a Gaussian distribution

𝑝(x | 𝑦) = N (
x | 𝝁𝑦 ,𝚺𝑦

)
, (10.1c)

248
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.1 The Gaussian Mixture Model and Discriminant Analysis

0 2

0

5

𝑥1

𝑥 2
0 2

0

5

𝑥1

𝑥 2

Figure 10.1: The GMM is a generative model, and we think about the input variables x as
random and assume that they have a certain distribution. The GMM assumes that 𝑝(x | 𝑦)
has a Gaussian distribution for each 𝑦. In this figure x is two-dimensional and there are two
classes 𝑦 (red and blue). The left panel shows some data with this nature. The right panel
shows, for each value of 𝑦, the contour lines of the Gaussians 𝑝(x | 𝑦) that are learned from
the data using (10.3).

with class-dependent mean vector 𝝁𝑦 and covariance matrix 𝚺𝑦 . In words, the
model (10.1) starts from a categorical distribution over 𝑦, and, for each possible
value of 𝑦, it assumes a Gaussian distribution for x. Considering the marginal
distribution 𝑝(x), as we do in Figure 10.1, the model corresponds to a mixture of
Gaussians (one component for each value of 𝑦), hence the name. Altogether, (10.1)
is a generative model for how data (x, 𝑦) is generated. As always, the model builds
on some simplifying assumptions, and most central to the GMM is the Gaussian
assumption for the class-conditional distributions over x in (10.1c).

In the supervised setting, the GMM will lead us to classifiers that are easy
to learn (no numerical optimisation is needed) and that turn out to be useful
in practice even when the data does not obey the Gaussian assumption (10.1c)
perfectly. These classifiers are (for historical reasons) called linear and quadratic
discriminant analysis, LDA1 and QDA, respectively. However, the GMM can also
be used for clustering in an unsupervised setting, as well as learning from partially
labelled data (the output label 𝑦 is missing for some of the training data points) in a
semi-supervised setting.

Supervised Learning of the Gaussian Mixture Model

Like any machine learning model, the GMM (10.1) is learned from training data.
The unknown parameters to be learned are 𝜽 = {𝝁𝑚,𝚺𝑚, 𝜋𝑚}𝑀𝑚=1. We start with the
supervised case, meaning that the training data contains inputs x and corresponding
outputs (labels) 𝑦, that is T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1 (which has been the case for all other
methods in this book so far).

1Note to be confused with Latent Dirichlet Allocation, also abbreviated LDA, which is a completely
different method.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
249

10 Generative Models and Learning from Unlabelled Data

Mathematically, we learn the GMM by maximising the log-likelihood of the
training data2

�̂� = arg max
𝜽

ln 𝑝({x𝑖 , 𝑦𝑖}𝑛𝑖=1︸ ︷︷ ︸
T

| 𝜽). (10.2a)

Note that, due to the generative nature of the model, this is based on the joint
likelihood of both the inputs and the outputs. It follows from the model definition
(10.1) that the log-likelihood is given by

ln 𝑝({x𝑖 , 𝑦𝑖}𝑛𝑖=1 | 𝜽) =
𝑛∑︁
𝑖=1
{ln 𝑝(x𝑖 | 𝑦𝑖 , 𝜽) + ln 𝑝(𝑦𝑖 | 𝜽)}

=
𝑛∑︁
𝑖=1

𝑀∑︁
𝑚=1
I{𝑦𝑖 = 𝑚} {lnN (

x𝑖 | 𝝁𝑚,𝚺𝑚
) + ln 𝜋𝑚

}
, (10.2b)

where the indicator function I{𝑦𝑖 = 𝑚} effectively separates the log-likelihood
into 𝑀 independent sums, one for each class, depending on the class labels of the
training data points.

The optimisation problem (10.2) turns out to have a closed-form solution. Starting
with the marginal class probabilities {𝜋𝑚}𝑀𝑚=1, we get

�̂�𝑚 =
𝑛𝑚
𝑛
, (10.3a)

where 𝑛𝑚 is the number of training data points in class 𝑚. Consequently,
∑

𝑚 𝑛𝑚 = 𝑛
and thus

∑
𝑚 �̂�𝑚 = 1. This simply states that the probability of a certain class 𝑦 = 𝑚,

without having any additional information, is estimated as the proportion of this
class in the training data.

Furthermore, the mean vector 𝝁𝑚 of each class is estimated as

�̂�𝑚 =
1
𝑛𝑚

∑︁
𝑖:𝑦𝑖=𝑚

x𝑖 , (10.3b)

the empirical mean among all training data points of class 𝑚. Similarly, the
covariance matrix 𝚺𝑚 for each class 𝑚 = 1, . . . , 𝑀 , is estimated as3

𝚺𝑚 =
1
𝑛𝑚

∑︁
𝑖:𝑦𝑖=𝑚

(x𝑖 − �̂�𝑚) (x𝑖 − �̂�𝑚)T. (10.3c)

The expressions (10.3b)–(10.3c) learns a Gaussian distribution for x for each class
such that the mean and covariance fit the data – so-called moment-matching. Note
that we can compute the parameters �̂� no matter if whether the data actually comes
from a Gaussian distribution or not.

2Alternatively, it is possible to learn the GMM by following the Bayesian approach, but we do not
pursue that any further here. See Section 10.5 for suggestions for further reading.

3A common alternative is to normalise the estimate by 𝑛𝑚 − 1 instead of 𝑛𝑚, resulting in an unbiased
estimate of the covariance matrix, but that is in fact not the maximum likelihood solution. The
two options are not mathematically equivalent, but for machine learning purposes, the practical
difference is often minor.

250
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.1 The Gaussian Mixture Model and Discriminant Analysis

Predicting Output Labels for New Inputs: Discriminant Analysis

We have so far described the generative GMM 𝑝(x, 𝑦), where x is numerical and 𝑦
categorical, and how to learn the unknown parameters in 𝑝(x, 𝑦) from training data.
We will now see how this can be used as a classifier for supervised machine learning.

The key insight for using a generative model 𝑝(x, 𝑦) to make predictions is to
realise that predicting the output 𝑦 for a known value x amounts to computing the
conditional distribution 𝑝(𝑦 | x). From probability theory, we have

𝑝(𝑦 | x) = 𝑝(x, 𝑦)
𝑝(x) =

𝑝(x, 𝑦)∑𝑀
𝑗=1 𝑝(x, 𝑦 = 𝑗) . (10.4)

The left hand side 𝑝(𝑦 | x) is the predictive distribution, whereas all expressions on
the right hand side are defined by the generative GMM (10.1). We therefore get the
classifier

𝑝(𝑦 = 𝑚 | x★) =
�̂�𝑚N

(
x★ | �̂�𝑚,𝚺𝑚

)
∑𝑀

𝑗=1 �̂� 𝑗N
(
x★ | �̂� 𝑗 ,𝚺 𝑗

) . (10.5)

As usual, we can obtain ‘hard’ predictions �̂�★ by selecting the class which is
predicted to be the most probable,

�̂�★ = arg max
𝑚

𝑝(𝑦 = 𝑚 | x★), (10.6)

and compute corresponding decision boundaries. Taking the logarithm (which does
not change the maximising argument) and noting that only the numerator in (10.5)
depends on 𝑚, we can equivalently write this as

�̂�★ = arg max
𝑚

{
ln �̂�𝑚 + lnN

(
x★ | �̂�𝑚,𝚺𝑚

)}
. (10.7)

Since the logarithm of the Gaussian probability density function is a quadratic
function in x, the decision boundary for this classifier is also quadratic, and the
method is therefore referred to as quadratic discriminant analysis (QDA). We
summarise this by Method 10.1 and Figure 10.3, and in Figure 10.2, we show the
decision boundary when the GMM from Figure 10.1 is turned into a QDA classifier.

The QDA method arises naturally from the GMM. However, if we make an
additional simplifying assumption about the model, we instead obtain an even more
well-known and commonly used classifier, referred to as linear discriminant analysis
(LDA), The additional assumption is that the covariance matrix is equal for all
classes, that is, 𝚺1 = 𝚺2 = · · · = 𝚺𝑀 = 𝚺 in (10.1c). With this restriction, we only
have a single covariance matrix to learn, and (10.3c) is replaced by4

𝚺 =
1
𝑛

𝑀∑︁
𝑚=1

∑︁
𝑖:𝑦𝑖=𝑚

(x𝑖 − �̂�𝑚) (x𝑖 − �̂�𝑚)T. (10.8)

4Similarly to the comment about (10.3c), the sum can alternatively be normalised by 𝑛 − 𝑀 , instead
of 𝑛.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
251

10 Generative Models and Learning from Unlabelled Data

−1 0 1 2 3

0

5

𝑥1
𝑥 2

Figure 10.2: The decision boundary for the QDA classifier (obtained by (10.5) and (10.7))
corresponding to the learned GMM in the right panel of Figure 10.1.

Learn the Gaussian mixture model
Data: Training data T = {x𝑖 , 𝑦𝑖}𝑛𝑖=1
Result: Gaussian mixture model

1 for 𝑚 = 1, . . . , 𝑀 do
2 Compute �̂�𝑚 (10.3a), �̂�𝑚 (10.3b) and 𝚺𝑚 (10.3c)
3 end

Predict with Gaussian mixture model
Data: Gaussian mixture model and test input x★
Result: Prediction �̂�★

1 for 𝑚 = 1, . . . , 𝑀 do
2 Compute 𝛿𝑚

def
= ln �̂�𝑚 + lnN

(
x★ | �̂�𝑚,𝚺𝑚

)
3 end
4 Set �̂�★ = arg max𝑚 𝛿𝑚.

Method 10.1: Quadratic Discriminant Analysis, QDA.

Using this assumption in (10.5) results in a convenient cancellation of all quadratic
terms when computing the class predictions in (10.7), and the LDA classifier will
therefore have linear decision boundaries. Consequently, LDA is a linear classifier,
just like logistic regression, and the two methods will often perform similarly. They
are not equivalent, however, since the parameters are learned in different ways. This
usually results in small differences in their respective decision boundaries. Note
that LDA is obtained by replacing (10.3c) with (10.8) in Method 10.1. We compare
LDA and QDA in Figure 10.4 by applying both of them to the music classification
problem from Example 2.1.

Time to reflect 10.1 In the GMM, it was assumed that 𝑝(x | 𝑦) is Gaussian.
When applying LDA or QDA ‘off the shelf’ for a classification problem, is
there any check that the Gaussian assumption actually holds? If yes, what?
If no, is that a problem?

252
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.1 The Gaussian Mixture Model and Discriminant Analysis

−3 𝜇1 −1 𝜇2 1 𝜇3 3
0

0.5

1

�̂�1

𝑦 = 1 �̂�2

𝑦 = 2

�̂�3

𝑦 = 3

𝑥

𝑝(𝑥 | 𝑦)

y=1 y=2 y=3
0

0.2

0.4

0.6

𝜋1

𝜋2

𝜋3

𝑝(𝑦)

𝑦 = 1 𝑦 = 2 𝑦 = 3

−3 −1 1 3
0

0.5

1

𝑥

𝑝(𝑦 | 𝑥)

Equation (10.4)

Figure 10.3: An illustration of QDA for 𝑀 = 3 classes, with dimension 𝑝 = 1 of the input 𝑥.
At the top, the generative GMM is shown. To the left is the Gaussian model of 𝑝(𝑥 | 𝑦 = 𝑚),
parameterised by �̂�𝑚 and �̂�2

𝑚 (since 𝑝 = 1, we only have a scalar variance 𝜎2
𝑚, instead of

a covariance matrix 𝚺𝑚). To the right the model of 𝑝(𝑦) is shown, parameterised by �̂�𝑚.
All parameters are learned from training data, not shown in the figure. By computing the
conditional distribution (10.4) the generative model is ‘warped’ into 𝑝(𝑦 = 𝑚 | 𝑥), shown in
the bottom. The decision boundaries are shown as vertical dotted lines in the bottom plot
(assuming that we classify 𝑥 based on the most probable class).

We have now derived a classifier, QDA, from a generative model. In practice, the
QDA classifier can be employed just like any discriminative classifier. It can be
argued that a generative model contains more assumptions than a discriminative
model, and if the assumptions are fulfilled, we could possibly expect QDA to
be slightly more data efficient (requiring fewer data points to reach a certain
performance) than a discriminative model. However, in most practical cases this
will not make a big difference. The difference between using a generative and a
discriminative model will, however, become more evident when we next look at the
semi-supervised learning problem.

Semi-supervised Learning of the Gaussian Mixture Model

We have so far discussed how the GMM can be learned in the supervised setting,
that is, from training data that contains both input and corresponding output values
(that is, class labels). We will now have a look at the so-called semi-supervised

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
253

10 Generative Models and Learning from Unlabelled Data

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

LDA

Beatles
Kiss
Bob Dylan

(a) Decision boundaries for the music classifi-
cation problem for an LDA classifier.

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

QDA

Beatles
Kiss
Bob Dylan

(b) Decision boundaries for the music classifi-
cation problem for a QDA classifier.

Figure 10.4: We apply LDA and QDA classifiers to the music classification problem from
Example 2.1 and plot the resulting decision boundaries. Note that the LDA classifier
gives linear decision boundaries, whereas the QDA classifier has decision boundaries with
quadratic shapes.

problem where some output values 𝑦𝑖 are missing in the training data. The input
values x𝑖 for which the corresponding 𝑦𝑖 are missing are called unlabelled data
points. As before, we denote the total number of training data points as 𝑛, out of
which now only 𝑛𝑙 are labelled input-output pairs {x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1 and the remaining 𝑛𝑢
unlabelled data points {x𝑖}𝑛𝑖=𝑛𝑙+1, where 𝑛 = 𝑛𝑙 + 𝑛𝑢 . All in all we have the training
data T = {{x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1, {x𝑖}𝑛𝑖=𝑛𝑙+1}. For notational purposes we have, without loss of
generality, ordered the data points so that the first 𝑛𝑙 are labelled and the remaining
𝑛𝑢 are unlabelled.

Semi-supervised learning is of high practical relevance. Indeed, in many
applications it is easy to obtain large amounts of unlabelled data, but annotating
this data (that is, assigning labels 𝑦𝑖 to the training data points) can be a very
costly and time consuming procedure. This is particularly true when the labeling
is done manually by a domain expert. For instance, consider learning a model for
classifying images of skin lesions as either benign or malignant, to be used in a
medical diagnosis support system. The training inputs x𝑖 will then correspond to
images of the skin lesions, and it is easy to acquire a large number of such images.
To annotate the training data with labels 𝑦𝑖 , however, we need to determine whether
or not each lesion is benign or malignant, which requires a (possibly expensive)
medical examination by a dermatologist.

The simplest solution to the semi-supervised problem would be to discard the
𝑛𝑢 unlabelled data points and thereby turn the problem into a standard supervised
machine learning problem. This is a pragmatic solution, but possibly very wasteful
if the number of labelled data points 𝑛𝑙 is only a small fraction of the total number of
data points 𝑛. We illustrate this with Figure 10.5, which depicts a semi-supervised
problem where we have learned a (poor) GMM by only using the few 𝑛𝑙 labelled
data points.

254
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.1 The Gaussian Mixture Model and Discriminant Analysis

0 2

0

5

𝑥1

𝑥 2
0 2

0

5

𝑥1

𝑥 2

Figure 10.5: We consider the same situation as in Figure 10.1, except for the fact that we
have ‘lost’ the output 𝑦𝑖 for most of the data points. The problem is now semi-supervised.
The unlabelled data points {x𝑖}𝑛𝑖=𝑛𝑙+1 are illustrated in the left panel as grey dots, whereas
the 𝑛𝑙 = 6 labelled data points {x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1 are red or blue. In the right panel, we have learned
a GMM using only the labelled data points, as if the problem were supervised with only 𝑛𝑙
data points. Clearly the unlabelled data points have made the problem harder, compared to
Figure 10.1. We will, however, continue this story in Figure 10.6 where we instead use this
as an initialisation to a semi-supervised procedure.

The idea behind semi-supervised learning is to exploit the information available
in the unlabelled data points to, hopefully, end up with a better model in the end.
There are different ways in which the semi-supervised problem can be approached,
but one principled way is to make use of a generative model. Remember that a
generative model is a model of the joint distribution 𝑝(x, 𝑦), which can be factorised
as 𝑝(x, 𝑦) = 𝑝(x)𝑝(𝑦 | x). Since the marginal distribution of the inputs 𝑝(x) is a
part of the model, it seems plausible that the unlabelled data points {x𝑖}𝑛𝑖=𝑛𝑙+1 can
also be useful when learning the model. Intuitively, the unlabelled inputs can be
used to find groups (or clusters) of input values with similar properties, which can
then be assumed to belong to the same class. Looking at Figure 10.5 again, by
considering the unlabelled data points (grey dots), it is reasonable to assume that
the two apparent clusters of points correspond to the two classes (red and blue,
respectively). As we will see below, by exploiting this information, we can thus
obtain better estimates of the class-conditional distributions 𝑝(x | 𝑦) and thereby
also obtain a better classifier.

We will now turn to the technical details of how to learn the GMM in this
semi-supervised setting. Similarly to above, we take the maximum likelihood
approach, meaning that we seek the model parameters that maximise the likelihood
of the observed data. Contrary to the supervised case, however, the observed data
now contains both labelled and unlabelled instances. That is, we would like to solve

�̂� = arg max
𝜽

ln 𝑝({{x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1, {x𝑖}𝑛𝑖=𝑛𝑙+1}︸ ︷︷ ︸
T

| 𝜽). (10.9)

Unfortunately this problem has no closed-form solution for the GMM. We will
discuss the reason for this intractability in more detail in Section 10.2, where we
revisit the same problem in the fully unsupervised setting. Intuitively, however, we
can conclude that it is not possible to compute the model parameters as in (10.3),
because we do not know which classes the unlabelled data points belong to. Hence,

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
255

10 Generative Models and Learning from Unlabelled Data

when computing the mean vector for the 𝑚th class as in (10.3b), for instance, we do
not know which data points should be included in the sum.

However, a possible way around this issue is to first learn an initial GMM, which
is then used to predict the missing values {𝑦𝑖}𝑛𝑢𝑖=1, and thereafter these predictions are
used to update the model. Doing this iteratively results in the following algorithm:

(i) Learn the GMM from the 𝑛𝑙 labelled input-output pairs {x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1,

(ii) Use the GMM to predict (as a QDA classifier) the missing outputs to {x𝑖}𝑛𝑖=𝑛𝑙+1,

(iii) Update the GMM including the predicted outputs from step (ii),

and then repeat step (ii) and (iii) until convergence.
At first this might look like an ad hoc procedure, and it is far from obvious that

it will converge to anything sensible. However, it turns out that it is an instance
of a widely used statistical tool referred to as the expectation-maximisation (EM)
algorithm. We will study the EM algorithm and discuss its validity in more detail
in Section 10.2. For now we simply note that the algorithm, when applied to the
maximum likelihood problem (10.9), indeed boils down to the procedure outlined
above, as long as we pay attention to a few important details: From step (ii) we
should return the predicted class probabilities 𝑝(𝑦 = 𝑚 | x, �̂�) (and not the class
prediction �̂�(x★)) computed using the current parameter estimates �̂�, and in step
(iii) we make use of the predicted class probabilities by introducing the notation

𝑤𝑖 (𝑚) =

𝑝(𝑦 = 𝑚 | x𝑖 , �̂�) if 𝑦𝑖 is missing
1 if 𝑦𝑖 = 𝑚

0 otherwise
(10.10a)

and update the parameters as follows:

�̂�𝑚 =
1
𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚), (10.10b)

�̂�𝑚 =
1∑𝑛

𝑖=1 𝑤𝑖 (𝑚)
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚)x𝑖 , (10.10c)

𝚺𝑚 =
1∑𝑛

𝑖=1 𝑤𝑖 (𝑚)
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚) (x𝑖 − �̂�𝑚) (x𝑖 − �̂�𝑚)T. (10.10d)

Note that we use the current parameter estimate �̂� in step (ii), which is then updated in
step (iii), so when we go back to step (ii) for the next iteration, the class probabilities
will be computed using a new value of �̂� .

When computing the parameters for class 𝑚 according to (10.10), the unlabelled
data points contribute proportionally to the current estimates of the probabilities
that they belong to this class. Note that this is a generalisation of the supervised
case, as (10.3) is a special case of (10.10) when no labels 𝑦𝑖 are missing. With

256
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.1 The Gaussian Mixture Model and Discriminant Analysis

these modifications, it can be shown (see Section 10.2) that the procedure discussed
above converges to a stationary point of (10.9) even in the semi-supervised setting.
We summarise the procedure as Method 10.2 and illustrate it in Figure 10.6 by
applying it to the semi-supervised data introduced in Figure 10.5.

Learn the GMM
Data: Partially labelled training data T = {{x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1, {x𝑖}𝑛𝑖=𝑛𝑙+1} (with

output classes 𝑚 = 1, . . . , 𝑀)
Result: Gaussian mixture model

1 Compute 𝜽 = {�̂�𝑚, �̂�𝑚,𝚺𝑚}𝑀𝑚=1 according to (10.3), using only the labelled
data {x𝑖 , 𝑦𝑖}𝑛𝑙𝑖=1

2 repeat
3 For each x𝑖 in {x𝑖}𝑛𝑖=𝑛𝑙+1, compute the prediction 𝑝(𝑦 | x𝑖 , �̂�) according

to (10.5) using the current parameter estimates �̂�
4 Update the parameter estimates �̂� ← {�̂�𝑚, �̂�𝑚,𝚺𝑚}𝑀𝑚=1 according to

(10.10)
5 until convergence

Predict as QDA, Method 10.1

Method 10.2: Semi-supervised learning of the GMM

We have now devised a way to handle semi-supervised classification problems
using the GMM and thereby extended the QDA classifier such that it can also be
used in the semi-supervised setting, when some output values 𝑦𝑖 are missing from
the training data.

It is perhaps not clear why we have chosen to introduce the semi-supervised
problem in connection to generative models. Alternatively, we could think of using
any discriminative model (instead of the GMM) for iteratively predicting the missing
𝑦𝑖 and updating the model using these predictions. This is indeed possible, and
such discriminative label-imputation methods can be made to work well in many
challenging semi-supervised cases. However, the generative modelling paradigm
provides us with a more principled and coherent framework for reasoning about
missing labels. Indeed, we have derived a method for the semi-supervised setting
which is a direct generalisation of the corresponding supervised method. In the next
section, we will take this one step further and apply the same procedure to the fully
unsupervised case (by simply assuming that all labels are missing). In all cases, the
method is numerically solving the corresponding maximum likelihood problem.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
257

10 Generative Models and Learning from Unlabelled Data

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5
𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

Figure 10.6: The iterative Method 10.2 applied to the problem from Figure 10.5. For each
iteration, the left panel shows the predicted class probabilities from the previously learned
model (using colour coding; purple is in the middle between red and blue). The new models
learned using (10.10) (based in the predictions from the left panel) are shown in the right
panel for each row. The iteration is initialised using the model shown in Figure 10.5.

258
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.2 Cluster Analysis

Another explanation for why generative models can be useful in the semi-
supervised setting is that they provide a richer description of the data generating
process than a discriminative model, making it easier to leverage the information
contained in the unlabelled data points. A discriminative model of 𝑝(𝑦 | x) encodes
information like ‘if x, then 𝑦 . . . ’, but it does not contain any explicit model for the
inputs themselves. The generative model, on the other hand, contains additional
assumptions on 𝑝(x | 𝑦), that can be useful when handling the semi-supervised
problem. For instance, the GMM encodes the information that all inputs x that
belong to a certain class 𝑦 should have the same Gaussian distribution and thereby
belong to a cluster. The model parameters are then inferred from these clusters as in
(10.10), where both labelled and unlabelled data points contribute. This assumption
is the key enabler for Method 10.2 to work in practice, even in such a challenging
situation as in Figures 10.5 and 10.6 where the vast majority of the data points are
unlabelled.

The generative modelling paradigm thus provides a principled approach for
modelling both labelled and unlabelled data. The downside, however, is that
it requires additional assumptions on the data distribution, and the result can
possibly be misleading if these assumptions are not fulfilled. Furthermore, in
many contemporary machine learning problems, the input x is extremely high-
dimensional, and it can then be difficult to design and/or learn a suitable model for
its distribution. For instance, assume that x is an image (as we discussed in the
context of convolutional neural networks, Section 6.3); then modelling the pixel
values in x using a (very high-dimensional) Gaussian distribution is not going to
capture the characteristics of natural images in a good way. We will return to this in
Section 10.3 where we discuss how generative models of such high-dimensional
and complex data can be constructed using neural networks.

10.2 Cluster Analysis

In supervised learning, the objective is to learn a model for some input–output
relationship based on examples, that is training data consisting of both inputs and
corresponding (labelled) outputs. However, we saw above that it is possible to relax
the assumption that all inputs are labelled. In semi-supervised learning, we mix
labelled and unlabelled data and learn a model which makes use of both sources of
information. In unsupervised learning, we take this one step further and assume
that all data points are unlabelled. Hence, given some training data T = {x𝑖}𝑛𝑖=1,
the objective is to build a model that can be used to reason about key properties of
the data (or rather, the data generating process). From the perspective of generative
modelling, this means building a model of the distribution 𝑝(x).

In this section, we will build on the classification setting considered above and
study the so-called clustering problem. Clustering is one example of unsupervised
learning. It amounts to finding groups of similar x values in the data space
and associating these with a discrete set of clusters. From a mathematical and

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
259

10 Generative Models and Learning from Unlabelled Data

methodological point of view, clustering is intimately related to classification.
Indeed, we assign a discrete index to each cluster and say that all x values in the
𝑚th cluster are of class 𝑦 = 𝑚. The difference between classification and clustering
is then that we wish to train a model for the clusters based solely on the x values,
without any corresponding labels. Still, as we show below, one way to address this
problem is to use the same GMM model and EM algorithm as was found useful in
the context of semi-supervised learning above.

From a more conceptual point of view, there are some differences between
classification and clustering though. In classification we usually know what the
different classes correspond to. They are typically specified as part of the problem
formulation, and the objective is to build a predictive classifier. Clustering, on the
other hand, is often applied in a more exploratory way. We might expect that there
are groups of data points with similar properties, and the objective is to group them
together into clusters, to obtain a better understanding of the data. However, the
clusters might not correspond to any interpretable classes. Moreover, the number
of clusters is typically unknown and left to the user to decide.

We start this section by adapting the GMM to the unsupervised setting, thereby
turning it into a clustering method. We will also discuss the EM algorithm introduced
above in bit more detail, as well as highlighting some technical subtleties that differ
between the semi-supervised and unsupervised setting. Next, we present the 𝑘-
means algorithm, which is an alternative clustering method, and discuss similarities
between this method and the GMM.

Unsupervised Learning of the Gaussian Mixture Model

The GMM (10.1) is a joint model for x and 𝑦, given by

𝑝(x, 𝑦) = 𝑝(x | 𝑦)𝑝(𝑦) = N
(
x | 𝝁𝑦 ,𝚺𝑦

)
𝜋𝑦 . (10.11)

To obtain a model only for x, we can marginalise out 𝑦 as 𝑝(x) = ∑
𝑦 𝑝(x, 𝑦) from

it. The marginalisation implies that we consider 𝑦 as being a latent random variable,
that is, a random variable that exists in the model but which is not observed in the
data. In practice, we still learn the joint model 𝑝(x, 𝑦), but from data containing
only {x𝑖}𝑛𝑖=1. Intuitively, learning the GMM from such unlabelled training data
amounts to figuring out which x𝑖 values come from the same class-conditional
distribution 𝑝(x | 𝑦), based on their similarity. That is, we need to infer the latent
variables {𝑦𝑖}𝑛𝑖=1 from the data and then use this inferred knowledge to fit the
model parameters. Once this is done, the learned class-conditional distributions
𝑝(x | 𝑦 = 𝑚) for 𝑚 = 1, . . . , 𝑀 define 𝑀 different clusters in data space.

Conveniently, we already have a tool for learning the GMM from unlabelled
data. Method 10.2, which we devised for the semi-supervised case, also works for
completely unlabelled data {x𝑖}𝑛𝑖=1. We just need to replace the initialisation (line 1)
with some pragmatic choice of initial {�̂�𝑚, �̂�𝑚,𝚺𝑚}𝑀𝑚=1. We repeat the algorithm
with these minor modifications in Method 10.3 for convenience.

260
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.2 Cluster Analysis

Learn the GMM
Data: Unlabelled training data T = {x𝑖}𝑛𝑖=1, number of clusters 𝑀
Result: Gaussian mixture model

1 Initialise �̂� = {�̂�𝑚, �̂�𝑚,𝚺𝑚}𝑀𝑚=1
2 repeat
3 For each x𝑖 in {x𝑖}𝑛𝑖=1, compute the prediction 𝑝(𝑦 | x𝑖 , �̂�) according to

(10.5) using the current parameter estimates �̂� .
4 Update the parameter estimates �̂� ← {�̂�𝑚, �̂�𝑚,𝚺𝑚}𝑀𝑚=1 according to

(10.16)
5 until convergence

Method 10.3: Unsupervised learning of the GMM

Method 10.3 corresponds to the EM algorithm applied to solve the unsupervised
maximum likelihood problem

�̂� = arg max
𝜽

ln 𝑝({x𝑖}𝑛𝑖=1 | 𝜽). (10.12)

To show that this is indeed the case, and that the suggested procedure is a well-
grounded way of addressing the maximum likelihood problem (10.12), we will now
take a closer look at the EM algorithm itself.

The EM algorithm is a general tool for solving maximum likelihood problems in
probabilistic models with latent variables, that is, models containing both observed
and unobserved random variables. In the current setting, the latent variables
are {𝑦𝑖}𝑛𝑖=1, where 𝑦𝑖 ∈ {1, . . . , 𝑀} is the cluster index for data point x𝑖. For
notational brevity, we stack these latent cluster indices into an 𝑛-dimensional vector
y. Similarly, we stack the observed data points {x𝑖}𝑛𝑖=1 into an 𝑛 × 𝑝 matrix X. The
task is thus to maximise the observed data log-likelihood ln 𝑝(X | 𝜽) with respect
to the model parameters 𝜽 = {𝝁𝑚,𝚺𝑚, 𝜋𝑚}𝑀𝑚=1.

The challenge we face is that the observed data likelihood is not readily available,
due to the presence of the latent variables y in the model specification. Thus,
evaluating the log-likelihood requires marginalising out these variables. In the
EM algorithm, we address this challenge by alternating between computing an
expected log-likelihood and then maximising this expected value to update the
model parameters.

Let �̂� denote the current estimate of 𝜽 at some intermediate iteration of
Method 10.3. This can be some arbitrary parameter configuration (for instance
corresponding to the initialisation at the first iteration). Then, one iteration of the
EM algorithm consists of the following two steps:

(E) Compute Q(𝜽) def
= E

[
ln 𝑝(X, y | 𝜽) |X, �̂�

]
,

(M) Update �̂� ← arg max
𝜽
Q(𝜽).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
261

10 Generative Models and Learning from Unlabelled Data

The algorithm alternates between these two steps until convergence. It can be shown
that the value of the observed data log-likelihood increases at each iteration of
the procedure, unless it has reached a stationary point (where the gradient of the
log-likelihood is zero). Hence, it is a valid numerical optimisation algorithm for
solving (10.12).

To see that this procedure boils down to Method 10.3 for the GMM model, we
start by expanding the E-step. The expected value is computed with respect to
the conditional distribution 𝑝(y |X, �̂�). This represents the probabilistic belief
regarding the cluster assignment for all data points, given the current parameter
configuration �̂� . In Bayesian language, it is the posterior distribution over the latent
variables y, conditionally on the observed data X. We thus have

Q(𝜽) = E
[
ln 𝑝(X, y | 𝜽) |X, �̂�

]
=

∑︁
y

ln (𝑝(X, y | 𝜽)) 𝑝(y |X, �̂�). (10.13)

The first expression in the sum is referred to as the complete data log-likelihood. It
is the log-likelihood that we would have, if the latent variables were known. Since
it involves both the observed data and the latent variables (that is, the ‘complete
data’), it is readily available from the model:

ln 𝑝(X, y | 𝜽) =
𝑛∑︁
𝑖=1

ln 𝑝(x𝑖 , 𝑦𝑖 | 𝜽) =
𝑛∑︁
𝑖=1

{
lnN

(
x𝑖 | 𝝁𝑦𝑖 ,𝚺𝑦𝑖

)
+ ln 𝜋𝑦𝑖

}
. (10.14)

Each term in this expression depends only on one of the latent variables. Hence,
when we plug this expression for the complete data log-likelihood into (10.13),
we get

Q(𝜽) =
𝑛∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝑤𝑖 (𝑚)
{
lnN

(
x𝑖 | 𝝁𝑦𝑖 ,𝚺𝑦𝑖

)
+ ln 𝜋𝑦𝑖

}
, (10.15)

where 𝑤𝑖 (𝑚) = 𝑝(𝑦𝑖 = 𝑚 | x𝑖 , �̂�) is the probability that the data point x𝑖 belongs to
cluster 𝑚, computed based on the current parameter estimates �̂� .

Comparing this with the log-likelihood in the supervised setting (10.2b), when
all labels {𝑦𝑖}𝑛𝑖=1 are known, we note that the two expressions are very similar. The
only difference is that the indicator function I{𝑦𝑖 = 𝑚} in (10.2b) is replaced by the
weight 𝑤𝑖 (𝑚) in (10.15). In words, instead of making a hard cluster assignment
of each data point based on a given class label, we make a soft cluster assignment
based on the probabilities that this data point belongs to the different clusters.

We will not go into the details, but it is hopefully not hard to believe that
maximising (10.15) with respect to 𝜽 – which is what we do in the M-step of the
algorithm – gives a solution similar to the supervised setting but where the training
data points are weighted by 𝑤𝑖 (𝑚). That is, analogously to (10.10), the M-step
becomes:

262
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.2 Cluster Analysis

�̂�𝑚 =
1
𝑛

𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚), (10.16a)

�̂�𝑚 =
1∑𝑛

𝑖=1 𝑤𝑖 (𝑚)
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚)x𝑖 , (10.16b)

𝚺𝑚 =
1∑𝑛

𝑖=1 𝑤𝑖 (𝑚)
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑚) (x𝑖 − �̂�𝑚) (x𝑖 − �̂�𝑚)T. (10.16c)

Putting this together, we conclude that one iteration of the EM algorithm indeed
corresponds to one iteration of Method 10.3. We illustrate the method in Figure 10.7.

There are a few important details when learning the GMM in the unsupervised
setting which deserve some attention. First, the number of clusters (that is, the
number of Gaussian components in the mixture) 𝑀 has to be specified in order to
run the algorithm. We discuss this hyperparameter choice in more detail below.
Second, since there are only unlabelled data points, the indexation of the 𝑀 Gaussian
components becomes arbitrary. Put differently, all possible permutations of the
cluster labels will have the same likelihood. In Figure 10.7 this means that the
colours (red and blue) are interchangeable, and the only reason for why we ended
up with this particular solution is that we initialised the blue cluster in the upper
part and the red in the lower part of the data space.

Related to this is that the maximum likelihood problem (10.12) is a non-convex
optimisation problem. The EM algorithm is only guaranteed to converge to a
stationary point, which means that a poor initialisation can result in a convergence
to a poor local optimum. In the semi-supervised setting, we could use the labelled
training data point as a way to initialise the method, but this is not possible in a
fully unsupervised setting. Hence, the initialisation becomes an important detail to
consider. A pragmatic approach is to run Method 10.3 multiple times with different
random initialisations.

Finally, there is a subtle issue with the maximum likelihood problem (10.12)
itself, that we have so far swept under the rug. Without any constraints on the
parameters 𝜽 , the unsupervised maximum likelihood problem for a GMM is in fact
ill-posed, in the sense that the likelihood is unbounded. The problem is that the
peak value of the Gaussian probability density function becomes larger and larger
as the (co-)variance approaches zero. For any 𝑀 ≥ 2, the GMM is in principle
able to exploit this fact to attain an infinite likelihood. This is possible by focusing
one of the clusters on a single data point; by centering the cluster on the data point
and then shrinking the (co-)variance towards zero, the likelihood of this particular
data point goes to infinity. The remaining 𝑀 − 1 clusters then just have to cover the
remaining 𝑛 − 1 data points so that their likelihoods are bounded away from zero.5
In practice, the EM algorithm will often get stuck in a local optimum before this
‘degeneracy’ shows itself, but it is nevertheless a good idea to regularise or constrain

5This degeneracy can happen in the semi-supervised setting as well, but only if there are 𝑝 or fewer
labelled data points of each class.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
263

10 Generative Models and Learning from Unlabelled Data

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2
0

5

𝑥 2

0

5
𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥 2

0

5

𝑥1

𝑥 2

0

5

𝑥 2

0

5

𝑥1

𝑥 2

0

5

𝑥1

𝑥 2

Figure 10.7: The Method 10.3 applied to an unsupervised clustering problem, where all
training data points are unlabelled. In practice, the only difference from Figure 10.6 is the
initialisation (in the upper row), which here is done arbitrarily instead of using the labelled
data points.

264
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.2 Cluster Analysis

the model to make it more robust to this potential issue. One simple solution is to
add small constant value to all diagonal elements of the covariance matrices Σ𝑚,
thereby preventing them from degenerating to zero.

k-Means Clustering

Before leaving this section, we will introduce an alternative clustering method
known as 𝑘-means. This algorithm is in many ways similar to the GMM model for
clustering discussed above but is derived from a different objective and lacks the
generative interpretation of the GMM. The 𝑘 in 𝑘-means refers to the number of
clusters, so to agree with our notation, we should perhaps refer to it as 𝑀-means.
However, the term 𝑘-means is so well established that will we keep it as the name
of the method but to agree with the mathematical notation above, we nevertheless
let 𝑀 denote the number of clusters.

The key difference between the GMM and 𝑘-means is that in the former we model
cluster assignments probabilistically, whereas in the latter we make ‘hard’ cluster
assignments. That is, we can partition the training data points {x𝑖}𝑛𝑖=1 into 𝑀 distinct
clusters 𝑅1, 𝑅2, . . . , 𝑅𝑀 , where each data point x𝑖 should be a member of exactly
one cluster 𝑅𝑚. 𝑘-means clustering then amounts to selecting the clusters so that
the sum of pairwise squared Euclidean distances within each cluster is minimised,

arg min
𝑅1,𝑅2,...,𝑅𝑀

𝑀∑︁
𝑚=1

1
|𝑅𝑚 |

∑︁
x,x′∈𝑅𝑚

‖x − x′‖22, (10.17)

where |𝑅𝑚 | is the number of data points in cluster 𝑅𝑚. The intention of (10.17) is to
select the clusters such that all points within each cluster are as similar as possible.
It can be shown that the problem (10.17) is equivalent to selecting the clusters such
that the distances to the cluster centres, summed over all data points, is minimised,

arg min
𝑅1,𝑅2,...,𝑅𝑀

𝑀∑︁
𝑚=1

∑︁
x∈𝑅𝑚

‖x − �̂�𝑚‖22. (10.18)

Here �̂�𝑚 is the centre of cluster 𝑚, that is the mean of all data points x𝑖 ∈ 𝑅𝑚.
Unfortunately both (10.17) and (10.18) are combinatorial problems, meaning

that we cannot expect to solve them exactly if the number of data points 𝑛 is large.
However, an approximate solution can be found as follows:

(i) Set the cluster centers �̂�1, �̂�2, . . . , �̂�𝑀 to some initial values;

(ii) Determine which cluster 𝑅𝑚 each x𝑖 belongs to, that is, find the cluster center
�̂�𝑚 that is closest to x𝑖 for all 𝑖 = 1, . . . , 𝑛;

(iii) Update the cluster centers �̂�𝑚 as the average of all x𝑖 that belongs to 𝑅𝑚;

and then iterate steps (ii) and (iii) until convergence.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
265

10 Generative Models and Learning from Unlabelled Data

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

𝑀 = 3

Beatles
Kiss
Bob Dylan

5 6 7
0

0.5

1

Length (ln s)

En
er

gy
(s

ca
le

0-
1)

𝑀 = 5

Beatles
Kiss
Bob Dylan

Figure 10.8: 𝑘-means applied to the music classification data Example 2.1. In this example,
we actually have labelled data, so the purpose of applying a clustering algorithm to the
inputs (without considering the corresponding labels) is purely for illustrative purposes. We
try 𝑀 = 3 (left) and 𝑀 = 5 (right). It is worth noting that it so happens that for 𝑀 = 3,
there is almost one artist per cluster.

This procedure is an instance of Lloyd’s algorithm, but it is often simply called
‘the 𝑘-means algorithm’. Comparing this with the EM algorithm in Method 10.3,
we see a clear resemblance. As pointed out above, the key difference is that the EM
algorithm uses a soft cluster assignment based on the estimated cluster probabilities,
whereas 𝑘-means makes a hard cluster assignment in step (ii). Another difference
is that 𝑘-means measures similarity between data points using Euclidean distance,
whereas the EM algorithm applied to the GMM model takes the covariance of the
clusters into account.6

Similarly to the EM algorithm, Lloyd’s algorithm will converge to a stationary
point of the objective (10.18), but it is not guaranteed to find the global optimum.
In practice it is common to run it multiple times, each with a different initialisation
in step (i), and pick the result of the run for which the objective in (10.17)/(10.18)
attains the smallest value. As an illustration of 𝑘-means, we apply it to the input
data from the music classification problem in Example 2.1; see Figure 10.8.

The name of the algorithm, 𝑘-means, is reminiscent of another method studied in
this book, namely 𝑘-NN. The two methods do have some similarities, in particular
that they both use Euclidean distance to define similarities in the input space. This
implies that 𝑘-means, just as 𝑘-NN, is sensitive to the normalisation of the input
values. That being said, the two methods should not be confused. While 𝑘-NN is a
supervised learning method (applicable to classification and regression problems),
𝑘-means is a method for solving the (unsupervised) clustering problem. Note in
particular that the ‘𝑘’ in the name has a different meaning for the two methods.

6Put differently, the EM algorithm for the GMM model uses the Mahalanobis distance instead of
Euclidean distance.

266
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.2 Cluster Analysis

Choosing the Number of Clusters

In both the GMM model and the 𝑘-means algorithm for clustering, we need to
select the number of clusters 𝑀 before running the corresponding algorithm. Hence,
unless there is some application-specific prior knowledge regarding how to select
𝑀, this becomes a design choice. Like many other model selection problems, it
is not possible to optimise 𝑀 simply by taking the value that gives the smallest
training cost (negative of (10.12) for GMM, or (10.18) for 𝑘-means). The reason
is that increasing 𝑀 to 𝑀 + 1 will give more flexibility to the model, and this
increased flexibility can only decrease the value of the cost function. Intuitively, in
the extreme case when 𝑀 = 𝑛, we would end up with the trivial (but uninteresting)
solution where each data point is assigned to its own cluster. This is a type
of overfitting.

Validation techniques such as hold-out and cross-validation (see Chapter 4) can
be used to guide the model selection, but they need to be adapted to the unsupervised
setting (specifically, there is no new data error 𝐸new for the clustering model). For
instance, for the GMM, which is a probabilistic generative model, it is possible
to use the likelihood of a held-out validation data set to find a suitable value for
𝑀. That is, we set aside some validation data {x′𝑗}𝑛𝑣𝑗=1 which is not used to learn
the clustering model. We then train different models for different values of 𝑀 on
the remaining data and evaluate the held-out likelihood 𝑝({x′𝑗}𝑛𝑣𝑗=1 | �̂� , 𝑀) for each
candidate model. The model with the largest held-out likelihood is then selected as
the final clustering model.

This provides us with a systematic way of selecting 𝑀; however, in the unsuper-
vised setting, such validation methods should be used with care. In the context of
supervised learning of a predictive model, minimising the new data (prediction)
error is often the ultimate goal of the model, so it makes sense to base the evaluation
on this. In the context of clustering, however, it is not necessarily the case that
minimising the ‘clustering loss’ on new data is what we are really after. Instead,
clustering is often applied to gain insights regarding the data, by finding a small
number of clusters where data points within each cluster have similar characteristics.
Thus, as long as the model results in a coherent and meaningful grouping of the
data points, we might favour a smaller model over a larger one, even if the latter
results in a better validation loss.

One heuristic approach to handling this is to fit models of different orders, 𝑀 = 1
to 𝑀 = 𝑀max. We then plot the loss (either the training loss, the validation loss,
or both) as a function of 𝑀. Based on this plot, the user can make a subjective
decision about when the decrease in the objective appears to level off, so that it is
unjustified to increase the model complexity further. That is, we select 𝑀 such that
the gain in going from 𝑀 to 𝑀 + 1 clusters is insignificant. If the dataset indeed has
a few distinct clusters, this graph will typically look like an elbow, and this method
for selecting 𝑀 in thus sometimes called the elbow method. We illustrate it for the
𝑘-means method in Figure 10.9.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
267

10 Generative Models and Learning from Unlabelled Data

0

2

4
𝑥 2

Data
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

−3 −2 −1 0 1
0

2

4

𝑥1

𝑥 2

𝑘 = 5

−3 −2 −1 0 1

𝑥1

𝑘 = 6

−3 −2 −1 0 1

𝑥1

𝑘 = 7

−3 −2 −1 0 1

𝑥1

𝑘 = 8

−3 −2 −1 0 1

𝑥1

𝑘 = 9

2 4 6 8
0

100

200

300

400

𝑘O
bj

ec
tiv

e
in

(1
0.

17
)

Figure 10.9: For selecting 𝑀 in 𝑘-means, we can use the so-called elbow method, which
amounts to trying different values of 𝑀 (the upper panels) and recording the objective in
(10.17) (the bottom panel). To select 𝑀, we look for a ‘bend’ in the bottom panel. In the
ideal case, there is a very distinct kink, but for this particular data, we could either draw the
conclusion that 𝑀 = 2 or 𝑀 = 4, and it is up to the user to decide. Note that in this example
the data has only two dimensions, and we can therefore show the clusters themselves and
compare them visually. If the data has more than two dimensions, however, we have to
select 𝑀 based only on the ‘elbow plot’ in the bottom panel.

10.3 Deep Generative Models

Key to the generative modelling paradigm is that we model x as a random variable,
and it thus requires making some assumptions regarding its distribution. In the GMM
discussed above, we used a Gaussian to model the (class-conditional) distribution
of x. It is important to note that this assumption does not mean that we truly believe
that the data is Gaussian, but rather that it is close enough to being Gaussian so that
we can obtain a useful model (whether for clustering or classification). That being
said, however, in many situations the Gaussian assumption is an oversimplification,
which can limit the performance of the resulting model.

268
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.3 Deep Generative Models

One way to relax the assumption is to manually design some alternative distribution
that is believed to better correspond to the properties of the data. However, in many
situations it is very challenging to come up with a suitable distribution ‘by hand’,
not least when x is high-dimensional and with complex dependencies between
the individual coordinates 𝑥𝑖, 𝑖 = 1, . . . , 𝑝. In this section, we will consider an
alternative approach, which is to view x as a transformation of some simple random
variable z. With a high degree of flexibility in the transformation, we can model
very complex distributions over x in this way. Specifically, we will discuss how deep
neural networks (see Chapter 6) can be used in this context, resulting in so-called
deep generative models.

Since the key challenge in developing such a flexible non-Gaussian generative
model is to construct the distribution over x, we will throughout this section (and
for the remainder of this chapter) drop the class, or cluster, label 𝑦 from the model.
That is, we will try to learn the distribution 𝑝(x) in an unsupervised way, without
assuming that there are any clusters in the data (or, put differently, that there is only
a single cluster). The purpose of this is twofold. First, learning generative models
for high-dimensional data can be useful even in the absence of distinct clusters in
the distribution. Second, it simplifies the notation in the presentation below. If we
do expect that the data contains clusters, then the methods presented below can
easily be generalised to model the class-conditional distribution 𝑝(x | 𝑦) instead.

The problem that we are concerned with in this section can thus be formulated as:
given a training data set {x𝑖}𝑛𝑖=1 of 𝑛 independent samples from some distribution
𝑝(x), learn a parametric model of this distribution.

Invertible non-Gaussian Models and Normalising Flows

To lay the foundation for non-Gaussian deep generative models, let us stick with a
simple Gaussian model for the time being:

𝑝(x) = N(x | 𝜇,Σ) . (10.19)

The parameters of this model are the mean vector and the covariance matrix,
𝜽 = {𝜇,Σ}, which can be learned from the training data {x𝑖}𝑛𝑖=1 by maximum
likelihood. As we discussed above, this boils down to estimating 𝜇 by the sample
mean and Σ by the sample covariance (analogously to (10.3), but with a single class).

Since a linear transformation of a Gaussian random vector is also Gaussian, an
equivalent representation of (10.19) is to introduce a random variable z of the same
dimension 𝑝 as x, following a standard Gaussian distribution,7

𝑠𝑝z(z) = N(z | 0, 𝐼) (10.20a)

and then expressing x by a linear change of variables,

x = 𝜇 + 𝐿z. (10.20b)

7We use a subscript on 𝑝z (z) to emphasise that this is the distribution of z, and to distinguish it from
𝑝(x).

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
269

10 Generative Models and Learning from Unlabelled Data

Here 𝐿 is any matrix8 such that 𝐿𝐿T = Σ. Note that, in this representation, the
distribution 𝑝z(z) = N(z | 0, 𝐼) takes a very simple and generic form, which is
independent of the model parameters. Instead, the parameters are shifted to the
transformation (10.20b). Specifically, we can use the alternative re-parameterisation
𝜽 = {𝜇, 𝐿}, which directly defines the linear transformation.

The models (10.19) and (10.20) are equivalent, so we have not yet accomplished
anything with this reformulation. However, the latter form suggests a non-linear
generalisation. Specifically, we can model the distribution of x indirectly as the
transformation of a Gaussian random variable,

𝑝z(z) = N(z | 0, 𝐼) , (10.21a)

x = 𝑓𝜽 (z), (10.21b)

for some arbitrary parametric function 𝑓𝜽 . Note that, even though we start from
a Gaussian, the implied distribution of x is going to be non-Gaussian due to the
non-linear transformation. Indeed, we can model arbitrarily complex distributions
in this way by considering complex and flexible non-linear transformations.

The challenge with this approach is how to learn the model parameters from data.
Following the maximum likelihood approach, we would like to solve

�̂� = arg max
𝜽

𝑝({x𝑖}𝑛𝑖=1 | 𝜽) = arg max
𝜽

𝑛∑︁
𝑖=1

ln 𝑝(x𝑖 | 𝜽). (10.22)

Hence, we still need to evaluate the likelihood of x to learn the model parameters,
but this likelihood is not explicitly given in the model specification (10.21).

To make progress, we will start by making the assumption that 𝑓𝜽 : R𝑝 → R𝑝 is
an invertible function, with inverse ℎ𝜽 (x) = 𝑓 −1

𝜽 (x) = z. Note that this implies that
z is of the same dimension as x. Under this assumption, we can make use of the
change of variables formula for probability density functions to write

𝑝(x | 𝜽) = |∇ℎ𝜽 (x) | 𝑝z(ℎ𝜽 (x)), (10.23a)

where

∇ℎ𝜽 (x) =
©«

𝜕ℎ𝜃,1 (x)
𝜕𝑥1

· · · 𝜕ℎ𝜃,1 (x)
𝜕𝑥𝑝

...
. . .

...
𝜕ℎ𝜃,𝑝 (x)

𝜕𝑥1
· · · 𝜕ℎ𝜃,𝑝 (x)

𝜕𝑥𝑝

ª®®®¬
(10.23b)

is the 𝑝 × 𝑝 matrix of all partial derivatives of ℎ𝜽 (x), referred to as the Jacobian
matrix, and |∇ℎ𝜽 (x) | is the absolute value of its determinant.

8For a positive definite covariance matrix Σ, such a factorisation always exists. For instance, we can
take 𝐿 to be the lower triangular matrix obtained from a Cholesky factorisation of Σ. However,
for our purposes it is not important how the matrix 𝐿 is obtained, just that it exists.

270
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.3 Deep Generative Models

Plugging this expression into the maximum likelihood problem (10.22), we can
thus learn the model as:

�̂� = arg max
𝜽

𝑛∑︁
𝑖=1

ln |∇ℎ𝜽 (x𝑖) | + ln 𝑝z(ℎ𝜽 (x𝑖)), (10.24)

where both terms of the loss function are now given by the model specification
(10.21). This provides us with a practical approach for learning the transformation-
based generative model from data, although we make the following observations:

(i) The inverse mapping ℎ𝜽 (x) = 𝑓 −1
𝜽 (x) needs to be explicitly available, since it

is part of the loss function.

(ii) The Jacobian determinant |∇ℎ𝜽 (x𝑖) | needs to be tractable. In the general case,
the computational cost associated with (practical algorithms for) computing
the determinant of a 𝑝×𝑝 matrix scales cubically with 𝑝. For high-dimensional
problems, this easily results in a prohibitively large computational bottleneck,
unless the Jacobian has some special structure that can be exploited for faster
computation.

(iii) The forward mapping 𝑓𝜽 (z) does not enter the loss function, so in principle
we can learn the model without explicitly evaluating this function (it is enough
to know that it exists). However, if we want to use the model to generate
samples from 𝑝(x), then explicit evaluation of the forward mapping is also
needed. Indeed, the way to sample from the model (10.21) is to first sample
a standard Gaussian vector z and then propogate this sample through the
mapping to obtain a sample x = 𝑓𝜽 (z).

Designing parametric functions that satisfy these conditions while still being
flexible enough to accurately describe complex high-dimensional probability distri-
butions is non-trivial. Models based on neural networks are often used, but to satisfy
the requirements on invertibility and computational tractability, special-purpose
network architectures are needed. This involves, for instance, restricting the mapping
𝑓𝜽 so that the Jacobian of its inverse becomes a triangular matrix, in which case the
determinant is easily computable.

An interesting observation when designing this type of transform-based generative
model using neural networks is that it is enough to ensure invertibility and tractability
of each layer of the network independently. Assume that 𝑓𝜽 (z) is a network with
𝐿 layers, where the 𝑙th layer corresponds to a function 𝑓 (𝑙)𝜽 : R𝑝 → R𝑝. We can
then write 𝑓𝜽 (z) = 𝑓 (𝐿)𝜽 ◦ 𝑓 (𝐿−1)

𝜽 ◦ · · · ◦ 𝑓 (1)𝜽 (z), where ◦ denotes the composition
of functions. This is just a mathematical shorthand for saying that the output of
an 𝐿-layer neural network is obtained by first feeding the input to the first layer,
then propagating the result through the second layer, and so on, until we obtain
the final output after 𝐿 layers. The inverse of 𝑓𝜽 is then obtained by applying the
layer-wise inverse functions in reverse order, ℎ𝜽 (x) = ℎ (1)𝜽 ◦ ℎ

(2)
𝜽 ◦ · · · ◦ ℎ

(𝐿)
𝜽 (x),

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
271

10 Generative Models and Learning from Unlabelled Data

where ℎ (𝑙)𝜽 is the inverse of 𝑓 (𝑙)𝜽 . Furthermore, by the chain rule of differentiation
and the multiplicativity of determinants, we can express the Jacobian determinant
as a product:

|∇ℎ𝜽 (x) | =
𝐿∏
𝑙=1

���∇ℎ (𝑙)𝜽 (x(𝑙))
��� , where x(𝑙) = ℎ (𝑙+1)𝜽 ◦ ℎ (𝑙+2)𝜽 ◦ · · · ◦ ℎ (𝐿)𝜽 (x).

This means that it is enough to design each 𝑓 (𝑙)𝜽 so that it is invertible and has a
computationally tractable Jacobian determinant. While this still puts restrictions
on the architecture and activation functions used in 𝑓 (𝑙)𝜽 , there are many ways in
which this can be accomplished. We can then build more complex models by
stacking multiple such layers after each other, with a computational cost growing
only linearly with the number of layers. Models exploiting this property are referred
to as normalising flows. The idea is that a data point x ‘flows’ through a sequence
of transformations, ℎ (𝐿)𝜽 , ℎ (𝐿−1)

𝜽 , . . . , ℎ (1)𝜽 , and after 𝐿 such transformations, the
data point has been ‘normalised’. That is, the result of the sequence of mappings is
that the data point has been transformed into a standard Gaussian vector z.

Many practical network architectures for normalising flows have been proposed
in the literature, with different properties. We shall not pursue these specific
architectures further, however, but instead turn to an alternative way of learning
deep generative models that circumvents the architectural restrictions of normalising
flows, resulting in so-called generative adversarial networks.

Generative Adversarial Networks

The idea of transforming a Gaussian vector z by a deep generative model (10.21)
to parameterise a complex distribution over data x is very powerful. However, we
noted above that evaluating the data likelihood 𝑝(x | 𝜽) implied by the model is
non-trivial and imposes certain restrictions on the mapping 𝑓𝜽 . Hence, without
these restrictions, learning the model by explicit likelihood maximisation is not
possible. However, motivated by this limitation, we can ask ourselves: Is there some
other way of learning the model, which does not require evaluating the likelihood?

To answer this question, we note that one useful property of the deep generative
model is that sampling from the distribution 𝑝(x | 𝜽) is trivial, as long as the forward
mapping 𝑓𝜽 (z) is available. This is true even in situations when we are unable to
evaluate the corresponding probability density function. That is, we can generate
‘synthetic’ data points from the model, simply by sampling a Gaussian vector
z ∼ N(0, 𝐼) and then feeding the obtained sample through the parametric function,
𝑓𝜽 (z). This does not impose any specific requirements on the mapping, such as
invertibility. In fact, we do not even require that the dimension of z is the same as
that of x!

Generative adversarial networks (GANs) make use of this property for training
the model, by comparing synthetic samples (generated by the model) with real
samples from the training data set {x𝑖}𝑛𝑖=1. The basic idea is to iteratively update the

272
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.3 Deep Generative Models

model parameters 𝜽 with the objective of making the synthetic samples resemble
the real data points as much as possible. If it is difficult to tell them apart, then
we can conclude that the learned distribution is a good approximation of the true
data distribution. To illustrate the idea, assume that the data we are working with
consists of natural images of some type, say pictures of human faces. This is
indeed a typical example where these models have shown remarkable capabilities.
A data point x is thus an image of dimension 𝑝 = 𝑤 × ℎ × 3 (width in pixels ×
height in pixels × three colour channels), z is a Gaussian vector of dimension 𝑞,
and the mapping 𝑓𝜽 : R𝑞 → R𝑤×ℎ×3 takes this Gaussian vector and transforms
it into the shape of an image. Without going into details, such mappings can
be constructed using deep neural networks in various ways, for instance using
upsampling layers and deconvolutions (inverse convolutions). Such networks are
reminiscent of convolutional neural networks (see Section 6.3) but go in the other
direction – instead of taking an image as input and transforming this to a vector of
class probabilities, say, we now take a vector as input and transform this into the
shape of an image.

To learn a model 𝑝(x | 𝜽) for the distribution of the observed data, we will play a
type of game, which goes as follows. At each iteration of the learning algorithm:

(i) ‘Flip a coin’, that is, set 𝑦 = 1 with probability 0.5 and 𝑦 = −1 with probability
0.5:

(a) If 𝑦 = 1, then generate a synthetic sample from the model x′ ∼ 𝑝(x | 𝜽).
That is, we sample z′ ∼ N(0, 𝐼) and compute x′ = 𝑓𝜽 (z′).

(b) If 𝑦 = −1, then pick a random sample from the training data set instead.
That is, we set x′ = x𝑖 for some index 𝑖 sampled uniformly at random
from {1, . . . , 𝑛}.

(ii) Ask a critic to determine if the sample is real or fake. For instance, in the
example with pictures of faces, we would ask the question: does x′ look like
a real face, or is it synthetically generated?

(iii) Use the critic’s reply as a signal for updating the model parameters 𝜽.
Specifically, update the parameters with the goal of making the critic as
‘confused as possible’, regarding whether or not the sample that is presented
is real or fake.

The first point is easy to implement, but when we get to the second point, the
procedure becomes more abstract. What do we mean by ‘critic’? In a practical
learning algorithm, using a human-in-the-loop to judge the authenticity of the
sample x′ is of course, not feasible. Instead, the idea behind generative adversarial
networks is to learn an auxiliary classifier alongside the generative model, which
plays the role of the critic in the game. Specifically, we design a binary classifier
𝑔𝜼 (x) which takes a data point (for example an image of a face) as input and
estimates the probability that this is synthetically generated, that is,

𝑔𝜼 (x) ≈ 𝑝(𝑦 = 1|x). (10.25)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
273

10 Generative Models and Learning from Unlabelled Data

Here, 𝜼 denotes the parameters of the auxiliary classifier, which are distinct from
the parameters 𝜽 of the generative model.

The classifier is learned as usual to minimise some classification loss 𝐿,

�̂� = arg min
𝜼
E
[
𝐿 (𝑦, 𝑔𝜼 (x′))

]
, (10.26)

where the expected value is with respect to the random variables 𝑦 and x′ generated
by the process described above. Note that this becomes a supervised binary
classification problem, but where the labels 𝑦 are automatically generated as part of
the ‘game’. Indeed, since these labels correspond to the flip of a fair coin, we can
express the optimisation problem as

min
𝜼

{ 1
2E

[
𝐿 (1, 𝑔𝜼 (𝑓𝜽 (z′)))

] + 1
2E

[
𝐿 (−1, 𝑔𝜼 (x𝑖))

]}
. (10.27)

Moving on to the third step of the procedure, we wish to update the mapping
𝑓𝜽 (z), defining the generative model, to make the generated samples as difficult
as possible for the critic to reject as being fake. This is in some sense the most
important step of the procedure, since this is where we learn the generative model.
This is done in a competition with the auxiliary classifier, where the objective for
the generative model is to maximise the classification loss (10.27) with respect to 𝜽 ,

max
𝜽

min
𝜼

{ 1
2E

[
𝐿 (1, 𝑔𝜼 (𝑓𝜽 (z′)))

] + 1
2E

[
𝐿 (−1, 𝑔𝜼 (x𝑖))

]}
. (10.28)

This results in a so-called minimax problem, where two adversaries compete for
the same objective, one trying to minimise it and the other trying to maximise
it. Typically, the problem is approached by alternating between updating 𝜽 and
updating 𝜼 using stochastic gradient optimisation. We provide pseudo-code for one
such algorithm in Method 10.4.

From an optimisation point-of-view, solving the minimax problem is more
challenging than solving a pure minimisation problem, due to the competing forces
that can result in oscillative behavior. However, many modifications and variations
of the procedure outlined above have been developed, among other things to stabilise
the optimisation and obtain efficient learning algorithms. Still, this is one of
the drawbacks with generative adversarial networks compared to, for instance,
normalising flows that can be learned by direct likelihood maximisation. Related
to this is that, even if we successfully learn the generative model 𝑓𝜽 (z), which
implicitly defines the distribution 𝑝(x | 𝜽), it can still not be used to evaluate the
likelihood 𝑝(x★ | 𝜽) for some newly observed data point x★. Having access to an
explicit likelihood can be useful in certain applications, for instance to reason about
the plausibility of the observed x★ under the learnt model of 𝑝(x).9

9Although using the probability density function to reason about plausibility can itself be challenging
and potentially misleading in very high-dimensional spaces.

274
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.4 Representation Learning and Dimensionality Reduction

Learn a generative adversarial network
Data: Training data T = {x𝑖}𝑛𝑖=1, initial parameters 𝜽 and 𝜼, learning rate 𝛾

and batch size 𝑛𝑏, critic iterations per generator iteration 𝑇critic
Result: Deep generative model 𝑓𝜽 (z)

1 repeat
2 for 𝑡 = 0, . . . , 𝑇critic do
3 Sample mini-batch {x𝑖}𝑛𝑏𝑖=1 from training data
4 Sample mini-batch {z𝑖}𝑛𝑏𝑖=1 independently from N(0, 𝐼)
5 Compute gradient

d̂critic = 1
2𝑛𝑏

∑𝑛𝑏
𝑖=1 ∇𝜼

{
𝐿 (1, 𝑔𝜼 (𝑓𝜽 (z𝑖))) + 𝐿 (−1, 𝑔𝜼 (x𝑖))

}
6 Update critic: 𝜼← 𝜼 − 𝛾d̂critic
7 end
8 Sample mini-batch {z𝑖}𝑛𝑏𝑖=1 independently from N(0, 𝐼)
9 Compute gradient d̂gen. = 1

2𝑛𝑏
∑𝑛𝑏

𝑖=1 ∇𝜽𝐿 (1, 𝑔𝜼 (𝑓𝜽 (z𝑖)))
10 Update generator: 𝜽 ← 𝜽 + 𝛾d̂gen.
11 until convergence

Sample from a generative adversarial network
Data: Generator model 𝑓𝜽
Result: Synthetic sample x′

1 Sample z′ ∼ N(0, 𝐼)
2 Output x′ = 𝑓𝜽 (z′)

Method 10.4: Training a generative adversarial network.

10.4 Representation Learning and Dimensionality
Reduction

A deep generative model x = 𝑓𝜽 (z) defines a relationship between the observed data
point x and some latent representation z of the same data point. The word latent
(hidden), here, refers to the fact that z is not observed directly, but it nevertheless
carries useful information about the data. Indeed, given the mapping 𝑓𝜽 (that is,
once it has been learned), knowing the latent variable z is enough to reconstruct
the data point x, simply by computing x = 𝑓𝜽 (z). The variable z is also commonly
referred to as a (latent) code, and the mapping 𝑓𝜽 as a decoder, which uses the code
to reconstruct the data.

Much of contemporary machine learning, and in particular deep learning, concerns
learning from very high-dimensional data x with intricate dependencies between the
coordinates 𝑥𝑖 , 𝑖 = 1, . . . , 𝑝. Put differently, in the ‘raw data space’, each coordinate
𝑥𝑖 individually might not carry much useful information, but when we put them
together, we obtain meaningful patterns across x that we wish to learn from. The

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
275

10 Generative Models and Learning from Unlabelled Data

typical example is (once again) when x corresponds to an image, and the coordinates
𝑥𝑖 the individual pixel values. One-by-one, the pixel values are not very informative
about the contents of the image, but when processed jointly (as an image), deep
neural networks can learn to recognise faces, classify objects, diagnose diseases, and
solve many other highly non-trivial tasks. Similar examples are found, for instance,
in natural language processing, where each 𝑥𝑖 might correspond to a character in
a text, but it is not until we put all the characters together into x that the semantic
meaning of the text can be understood.

With these examples in mind, it can be argued that much of the success of deep
learning is due to its capability of

learning a useful representation of high-dimensional data.

For supervised learning of neural networks, as we discussed in Chapter 6, the
representation learning is often implicit and takes place alongside the learning of a
specific classification or regression model. There is no clear-cut definition of what
we mean by a latent representation in such cases. However, intuitively we can think
about the first chunk of layers in a deep network as being responsible for learning
an informative representation of the raw data,10 which is then used by the latter part
of the network to solve the specific (for example, regression or classification) task
at hand.

This is in contrast to deep generative models where, as pointed out above, the
latent representation is an explicit part of the model. However, the possibility of
learning a representation directly from data is not unique to generative models. In
this section, we will introduce a method for unsupervised representation learning
referred to as an auto-encoder. The auto-encoder can be used for dimensionality
reduction by mapping the data to a lower-dimensional latent code. We will then
derive a classical statistical method known as principal component analysis and
show how this can be viewed as a special case of an auto-encoder which is restricted
to be linear.

Auto-encoders

For many high-dimensional problems, it is reasonable to assume that the effective
dimension of the data is smaller than the observed dimension. That is, most of the
information contained in the 𝑝-dimensional variable x can be retained even if we
compress the data into a 𝑞-dimensional representation z with 𝑞 < 𝑝. For instance,
in the context of generative adversarial networks (see Section 10.3), we argued that
the latent variable z can be of (much) lower dimension than the final output x, say, if
the model is trained to generate high-resolution images. In such a case, the effective

10That is, the representation in this case would correspond to the hidden units somewhere in the
middle of the network.

276
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.4 Representation Learning and Dimensionality Reduction

dimension of the generated samples for a fixed model 𝑓𝜽 is 𝑞, irrespective of the
observed dimension (or resolution) of x.11

Training a generative adversarial network amounts to learning the decoder
mapping x = 𝑓𝜽 (z), which takes a latent representation z and maps this to a (higher-
dimensional) output x. However, a natural question is: Can we learn a mapping that
goes in the other direction? That is, an encoder mapping z = ℎ𝜽 (z) which takes a
data point x and computes its (lower-dimensional) latent representation.

For generative adversarial networks, this is far from trivial, since 𝑓𝜽 in general is
a very complicated non-invertible function, and there is no simple way of reversing
this mapping. For normalising flows, which we also discussed in Section 10.3,
reversing the decoder mapping is in fact possible, since for these models we assumed
that 𝑓𝜽 has an inverse ℎ𝜽 = 𝑓 −1

𝜽 . However, this requires certain restrictions on the
model, in particular that the dimensions of x and z are the same. Hence, such
mappings are not useful for dimensionality reduction.

In an auto-encoder, we tackle this issue by relaxing the requirement that ℎ𝜽 is an
exact inverse of 𝑓𝜽 . Instead, we jointly learn the encoder and decoder mappings
via the objective that 𝑓𝜽 (ℎ𝜽 (x)) ≈ x, while enforcing the dimensionality reduction
through the model architecture. Specifically, we assume that the:

Encoder ℎ𝜽 : R𝑝 → R𝑞 maps a data point to a latent representation,
Decoder 𝑓𝜽 : R𝑞 → R𝑝 maps a latent representation to a point in data space.

Importantly, the dimension 𝑞 of the latent representation is selected to be smaller than
𝑝. Often, the encoder and decoder mappings are parameterised as neural networks.
Contrary to normalising flows, the two functions are constructed separately, and
they are allowed to depend on different parameters. However, for brevity we group
both the encoder and decoder parameters into the joint parameter vector 𝜽 .

If we take a data point x, we can compute its latent representation using the
encoder as z = ℎ𝜽 (x). If we then feed this representation through the decoder,
we obtain a reconstruction x̂ = 𝑓𝜽 (z) of the data point. In general, this will not
be identical to x, because we have forced the encoder to compress the data into
a lower-dimensional representation in the first step. This will typically result in
a loss of information that the decoder is unable to compensate for. However, we
can nevertheless train the model to approximate the identity mapping as closely as
possible by minimising the reconstruction error over the training data. For instance,
using the squared error loss, we obtain the training objective,

�̂� = arg min
𝜽

𝑛∑︁
𝑖=1
‖x𝑖 − 𝑓𝜽 (ℎ𝜽 (x𝑖))‖2. (10.29)

11We say that the model defines a 𝑞-dimensional manifold in the 𝑝-dimensional data space. We
can think of a manifold as a non-linear subspace. For instance, a two-dimensional manifold in
three-dimensional space is a curved surface. If z ∈ R2 and x = 𝑓𝜽 (z) ∈ R3, then all points x
generated in this way will be constrained to lie on such a surface.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
277

10 Generative Models and Learning from Unlabelled Data

...

...
...

...

...

𝑥1

𝑥2

𝑥3

𝑥𝑝

𝑧1

𝑧𝑞

�̂�1

�̂�2

�̂�3

�̂�𝑝

Input layer
Hidden layer
”bottleneck” Output layer

︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

Figure 10.10: The auto-encoder can be viewed as a neural network with a bottleneck layer
in the middle. The first part of the network corresponds to the encoder, the second part to
the decoder, and the latent representation is given by the hidden variables at the bottleneck.

It is important that 𝑞 < 𝑝 for this problem to be interesting, otherwise we would
just end up learning an identity mapping. However, when 𝑞 is indeed smaller than
𝑝, then the objective will encourage the encoder to compress the data into a lower
dimensional vector while retaining as much of the actual information content as
possible to enable accurate reconstruction. In other words, the encoder is forced to
learn a useful representation of the data.

When using neural networks to parameterise the encoder and decoder mappings,
the complete auto-encoder can also be viewed a neural network but with a ‘bot-
tleneck layer’ in the middle corresponding to the latent code. We illustrate this in
Figure 10.10.

One possible issue when using auto-encoders is the risk of learning a memorisation
of the training data. To illustrate the point, assume that 𝑞 = 1 so that we have a scalar
latent code 𝑧. For any realistic problem, this should be insufficient to represent
the actual information content in some complex data x. However, conceptually,
the auto-encoder could learn to map any training data point x𝑖 to the value 𝑧𝑖 = 𝑖,
and then learn to reconstruct the data point exactly based on this unique identifier.
This will never happen exactly in practice, but we can still suffer to some extent
from this memorisation effect. Put differently, the model might learn to store
information about the training data in the parameter vector 𝜽, which helps it so
minimise the reconstruction error, instead of learning a useful and generalisable
representation. This is a potential issue in particular when the model is very flexible
(very high-dimensional 𝜽) so that it has the capacity of memorising the data.

Various extensions to the basic auto-encoder have been proposed in the literature
to combat this memorisation effect, among other things. Regularisation is one useful
approach. For instance, it is possible to add a probabilistic prior on the distribution

278
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.4 Representation Learning and Dimensionality Reduction

of the latent representation, effectively bridging the gap between auto-encoders and
deep generative models. Another approach is to limit the capacity of the encoder
and decoder mappings. Taking this to the extreme, we can restrict both mappings
to be linear functions. As it turns out, this results in a well-known dimensionality
reduction method referred to as principal component analysis, which we will
discuss next.

Principal Component Analysis

Principal component analysis (PCA) is similar to an auto-encoder, in the sense that
the objective is to learn a low-dimensional representation z ∈ R𝑞 of the data x ∈ R𝑝,
where 𝑞 < 𝑝. This is done by projecting x onto a 𝑞-dimensional (linear) subspace
of R𝑝 by applying a linear transformation. Traditionally, the transformation is
derived based on the objective of retaining as much information as possible, where
information is measured in terms of variance. We will briefly discuss this view on
PCA below. However, an alternative approach is to consider PCA as an auto-encoder
that is restricted to be linear. That is, the encoder is a linear mapping that transforms
x into the latent representation z, the decoder is another linear mapping that tries to
reconstruct x from z, and both mappings are learned simultaneously by minimising
the reconstruction error with respect to the training data. This means that we
can write

z = 𝑊𝑒︸︷︷︸
𝑞×𝑝

x + 𝑏𝑒︸︷︷︸
𝑞×1

and x = 𝑊𝑑︸︷︷︸
𝑝×𝑞

z + 𝑏𝑑︸︷︷︸
𝑝×1

(10.30)

for the encoder and decoder mappings, respectively. The parameters of the model
are the weight matrices and offset vectors, 𝜽 = {𝑊𝑒, 𝑏𝑒,𝑊𝑑 , 𝑏𝑑}. In light of
Figure 10.10, this can be viewed as a two-layer neural network with a bottleneck
layer and linear activation functions. Note that the complete auto-encoder is also
given by a linear transformation, and the reconstruction of x is

x̂ = 𝑊𝑑z + 𝑏𝑑 (10.31a)
= 𝑊𝑑 (𝑊𝑒x + 𝑏𝑒) + 𝑏𝑑 (10.31b)
= 𝑊𝑑𝑊𝑒︸ ︷︷ ︸

𝑝×𝑝

x +𝑊𝑑𝑏𝑒 + 𝑏𝑑︸ ︷︷ ︸
𝑝×1

. (10.31c)

To learn the model parameters, we minimise the squared reconstruction error of the
training data points {x𝑖}𝑛𝑖=1:

�̂� = arg min
𝜽

𝑛∑︁
𝑖=1
‖x𝑖 − (𝑊𝑑𝑊𝑒x𝑖 +𝑊𝑑𝑏𝑒 + 𝑏𝑑)‖2. (10.32)

Before proceeding, let us pause for a minute and consider this expression. The
reconstruction x̂ of a data point x is, according to (10.31c), a linear transformation

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
279

10 Generative Models and Learning from Unlabelled Data

of x. However, this transformation depends on the model parameters only through
the matrix 𝑊𝑑𝑊𝑒 and the vector 𝑊𝑑𝑏𝑒 + 𝑏𝑑 . Consequently, there is no hope of
uniquely determining all model parameters based on (10.32). For instance, we can
replace 𝑊𝑑𝑊𝑒 with 𝑊𝑑𝑇𝑇

−1𝑊𝑒, for any invertible 𝑞 × 𝑞 matrix 𝑇 , and obtain an
equivalent model. At best we can hope to learn the product 𝑊𝑑𝑊𝑒 and the vector
𝑊𝑑𝑏𝑒 + 𝑏𝑑 , but it is not possible to uniquely identifying 𝑊𝑒, 𝑏𝑒, 𝑊𝑑 , and 𝑏𝑑 from
these expressions. Therefore, when performing PCA, we wish to find one solution
to (10.32), without necessarily characterising all possible solutions. As we will
see below, however, we will not just find any solution but one which has a nice
geometrical interpretation.

Based on this observation, we start by noting that there is redundancy in the
‘combined offset’ vector 𝑊𝑑𝑏𝑒 + 𝑏𝑑 . Since 𝑏𝑑 is a free parameter, we can without
loss of generality set 𝑏𝑒 = 0. This means that the encoder mapping simplifies to
z = 𝑊𝑒x. Next, plugging this into (10.32), it is possible to solve for 𝑏𝑑 . Indeed, it
follows from a standard least squares argument12 that, for any 𝑊𝑑𝑊𝑒, the optimal
value for 𝑏𝑑 is

𝑏𝑑 =
1
𝑛

𝑛∑︁
𝑖=1
(x𝑖 −𝑊𝑑𝑊𝑒x𝑖) = (𝐼 −𝑊𝑑𝑊𝑒)x̄, (10.33)

where x̄ = 1
𝑛

∑𝑛
𝑖=1 x𝑖 is the mean of the training data. For notational brevity, we

define the centred data x0,𝑖 = x𝑖 − x̄ for 𝑖 = 1, . . . , 𝑛 by subtracting the mean value
from each data point. The objective (10.32) thus simplifies to

𝑊𝑒,𝑊𝑑 = arg min
𝑊𝑒 ,𝑊𝑑

𝑛∑︁
𝑖=1
‖x0,𝑖 −𝑊𝑑𝑊𝑒x0,𝑖 ‖2. (10.34)

We note that the role of the offset vectors in the auto-encoder is to centre the data
around its mean. In practice, we handle this as a pre-processing step and

centre the data manually by subtracting the mean value from each data point.

We can then focus on how to solve the problem (10.34) for the matrices 𝑊𝑒 and 𝑊𝑑 .
As we have seen previously in this book, when working with linear models, it is

often convenient to stack the data vectors into matrices and make use of tools from
matrix algebra. This is true also when deriving the PCA solution to (10.34). We
thus define the matrices of centred data points and reconstructions as

X0 =

xT
0,1

xT
0,2
...

xT
0,𝑛

and X̂0 =

x̂T
0,1

x̂T
0,2
...

x̂T
0,𝑛

, (10.35)

12It is easy to verify this by differentiating the expression and setting the gradient to zero.

280
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.4 Representation Learning and Dimensionality Reduction

respectively, where both matrices are of size 𝑛 × 𝑝. Here x̂0,𝑖 = 𝑊𝑑𝑊𝑒x0,𝑖 is the
centred reconstruction of the 𝑖th data point. With this notation, we can write the
training objective (10.34) as

𝑊𝑒,𝑊𝑑 = arg min
𝑊𝑒 ,𝑊𝑑

‖X0 − X̂0‖2𝐹 , (10.36)

where ‖ · ‖𝐹 denotes the Frobenius norm13 of a matrix, and the dependence on 𝑊𝑒

and 𝑊𝑑 is implicit in the notation X̂0.
By the definition of the reconstructed data points, it follows that X̂0 = X0𝑊

T
𝑒𝑊

T
𝑑 .

An important implication of this is that the rank of the matrix X̂0 is at most 𝑞.
The rank of a matrix is defined as the number of linearly independent rows (or,
equivalently, columns) of the matrix. Hence, the rank is always bounded by the
smallest dimension of the matrix. Assuming that all matrices in the expression for
X̂0 are full rank, this means that X0 is of rank 𝑝, whereas 𝑊𝑒 and 𝑊𝑑 are both of
rank 𝑞 < 𝑝. (We assume that 𝑛 > 𝑝.) Furthermore, it holds that the rank of a matrix
product is bounded by the smallest rank of the involved factors. It follows that the
rank of X̂0 is (at most) 𝑞.

Based on this observation and the learning objective (10.36), the PCA problem
can be formulated as:

Find the best rank 𝑞 approximation X̂0 of the centred data matrix X0.

It turns out that this matrix approximation problem has a well-known solution,
given by the Eckart–Young–Mirsky theorem. The theorem is based on a powerful
tool from matrix algebra, a matrix factorisation technique known as singular value
decomposition (SVD). Applying SVD to the centred data matrix X0 results in the
factorisation

X0 = U𝚺VT. (10.37)

Here, 𝚺 is an 𝑛 × 𝑝 rectangular diagonal matrix of the form

𝚺 =

©«

𝜎1 0 · · · 0
0 𝜎2 · · · 0
...

...
. . .

...
0 0 · · · 𝜎𝑝

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

ª®®®®®®®®®®®¬

. (10.38)

The values 𝜎𝑗 are positive real numbers, referred to as the singular values of the
matrix. They are ordered so that 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑝 > 0. In general, the number

13The Frobenius norm of matrix 𝐴 is defined as ‖𝐴‖𝐹 =
√︃∑

𝑖 𝑗 𝐴
2
𝑖 𝑗 .

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
281

10 Generative Models and Learning from Unlabelled Data

of non-zero singular values of a matrix is equal to its rank, but since we have
assumed that X0 is of full rank 𝑝, all singular values are positive. The matrix U is
an 𝑛 × 𝑛 orthogonal matrix, meaning that its columns are orthogonal unit vectors of
length 𝑛. Similarly, V is an orthogonal matrix of size 𝑝 × 𝑝.

Using the SVD, the Eckart–Young–Mirsky theorem states that the best14 rank 𝑞
approximation of the matrix X0 is obtained by truncating the SVD to keep only the
𝑞 largest singular values. Specifically, using a block matrix notation, we can write

U =
[
U1 U2

]
, 𝚺 =

[
𝚺1 0
0 𝚺2

]
, V =

[
V1 V2

]
, (10.39)

where U1 is 𝑛 × 𝑞 (corresponding to the first 𝑞 columns of U), V1 is 𝑝 × 𝑞 (first 𝑞
columns of V), and 𝚺1 is 𝑞 × 𝑞 (with the 𝑞 largest singular values on the diagonal).
The best rank 𝑞 approximation of X0 is then obtained by replacing 𝚺2 by zeros in
the SVD, resulting in

X̂0 = U1𝚺1VT
1 . (10.40)

It remains to connect this expression to the matrices 𝑊𝑒 and 𝑊𝑑 defining the
linear auto-encoder. Specifically, from the definition of reconstructed data points, it
must hold that X̂0 = X0𝑊

T
𝑒𝑊

T
𝑑 , and we thus need to find matrices 𝑊𝑒 and 𝑊𝑑 so

that this expression agrees with (10.40), the best possible approximation according
to the Eckart–Young–Mirsky theorem. It turns out that this connection is readily
available from the SVD. Indeed, choosing𝑊𝑒 = VT

1 and𝑊𝑑 = V1 attains the desired
result:

X0𝑊
T
𝑒𝑊

T
𝑑 =

[
U1 U2

] [
𝚺1 0
0 𝚺2

] [
VT

1
VT

2

]
V1VT

1 = U1𝚺1VT
1 , (10.41)

where we have used the fact that V is orthogonal, so that VT
1V1 = 𝐼 and VT

2V1 = 0.
This completes the derivation of PCA. We summarise the procedure in Method 10.5.

Learn the PCA model
Data: Training data T = {x𝑖}𝑛𝑖=1
Result: Principal axes V and scores Z0

1 Compute the mean vector x̄ = 1
𝑛

∑𝑛
𝑖=1 x𝑖

2 Centre the data, x0,𝑖 = x𝑖 − x̄, for 𝑖 = 1, . . . , 𝑛
3 Construct the data matrix X0 according to (10.35)
4 Perform SVD on X0 to obtain the factorisation X0 = U𝚺VT

5 Compute principal components Z0 = UΣ

Method 10.5: Principal component analysis

14In the sense of minimising the Frobenius norm of the difference.

282
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.4 Representation Learning and Dimensionality Reduction

It is interesting to note that the algorithm boils down to simply applying SVD
to the centred data matrix X0, and this operation is independent of the choice of 𝑞.
Hence, in contrast with non-linear auto-encoders,15 we do not have to decide on the
dimension 𝑞 of the latent representation beforehand. Instead, we obtain the solution
for all possible values of 𝑞 from a single SVD factorisation. In fact, the orthogonal
matrix V corresponds to a change-of-basis in R𝑝. By defining a transformed data
matrix

Z0︸︷︷︸
𝑛×𝑝

= X0︸︷︷︸
𝑛×𝑝

V︸︷︷︸
𝑝×𝑝

, (10.42)

we obtain an alternative representation of the data. Note that this data matrix is also
of size 𝑛 × 𝑝, and we have not lost any information in this transformation since V is
invertible.

The columns of V correspond to the basis vectors of the new basis. From the
derivation above, we also know that the columns of V are ordered in terms of
relevance, that is, the best auto-encoder of dimension 𝑞 is given by the first 𝑞
columns, or basis vectors. We refer to these vectors as the principal axes of X0.
Furthermore, this means that we can obtain the best low-dimensional representation
of X0, for arbitrary dimension 𝑞 < 𝑝, simply by keeping only the first 𝑞 columns
of the transformed data matrix Z0. The coordinates of the data in the new basis,
that is, the values in Z0, are referred to as the principal components (or scores).
An interesting observation is that we can obtain the principal components directly
from the SVD since Z0 = X0V = U𝚺VTV = U𝚺. We illustrate the PCA method in
Figure 10.11 (left and middle panels).

Time to reflect 10.2 We have defined the principal components in terms of
the centred data. However, we can also compute the non-centred principal
components in the same way, Z = XV (note that V is still computed from the
SVD of the centred data matrix). How is Z related to Z0? How does this
relate to the encoder mapping z = 𝑊𝑒x that we started the derivation from?

At the beginning of this section, we mentioned that there is a tight link between
PCA and the covariance of the data. Indeed, an alternative view of PCA is that it
finds the directions in R𝑝 along which the data varies the most. Specifically, the
first principal axis is the direction with the largest variance; the second principal
axis is the direction with the largest variance, but under the constraint that it should
be orthogonal to the first principal axis; and so on. This can be seen in Figure 10.11,
where the principal axes are indeed aligned with the directions of largest variation
of the data.

15This refers to the basic non-linear auto-encoder presented above. There are extensions to auto-
encoders than enable learning a suitable value for 𝑞 on the fly.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
283

10 Generative Models and Learning from Unlabelled Data

-1 0 1

-1

0

1

𝑥1

𝑥 2

-1 0 1

-1

0

1

𝑥1

-1 0 1

-1

0

1

𝑥1

Figure 10.11: An illustration of PCA in R2. In the left panel, some data {x𝑖}𝑛𝑖=1 is shown.
The middle columns shows the first (red) and second (green) principal axes. These vectors
are given by the first and second columns of V, respectively. The plot also shows the
data points when projected onto the first principal axis (pink), which are the same as the
reconstructed data points obtained by a linear auto-encoder with 𝑞 = 1 latent dimensions.
The right panel show an ellipse fitted to the covariance matrix 1

𝑛XT
0X0 of the data. The

principal axes of the ellipse agree with the ones from the middle panel, but the width of the
ellipse along each principal axis is scaled by the standard deviation in the corresponding
direction. This illustrates that PCA finds a new basis for R𝑝 which is rotated to align with
the covariance of the data.

To formalise this, note that the (sample) covariance matrix of the data is given by

1
𝑛

𝑛∑︁
𝑖=1
(x𝑖 − x̄) (x𝑖 − x̄)T =

1
𝑛

XT
0X0 =

1
𝑛

V𝚺TUTU𝚺VT = V𝚲VT, (10.43)

where 𝚲 is a 𝑝 × 𝑝 diagonal matrix with the values 𝚲𝑖𝑖 = 𝜎2
𝑖 /𝑛 on the diagonal.

This can be recognised as an eigenvalue decomposition of the covariance matrix.
Consequently, the principal axes (columns of V) are the same as the eigenvectors of
the covariance matrix. Furthermore, the eigenvalues are given by the squared singular
values, normalised by 𝑛. The eigenvectors and eigenvalues of a covariance matrix
can be said to define its ‘geometry’. If we think about fitting a Gaussian distribution
to the data and then drawing a level curve of the corresponding probability density
function, then this will take the form of an ellipse. The shape of the ellipse can be
identified with the covariance matrix of the distribution. Specifically, the principal
axes of the ellipse correspond to the eigenvectors of the covariance matrix (which
are the same as the principal axes of the data). Furthermore, the variances of the data
in the directions of the principal axes are given by the corresponding eigenvalues.
The width of the ellipse along each principal axis is proportional to the standard
deviation of the data along this direction, which thus corresponds to the singular
values of the data matrix! We illustrate this in the right panel of Figure 10.11.

As a final comment, we note that it can often be a good idea to standardise the
data before applying PCA, in particular if the different variables 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑝
have very different scales. Otherwise, the principal directions can be heavily biased
towards certain variables simply because they are expressed in a unit with a dominant
scale. However, if the units and scales of the variables are meaningful for the

284
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

10.5 Further Reading

problem at hand, it can also be argued that standardising counteracts the purpose
of PCA since the intention is to find the directions with maximum variance. Thus,
what is most appropriate needs to be decided on a case-by-case basis.

10.5 Further Reading

Many textbooks on machine learning contain more discussions and methods for
unsupervised learning, including Bishop (2006), Hastie et al. (2009, Chapter 14),
and Murphy (2012). A longer discussion on the GMM, and the related 𝑘-means, is
found in Bishop (2006, Chapter 9). For a more detailed discussion on the LDA and
QDA classifiers in particular, see Hastie et al. (2009, Section 4.3) or Mardia et al.
(1979, Chapter 10).

For more discussion on the fundamental choice between generative and discrimi-
native models, see Bishop and Lasserre (2007), Liang and Jordan (2008), Ng and
Jordan (2001), and Xue and Titterington (2008) and also the textbook by Jebara
(2004).

The book by Goodfellow, Bengio, et al. (2016) has more in-depth discussions
about deep generative models (Chapter 20), auto-encoders (Chapter 14), and
other approaches for representation learning (Chapter 15). Generative adversarial
networks were introduced by Goodfellow, Pouget-Abadie, et al. (2014) and are
reviewed by, among others, Creswell et al. (2018). Kobyzev et al. (2020) provide an
overview of normalising flows.

Among the deep generative models that we have not discussed in this chapter,
perhaps the most famous is the variational autoencoder (Diederik P. Kingma and
Welling 2014, Diederik P. Kingma and Welling 2019, Rezende et al. 2014), which
provides a way of connecting deep generative models with auto-encoders. This
model has also been used for semi-supervised learning (Diederik P. Kingma,
Rezende, et al. 2014) in a way which is similar to how we used the GMM in the
semi-supervised setting.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
285

11 User Aspects of Machine Learning

Dealing with supervised machine learning problems in practice is to a great extent
an engineering discipline where many practical issues have to be considered and
where the available amount of work-hours to undertake the development is often
the limiting resource. To use this resource efficiently, we need to have a well-
structured procedure for how to develop and improve the model. Multiple actions
can potentially be taken. How do we know which action to take and if it is really
worth spending the time implementing it? Is it, for example, worth spending an
extra week collecting and labelling more training data, or should we do something
else? These issues will be addressed in this chapter. Note that the layout of this
chapter is thematic and does not necessarily represent the sequential order in which
the different issues should be addressed.

11.1 Defining the Machine Learning Problem

Solving a machine learning problem in practice is an iterative process. We train
the model, evaluate the model, and from there suggest an action for improvement
and then train the model again, and so on. To do this efficiently, we need to be
able to tell whether a new model is an improvement over the previous one or
not. One way to evaluate the model after each iteration would be to put it into
production (for example running a traffic-sign classifier in a self-driving car for a
few hours). Besides the obvious safety issues, this evaluation procedure would be
very time consuming and cumbersome. It would most likely also be inaccurate
since it could still be hard to tell whether the proposed change was an actual
improvement or not.

A better strategy is to automate this evaluation procedure without the need to put
the model into production each time we want to evaluate its performance. We do this
by putting aside a validation dataset and a test dataset and evaluate the performance
using a scalar evaluation metric. The validation and test datasets together with the
evaluation metric will define the machine learning problem that we are solving.

Training, Validation, and Test Data

In Chapter 4, we introduced the strategy of splitting the available data into training
data, validation data, and test data, as repeated in Figure 11.1.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
287

11 User Aspects of Machine Learning

Training data Val.
data

Test
data

All available data

Figure 11.1: Splitting the data into training data, hold-out validation data, and test data.

• Training data is used for training the model.

• Hold-out validation data is used for comparing different model structures,
choosing hyperparameters of the model, feature selection, and so on.

• Test data is used to evaluate the performance of the final model.

If the amount of available data is small, it is possible to perform 𝑘-fold cross-
validation instead of putting aside hold-out validation data; the idea of how to use it
in the iterative procedure is unchanged. To get a final estimate of the performance,
test data is used.

In the iterative procedure, the hold-out validation data (or 𝑘-fold cross-validation)
is used to judge if the new model is an improvement over the previous model.
During this validation stage, we can also choose to train several new models. For
example, if we have a neural network model and are interested in the number of
hidden units to use in a certain layer, we can train several models, each with a
different choice of hidden units. Afterwards, we pick the one that performs best on
the validation data. The number of hidden units in a certain layer is one example
of a hyperparameter. If we have more hyperparameteters that we want to evaluate,
we can perform a grid search over these parameters. In Section 5.6, we discuss
hyper-parameter optimisation in more detail.

Eventually, we will effectively have used the validation data to compare many
models. Depending on the size of the validation data, we might risk picking a
model that does particularly well on the validation data in comparison to completely
unseen data. To detect this and to get a fair estimate of the actual performance
of a model, we use the test data, which has been used neither during training nor
validation. If the performance on the validation data is substantially better than the
performance on the test data, we have overfitted on the validation data. The easiest
solution in that case would be to extend the size of the validation data. The test
data should not be used repeatedly as a part of the training and model selection
procedure. If we start making major decisions based on our test data, then the model
will be adapted to the test data, and we can no longer trust that the test performance
is an objective measure of the actual performance of our model.

It is important that both the validation data and the test data always come from
the same data distribution, namely the data distribution that we are expecting to
see when we put the model into production. If they do not stem from the same
distribution, we are validating and improving our model towards something that is

288
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.1 Defining the Machine Learning Problem

not represented in the test data and hence are ‘aiming for the wrong target’. Usually,
the training data is also expected to come from the same data distribution as the test
and validation data, but this requirement can be relaxed if we have good reasons to
do so. We will discuss this further in Section 11.2.

When splitting the data into training, validation, and test, group leakage could
be a potential problem. Group leakage can occur if the data points are not really
stochastically independent but are ordered into different groups. For example, in
the medical domain many, X-ray images may belong to the same patient. In this
case, if we do a random split over the images, different images belonging to the
same patient will most likely end up both in the training and the validation set. If
the model learns the properties of a certain patient, then the performance on the
validation data might be better than what we could expect in production.

The solution to the group leakage problem is to do group partitioning. Instead of
doing a random split over the data points, we do the split over the groups that the
data points belong to. In the medical example above, that would mean that we do a
random split of the patients rather than of the medical images. By this, we make
sure that the images for a certain patient only end up in one of the datasets, and the
leakage of unintentional information from the training data to the validation and
test data is avoided.

Even though we advocate the use of validation and test data to improve and assess
the performance of the model, we should eventually also evaluate the performance
of the model in production. If we realise that the model is performing systematically
worse in production than on the test data, we should try to find the reason for why
this is the case. If possible, the best way of improving the model is to update the
test data and validation data such they actually represent what we expect to see in
production.

Size of Validation and Test Datasets

How much data should we set aside as hold-out validation data and test data,
or should we even avoid setting aside hold-out validation data and use 𝑘-fold
cross-validation instead? This depends on how much data we have available, what
performance difference we plan to detect, and how many models we plan to compare.
For example, if we have a classification model with a 99.8% accuracy and want to
know if a new model is even better, a validation dataset of 100 data points will not
be able to tell that difference. Also, if we plan to compare many (say, hundreds or
more) different hyperparameter values and model structures using 100 validation
data points, we will most likely overfit to that validation data.

If we have, say, 500 data points, one reasonable split could be 60%–20%–20%
(that is 300–100–100 data points) for training–validation–test. With such a small
validation dataset, we cannot afford to compare several hyperparameter values and
model structures or to detect an improvement in accuracy of 0.1%. In this situation,
we are probably better off using 𝑘-fold cross-validation to decrease the risk of
overfitting to the validation data. Be aware, however, that the risk of overfitting the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
289

11 User Aspects of Machine Learning

training data still exists even with 𝑘-fold cross-validation. We also still need to set
aside test data if we want a final unbiased estimate of the performance.

Many machine learning problems have substantially larger datasets. Assume we
have a dataset of 1 000 000 data points. In this scenario, one possible split could be
98%–1%–1%, that is, leaving 10 000 data points for validation and test, respectively,
unless we really care about the very last decimals in performance. Here, 𝑘-fold
cross-validation is of less use in comparison to the scenario with just 500 data points,
since having all 99% = 98% + 1% (training + validation) available for training
would make a small difference in comparison to using ‘only’ 98%. Also, the price
for training 𝑘 models (instead of only one) with this amount of data would be much
higher.

Another advantage of having a separate validation dataset is that we can allow
the training data to come from a slightly different distribution than the validation
and test dataset, for example if that would enable us to find a much larger training
dataset. We will discuss this more in Section 11.2.

Single Number Evaluation Metric

In Section 4.5, we introduced additional metrics besides the misclassification rate,
such as precision, recall, and F1-score for evaluating binary classifiers. There is
no unique answer to which metric is the most appropriate. What metric to pick is
rather a part of the problem definition. To improve the model quickly and in a more
automated fashion, it is advisable to agree on a single number evaluation metric,
especially if a larger team of engineers is working on the problem.

The single number evaluation metric together with the validation data are what
defines the supervised machine learning problem. Having an efficient procedure
in place where we can evaluate the model on the hold-out validation data (or by
𝑘-fold cross-validation) using the metric allows us to speed up the iterations since
we can quickly see if a proposed change to the model improves the performance or
not. This is important in order to manage an efficient workflow of trying out and
accepting or rejecting new models.

That being said, beside the single number evaluation metric, it is useful to monitor
other metrics as well to reveal the tradeoffs being made. For example, we might
develop the model with different end users in mind who care more or less about
different metrics, but for practical reasons, we only train one model to accommodate
them all. If we, based on these tradeoffs, realise that the single number evaluation
metric we have chosen does not favour the properties we want a good model to have,
we can always change that metric.

Baseline and Achievable Performance Level

Before working with the machine learning problem, it is a good idea to establish
some reference points for the performance level of the model. A baseline is a very
simple model that serves as a lower expected performance level. A baseline can,

290
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.2 Improving a Machine Learning Model

for example, be to randomly pick an output value 𝑦𝑖 from the training data and
use that as the prediction. Another baseline for the regression problem is to take
the mean of all output values in the training data and use that as the prediction. A
corresponding baseline for a classification problem is to pick the most common
class among class labels in the training data and use that for the prediction. For
example, if we have a binary classification problem with 70% of the training data
belonging to one class and 30% belonging to the other class, and we have chosen
the accuracy as our performance metric, the accuracy for that baseline is 70%. The
baseline is a lower threshold on the performance. We know that the model has to be
better than this baseline.

Hopefully, the model will perform well beyond the naive baselines stated above.
In addition, it is also good to define an achievable performance which is on par
with the maximum performance we can expect from the model. For a regression
problem, this performance is in theory limited by the irreducible error presented in
Chapter 4, and for classification problems, the analogous concept is the so-called
Bayes error rate. In practice, we might not have access to these theoretical bounds,
but there are a few strategies for estimating them. For supervised problems that that
are easily solved by human annotators, the human-level performance can serve as
the achievable performance. Consider for example an image classification problem.
If humans can identify the correct class with an accuracy of 99%, that serves as a
reference point for what we can expect to achieve from our model. The achievable
performance can also be based on what other state-of-the-art models on the same
or a similar problem achieve. To compare the performance with the achievable
performance gives us a reference point to assess the quality of the model. Also, if
the model is close to the achievable performance, we might not be able to improve
our model further.

11.2 Improving a Machine Learning Model

As already mentioned, solving a machine learning problem is an iterative procedure
where we train, evaluate, and suggest actions for improvement, for instance by
changing some hyperparameters or trying another model. How do we start this
iterative procedure?

Try Simple Things First

A good strategy is to try simple things first. This could, for example, be to start
with basic methods like 𝑘-NN or linear/logistic regression. Also, do not add extra
adds-on like regularisation for the first model – this will come at a later stage when
the basic model is up and running. A simple thing can also be to start with an
already existing solution to the same or a similar problem, which you trust. For
example, when building an image classifier, it can be simpler to start with an existing
pretrained neural network and fine-tune one rather than handcrafting features from

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
291

11 User Aspects of Machine Learning

these images to be used with 𝑘-NN. Starting simple can also mean to consider only a
subset of the available training data for the first model and then retrain the model on
all the data if it looks promising. Also, avoid doing more data pre-processing than
necessary for your first model, since we want to minimise the risk of introducing
bugs early in the process. This first step not only involves writing code for learning
your first simple model but also code for evaluating it on your validation data using
your single number evaluation metric.

Trying simple things first allows us to start early with the iterative procedure of
finding a good model. This is important since it might reveal important aspects of
the problem formulation that we need to re-think before it makes sense to proceed
with more complicated models. Also, if we start with a low-complexity model, it
also reduces the risk of ending up with a too-complicated model, when a much
simpler model would have been just as good (or even better).

Debugging your Model

Before proceeding, we should make sure that the code we have is producing what
we are expecting it to do. The first obvious check is to make sure that the code runs
without any errors or warnings. If it does not, use a debugging tool to spot the error.
These are the easy bugs to spot.

The trickier bugs are those where the code is syntactically correct and runs
without warnings but is still not doing what we expect it to do. The procedure of
how to debug this depends on the model you have picked, but there are a few general
tips:

• Compare with baseline. Compare you model performance on validation data
with the baselines you have stated (see Section 11.1). If we do not manage to
beat these baselines or are even worse than them, the code for training and
evaluating the model might not be working as expected.

• Overfit a small subset. Try to overfit the model on a very small subset (e.g.
as small as two data points) of the training data and make sure that we can
achieve the best possible performance evaluated on that training data subset.
If it is a parametric model, also aim for the lowest possible training cost.

When we have verified to the best of our ability that the code is bug-free and
does what it is expected to do, we are ready to proceed. There are many actions that
could be taken to improve the model – for example, changing the type of model,
increasing/decreasing model complexity, changing input variables, collecting more
data, correcting mislabelled data (if there is any), etc. What should we do next?
Two possible strategies for guiding us to meaningful actions to improve the solution
are by trading training error and generalisation gap or by applying error analysis.

Training Error vs. Generalisation Gap

With the notation from Chapter 4, the training error 𝐸train is the performance of
the model on training data, and the validation error 𝐸hold-out is the performance on

292
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.2 Improving a Machine Learning Model

hold-out validation data. In the validation step, we are interested in changing the
model such that 𝐸hold-out is minimised. We can write the validation error as a sum
of the training error and the generalisation gap:

𝐸hold-out = 𝐸train + (𝐸hold-out − 𝐸train)︸ ︷︷ ︸
≈ generalisation gap

. (11.1)

In words, the generalisation gap is approximated by the difference between the
validation error 𝐸hold-out and the training error 𝐸train.1

We can easily compute the training error 𝐸train and the generalisation gap
𝐸hold-out−𝐸train; we just have to evaluate the error on the training data and validation
data, respectively. By computing these quantities, we can get good guidance for
what changes we may consider for the next iteration.

As we discussed in Chapter 4, if the training error is small and the generalisation
gap is big (𝐸train small, 𝐸hold-out big), we have typically overfitted the model. The
opposite situation, big training error and small generalisation gap (both 𝐸train and
𝐸hold-out big), typically indicates underfitting.

If we want to reduce the generalisation gap 𝐸hold-out − 𝐸train (reduce overfitting),
the following actions can be explored:

• Use a less flexible model. If we have a very flexible model, we might start
overfitting to the training data, that is, 𝐸train is much smaller than 𝐸hold-out. If
we use a less flexible model, we also reduce this gap.

• Use more regularisation. Using more regularisation will reduce the flexibility
of the model and hence also reduce the generalisation gap. Read more about
regularisation in Section 5.3

• Early stopping For models that are trained iteratively, we can stop the training
before reaching the minimum. One good practice is to monitor 𝐸hold-out
during training and stop if it starts increasing; see Example 5.7.

• Use bagging, or use more ensemble members if we already are using it.
Bagging is a method for reducing the variance of the model, which typically
also means that we reduce the generalisation gap; see more in Section 7.1.

• Collect more training data. If we collect more training data, the model is less
prone to overfit that extended training dataset and is forced to only focus on
aspects which generalise to the validation data.

1This can be related to (4.11), if approximating �̄�train ≈ 𝐸train and �̄�new ≈ 𝐸hold-out. If we use
𝑘-fold cross validation instead of hold-out validation data, we use �̄�new ≈ 𝐸𝑘-fold when computing
the generalisation gap.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
293

11 User Aspects of Machine Learning

If we want to reduce the training error 𝐸train (reduce underfitting), the following
actions can be considered:

• Use a more flexible model that is able to fit the training data better. This can
be changing a hyperparameter in the model we are considering – for example
decreasing 𝑘 in 𝑘-NN– or changing the model to a more flexible one – for
example by replacing a linear regression model by a deep neural network.

• Extend the set of input variables. If we suspect that there are more input
variables that carry information, we might want to extend the data with these
input variables.

• Use less regularisation. This can, of course, only be applied if regularisation
is used at all.

• Train the model for longer. For models that are trained iteratively, we can
reduce 𝐸train by training for longer.

It is usually a balancing act between reducing the training error and the generali-
sation gap, and measures to decrease one of them might result in an increase of the
other. This balancing act is also related to the bias–variance tradeoff discussed in
Example 4.3.

We summarise the above discussion in Figure 11.2. Fortunately, evaluating 𝐸train
and 𝐸hold-out is cheap. We only have to evaluate the model on the training data and
the validation data, respectively. Yet, it gives us good advice on what actions to take
next. Besides suggesting what action to explore next, this procedure also tells us
what not to do: If 𝐸train � 𝐸hold-out − 𝐸train, collecting more training data will most
likely not help. Furthermore, if 𝐸train � 𝐸hold-out − 𝐸train, a more flexible model
will most likely not help.

Learning Curves

Of the different methods mentioned to reduce the generalisation gap, collecting more
training data is often the simplest and most reliable strategy. However, in contrast
to the other techniques, collecting and labelling more data is often significantly
more time consuming. Before collecting more data, we would like to tell how
much improvement we can expect. By plotting learning curves, we can get such an
indication.

In a learning curve, we train models and evaluate 𝐸train and 𝐸hold-out using different
sizes of training dataset. For example, we can train different models with 10%, 20%,
30%, . . . of the available training data and plot how 𝐸train and 𝐸hold-out vary with
the amount of training data. By extrapolating these plots, we can get an indication
of the improvement on the generalisation gap that we can expect by collecting
more data.

In Figure 11.3, two sets of learning curves for two different scenarios are depicted.
First, note that previously we evaluated 𝐸train and 𝐸hold-out only for the rightmost

294
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.2 Improving a Machine Learning Model

High
training
error?

High
generalisation

gap?

• More flexible model

• Less regularisation

• Train longer

• Less flexible model

• More regularisation

• Early stopping

• Get more training data

Done

No

Yes

No

Yes

Figure 11.2: The iterative procedure of improving a model based on the decomposition of
the validation error into the training error and generalisation gap.

𝐸hold-out

𝐸train

Generalisation gap

Size of training dataset 𝑛

Er
ro

r

(a) Scenario A

𝐸hold-out

𝐸train

Generalisation gap

Size of training dataset 𝑛

Er
ro

r

(b) Scenario B

Figure 11.3: Learning curve for two different scenarios. In Scenario A, we can expect an
improvement in the generalisation gap by collecting more training data, whereas in Scenario
B, we are less likely to see an immediate improvement by adding more data.

point in these graphs using all our available data. However, these plots reveal more
information about the impact of the training dataset size on the performance of
the model. In the two scenarios depicted in Figure 11.3, we have the same values
for 𝐸train and 𝐸hold-out if we train the model using all the available training data.
However, by extrapolating the learning curves for 𝐸train and 𝐸hold-out in these two

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
295

11 User Aspects of Machine Learning

scenarios, it is likely that in Scenario A, we can reduce the generalisation gap much
more than we can in Scenario B. Hence, in Scenario A, collecting more training data
is more beneficial than in Scenario B. By extrapolating the learning curves, you can
also answer the question of how much extra data is needed to reach some desired
performance. Plotting these learning curves does not require much extra effort we
only have to train a few more models on subsets of our training data. However, it
can provide valuable insight on whether it is worth the extra effort of collecting
more training data and how much extra data you should collect.

Error Analysis

Another strategy to identify actions that can improve the model is to perform error
analysis. Below we only describe error analysis for classification problems, but the
same strategy can be applied to regression problems as well.

In error analysis, we manually look at a subset, say 100 data points, of the
validation data that the model classified incorrectly. Such an analysis does not
take much time but might give valuable clues as to what type of data the model is
struggling with and how much improvement we can expect by fixing these issues.
We illustrate the procedure with an example.

Example 11.1 Error analysis applied to vehicle detection

Consider a classification problem of detecting cars, bicycles, and pedestrians in an
image. The model takes an image as input and outputs one of the four classes car,
bike, pedestrian, or other. Assume that the model has a classification accuracy
of 90% on validation data.

When looking at a subset of 100 images that were misclassified in the validation
data, we make the following observations:

• All 10 images of class pedestrian that were incorrectly classified as bike
where taken in dark conditions with the pedestrian being equipped with
safety reflectors.

• 30 images were substantially tilted.

• 15 images were mislabelled.

From this observation we can conclude:

• If we launch a project for improving the model to classify pedestrians with
safety reflectors as pedestrian and not incorrectly as bike, an improvement
of at most a ∼1% (a tenth of the 10% classification error rate) can be expected.

• If we improve the performance on tilted images, an improvement of at most
∼3% can be expected.

• If we correct all mislabelled data, an improvement of at most ∼1.5% can be
expected.

296
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.2 Improving a Machine Learning Model

Following the example, we get an indication on what improvement we can expect
by tackling these three issues. These numbers should be considered as the maximal
possible improvement. To prioritise which aspect to focus on, we should also
consider what strategies are available for improving them, how much progress we
expect to make applying these strategies, and how much effort we would have to
invest fixing these issues.

For example, to improve the performance on tilted images, we could try to extend
the training data by augmenting it with more tilted images. This strategy could be
investigated without too much extra effort by augmenting the training data with
tilted versions of the training data points that we already have. Since this could be
applied fairly quickly and has a maximal performance increase of 3%, it seems to
be a good thing to try out.

To improve the performance on the images of pedestrians with safety reflectors,
one approach would be to collect more images in dark conditions of pedestrians
with safety reflector. This obviously requires some more manual work, and it
can be questioned if it is worth the effort since it would only give a performance
improvement of at most 1%. However, for this application, you could also argue
that this 1% is of extra importance.

Regarding the mislabelled data, the obvious action to take to improve on this issue
is to manually go through the data and correct these labels. In the example above,
we may say it is not quite worth the effort to get an improvement of 1.5%. However,
assume that we have improved the model with other actions to an accuracy of 98.0%
on validation data and that still 1.5% of the total error is due to mislabelled data;
this issue is now quite relevant to address if we want to improve the model further.
Remember, the purpose of the validation data is to choose between different models.
This purpose is degraded when the majority of the reported error on validation is
due to incorrectly labelled data rather than the actual performance of the model.

There are two levels of ambition for correcting the labels:

(i) Go through all data points in the validation/test data and correct the labels.

(ii) Go through all data points, including the training data, and correct the labels.

The advantage of approach (i), in comparison to approach (ii), is the lower amount
of work it requires. Assume, for example, that we have made a 98%–1%–1%
split of training-validation-test data. Then there is 50 times less data to process in
comparison to approach (ii). Unless the mislabeling is systematic, correcting the
labels in the training data will not necessarily pay off. Also, note that correcting
labels in only test and validation data does not necessarily increase the performance
of a model in production, but it will give us a fairer estimate of the actual performance
of the model.

Applying the data cleaning to validation and test data only, as suggested in
approach (i), will result in the training data coming from a slightly different
distribution than the validation and test data. However, if we are eager to correct the
mislabelled data in the training data as well, a good recommendation would still be
to start correcting validation and test data only, and then use the techniques in the

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
297

11 User Aspects of Machine Learning

following section to see how much extra performance we can expect by cleaning the
training data as well before launching that substantially more labor-intensive data
cleaning project.

In some domains, for example medical imaging, the labelling can be difficult, and
two different lablers might not agree on the label for the very same data point. This
agreement between labellers is also called inter-rater reliability. It can be wise to
check this metric on a subset of your data by assigning multiple labellers for that
data. If the inter-rater reliability is low, you might want to consider addressing this
issue. This can, for example, be done by assigning multiple labellers to all data
points in the validation and test data and, if you can afford the extra labelling cost,
also to the training data. For the samples where labellers do not agree, the majority
vote can be used for these labels.

Mismatched Training and Validation/Test Data

As already pointed out in Chapter 4, we should strive to let the training data come
from the same distribution as the validation and test data. However, there are
situations where, for different reasons, we can accept the training data coming from
a slightly different distribution than the validation and test data. One reason was
presented in the previous section where we chose to correct mislabelled data in
the validation and test data but not necessarily to invest the time to do the same
correction to the training data.

Another reason for mismatched training and validation/test data is that we might
have access to another, substantially larger dataset which comes from a slightly
different distribution than the data we care about but is similar enough that the
advantage of having a larger training data outweighs the disadvantage of that data
mismatch. This scenario is further described in Section 11.3.

If we have a mismatch between training data and validation/test data, that
mismatch contributes to yet another error source of the final validation error 𝐸hold-out
that we care about. We want to estimate the magnitude of that error source. This
can be done by revising the training–validation–test data split. From the training
data, we can carve out a separate training-validation dataset, see Figure 11.4. That
dataset is neither used for training nor for validation. However, we do evaluate the
performance of our model on that dataset as well. As before, the remaining part
of the training data is used for training, the validation data is used for comparing
different model structures, and test data is used for evaluating the final performance
of the model.

This modified data split also allows us to revise the decomposition in (11.1) to
include this new error source:

𝐸hold-out = 𝐸train + (𝐸train-val − 𝐸train)︸ ︷︷ ︸
≈ generalisation gap

+ (𝐸hold-out − 𝐸train-val)︸ ︷︷ ︸
≈ train-val mismatch

, (11.2)

where 𝐸train-val is the performance of the model on the new training-validation data
and where, as before, 𝐸hold-out and 𝐸train are the performances on the validation and

298
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.3 What If We Cannot Collect More Data?

Training data
Train-
val.
data

Val.
data

Test
data

All available data

Slightly different
data distribution

Data distribution
you care about 0

𝐸train

𝐸train-val

𝐸hold-out

training error

generalization gap

train-val
mismatch

Figure 11.4: Revising the training–validation–test data split by carving out a separate
training-validation dataset from the training data.

training data, respectively. With this new decomposition, the term 𝐸train-val − 𝐸train
is an approximation of the generalisation gap, that is, how well the model generalises
to unseen data of the same distribution as the training data, whereas the term
𝐸hold-out − 𝐸train-val is the error related to the training-validation data mismatch. If
the term 𝐸hold-out − 𝐸train-val is small in comparison to the other two terms, it seems
likely that the training-validation data mismatch is not a big problem and that it is
better to focus on techniques reducing the other training error and the generalisation
gap as we talked about earlier. On the other hand, if 𝐸hold-out−𝐸train-val is significant,
the data mismatch does have an impact, and it might be worth investing time
reducing that term. For example, if the mismatch is caused by the fact that we only
corrected labels in the validation and test data, we might want to consider correcting
labels for the training data as well.

11.3 What If We Cannot Collect More Data?

We have seen in Section 11.2 that collecting more data is a good strategy to reduce
the generalisation gap and hence reduce overfitting. However, collecting labelled
data is usually expensive and sometimes not even possible. What can we do if we
cannot afford to collect more data but still want to benefit from the advantages that
a larger dataset would give? In this section, a few approaches are presented.

Extending the Training Data with Slightly Different Data

As already mentioned, there are situations where we can accept the training data
coming from a slightly different distribution than the validation and test data. One
reason to accept this is if we then would have access to a substantially larger training
dataset.

Consider a problem with 10 000 data points, representing the data that we
would also expect to get when the model is deployed in production. We call this
Dataset A. We also have another dataset with 200 000 data points that come from a
slightly different distribution but which is similar enough that we think exploiting

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
299

11 User Aspects of Machine Learning

information from that data can improve the model. We call this Dataset B. Some
options to proceed would be the following:

• Option 1 Use only Dataset A and split it into training, validation, and test
data.

Training data Val.
data

Test
data

Dataset A

5 000 2 500 2 500

The advantage of this option is that we only train, validate, and evaluate on
Dataset A, which is also the type of data that we want our model to perform
well on. The disadvantage is that we have quite few data points, and we do
not exploit potentially useful information in the larger Dataset B.

• Option 2 Use both Dataset A and Dataset B. Randomly shuffle the data and
split it into training, validation, and test data.

Training data Val.
data

Test
data

Dataset A + Dataset B

205 000 2 500 2 500

The advantage over option 1 is that we have a lot more data available for
training. However, the disadvantage is that we mainly evaluate the model on
data from Dataset B, whereas we want our model to perform well on data
from Dataset A.

• Option 3 Use both Dataset A and Dataset B. Use data points from Dataset A
for validation data and test data and some in the training data. Dataset B only
goes into the training data.

Training data Val.
data

Test
data

Dataset B

200 000 from Dataset B
5 000 from Dataset A

Dataset A

2 500
data-
set A

2 500
data-
set A

Similar to option 2, the advantage is that we have more training data in
comparison to option 1, and in contrast to option 2, we now evaluate the
model on data from Dataset A, which is the data we want our model to
perform well on. However, one disadvantage is that the training data no
longer has the same distribution as the validation and test data.

From these three options, we would recommend either option 1 or 3. In option 3,
we exploit the information available in the much larger Dataset B but evaluate

300
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.3 What If We Cannot Collect More Data?

only on the data we want the model to perform well on (Dataset A). The main
disadvantage with option 3 is that the training data no longer comes from the same
distribution as the validation data and test data. In order to quantify how big an
impact this mismatch has on the final performance, the techniques described in
Section 11.2 can be used. To push the model to do better on data from Dataset A
during training, we can also consider giving data from Dataset A a higher weight in
the cost function than data from Dataset B, or simply upsample the data points in
Dataset A that belong to the training data.

There is no guarantee that adding Dataset B to the training data will improve
the model. If that data is very different from Dataset A, it can also do harm,
and we might be better off just using Dataset A as suggested in option 1. Using
option 2 is generally not recommended since we would then (in contrast to option 1
and 3) evaluate our model on data which is different from that which we want it
to perform well on. Hence, if the data in Dataset A is scarce, prioritise putting
it into the validation and test datasets and, if we can afford it, some of it in the
training data.

Data Augmentation

Data augmentation is another approach to extending the training data without the
need to collect more data. In data augmentation, we construct new data points
by duplicating the existing data with invariant transformations. This is especially
common for images, where such invariant transformations can be cropping, rotation,
vertical flipping, noise addition, colour shift, and contrast change. For example, if
we vertically flip an image of a cat, it still displays a cat; see the examples Figure 11.5.
One should be aware that some objects are not invariant to some of these operations.
For example, a flipped image of a digit is not a valid transformation. In some cases
such operations can even make the object resemble an object from another class. If
we were to flip an image of a ‘6’ both vertically and horizontally, that image would
resemble a ‘9’. Hence, before applying data augmentation, we need to know and
understand the problem and the data. Based on that knowledge we can identify
valid invariants and suggest which transformations that can be applied to augment
the data that we already have.

To apply data augmentation offline before the training would increase the required
amount of storage and is hence only recommended for small datasets. For many
models and training procedures, we can instead apply it online during training.
For example, if we train a parametric model using stochastic gradient descent (see
Section 5.5), we can apply the transformation directly on the data that goes into the
current mini-batch without the need to store the transformed data.

Transfer Learning

Transfer learning is yet another technique that allows us to exploit information
from more data than the dataset we have. In transfer learning we use the knowl-

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
301

11 User Aspects of Machine Learning

Figure 11.5: Example of data augmentation applied to images. An image of a cat has been
reproduced by tilting, vertical flipping and cropping.
source: Image of cat is reprinted from https://commons.wikimedia.org/wiki/File:Stray_
Cat,_Nafplio.jpg and is in the public domain.

edge from a model that has been trained on a different task with a different
dataset and then apply that model in solving a different, but slightly related,
problem.

Transfer learning is especially common for sequential model structures such
as the neural network models introduced in Chapter 6. Consider an application
where we want to detect whether a certain type of skin cancer is malignant or
benign, and for this task we have 100 000 labelled images of skin cancer. We
call this Task A. Instead of training the full neural network from scratch on this
data, we can reuse an already pretrained network from another image classification
task (Task B), which preferably has been trained on a much larger dataset, not
necessarily containing images even resembling skin cancer tumors. By using the
weights from the model trained for Task B and only train the last few layers on
the data for Task A, we can get a better model than if the whole model would
had been trained on only the data for Task A. The procedure is also displayed in
Figure 11.6. The intuition is that the layers closer to the input accomplish tasks that
are generic for all types of images, such as extracting lines, edges and corners in the
image, whereas the layers closer to the output are more specific to the particular
problem.

In order for transfer learning to be applicable, we need the two tasks to have
the same type of input (in the example above, images of the same dimension).
Further, for transfer learning to be an attractive option, the task that we trans-
fer from should have been trained on substantially more data than the task we
transfer to.

Learning from Unlabelled Data

We can also improve our model by learning from an additional (typically much larger)
dataset without outputs, so called unlabelled data. Two families of such methods are
semi-supervised learning and self-supervised learning. In our description below, we
call our original dataset with both inputs and output Dataset A and our unlabelled
dataset Dataset B.

In semi-supervised learning, we formulate and train a generative model for
the inputs in both Dataset A and Dataset B. The generative model of the inputs

302
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

https://commons.wikimedia.org/wiki/File:Stray_Cat,_Nafplio.jpg
https://commons.wikimedia.org/wiki/File:Stray_Cat,_Nafplio.jpg
http://smlbook.org

11.4 Practical Data Issues

×Task B

Task A

...
...

...
...

...
...

...

𝑦 ∈ {car, cat, . . . }
�̂�

×
× ×

�̂�
𝑦 ∈ {malignant,

benign }

Figure 11.6: In transfer learning, we reuse models that have been trained on a different task
than the one we are interested in. Here we reuse a model which has been trained on images
displaying all sorts of classes, such as cars, cats, and computers, and later train only the last
few layers on the skin cancer data which is the task we are interested in.
source: Skin cancer sample is reprinted from https://visualsonline.cancer.gov/details.
cfm?imageid=9186 and is in the public domain.

and the supervised model for Dataset A are then trained jointly. The idea is that
the generative model on the inputs, which is trained on the much larger dataset,
improves the performance of the supervised task. Semi-supervised learning is
further described in Chapter 10.

In self-supervised learning, we instead use Dataset B in a very similar way as we
do in transfer learning described previously. Hence, we pretrain the model based on
Dataset B and then fine-tune that model using Dataset A. Since Dataset B does not
contain any outputs, we automatically generate outputs for Dataset B and pretrain
our model with these generated outputs. The automatically generated outputs can,
for example, be a subset of the input variables or a transformation thereof. As in
transfer learning, the idea is that the pretrained model learns to extract features from
the input data which then can be used to improve the training of the supervised task
that we are interested in. Also, if we don’t have an additional unlabelled Dataset B,
we can also use self-supervised learning on the inputs in Dataset A as the pretraining
before training on the supervised task on that dataset.

11.4 Practical Data Issues

Besides the amount and distribution of data, a machine learning engineer may also
face other data issues. In this section, we will discuss some of the most common
ones; outliers, missing data, and if some features can be removed.

Outliers

In some applications, a common issue is outliers, meaning data points whose outputs
do not follow the overall pattern. Two typical examples of outliers are sketched
in Figure 11.7. Even though the situation in Figure 11.7 looks simple, it can be
quite hard to find outliers when the data has more dimensions and is harder to

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
303

https://visualsonline.cancer.gov/details.cfm?imageid=9186
https://visualsonline.cancer.gov/details.cfm?imageid=9186

11 User Aspects of Machine Learning

−0.2 0 0.2 0.4 0.6

−0.2

0

0.2

𝑥

𝑦

−2 0 2 4 6

−5

0

5

𝑥1

𝑥 2

Figure 11.7: Two typical examples of outliers (marked with red circle) in regression (left)
and classification (right), respectively.

visualise. The error analysis discussed in Section 11.2, which amounts to inspecting
misclassified data points in the validation data, is a systematic way to discover
outliers.

When facing a problem with outliers, the first question to ask is whether the
outliers are meant to be captured by the model or not. Do the encircled data points
in Figure 11.7 describe an interesting phenomenon that we would like to predict, or
are they irrelevant noise (possibly originating from a poor data collection process)?
The answer to this question depends on the actual problem and ambition. Since
outliers by definition (no matter their origin) do not follow the overall pattern, they
are typically hard to predict.

If the outliers are not of any interest, the first thing we should do is to consult
the data provider and identify the reason for the outliers and if something could be
changed in the data collection process to avoid these outliers, for example replacing
a malfunctioning sensor. If the outliers are unavoidable, there are basically two
approaches one could take. The first approach is to simply delete (or replace) the
outliers in the data. Unfortunately this means that one has to first find the outliers,
which can be hard, but sometimes some thresholding and manual inspection (that is,
look at all data points whose output value is smaller/larger than some value) can
help. Once the outliers are removed from the data, one can proceed as usual. The
second approach is to instead make sure that the learning algorithm is robust against
outliers, for example by using a robust loss function such as absolute error instead
of squared error loss (see Chapter 5 for more details). Making a model more robust
amounts, to some extent, to making it less flexible. However, robustness amounts to
making the model less flexible in a particular way, namely by putting less emphasis
on the data points whose predictions are severely wrong.

If the outliers are of interest to the prediction, they are not really an issue but rather
a challenge. We have to use a model that is flexible enough to capture the behavior
(small bias). This has to be done with care since very flexible models have a high
risk of also overfitting to noise. If it turns out that the outliers in a classification
problem are indeed interesting and in fact are from an underrepresented class, we
are rather facing an imbalanced problem; see Section 4.5.

304
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.4 Practical Data Issues

Missing Data

A common practical issue is that certain values are sporadically missing in the data.
Throughout this book so far, the data has always consisted of complete input-output
pairs {x𝑖 , 𝑦𝑖}𝑛𝑖=1, and missing data refers to the situation where some (or a few)
values from either the input x𝑖 or the output 𝑦𝑖 , for some 𝑖, are missing. If the output
𝑦𝑖 is missing, we can also refer to it as unlabelled data. It is a common practice
to denote missing data in a computer with NaN (not a number), but less obvious
codings also exists, such as 0. Reasons for missing data could, for instance, be a
malfunctioning sensor or similar issues at data collection time, or that certain values
for some reason have been discarded during the data processing.

As for outliers, a sensible first option is to figure out the reason for the missing
data. By going back to the data provider, this issue could potentially be fixed and
the missing data recovered. If this is not possible, there is no universal solution
for how to handle missing data. There is, however, some common practice which
can serve as a guideline. First of all, if the output 𝑦𝑖 is missing, the data point is
useless for supervised machine learning2 and can be discarded. In the following,
we assume that the missing values are only in the input x𝑖 .

The easiest way to handle missing data is to discard the entire data points (‘rows
in X’) where data is missing. That is, if some feature is missing in x𝑖, the entire
input x𝑖 and its corresponding output value 𝑦𝑖 are discarded from the data, and we
are left with a smaller dataset. If the dataset that remains after this procedure still
contains enough data, this approach can work well. However, if this would lead to
too small a dataset, it is of course problematic. More subtle, but also important,
is the situation when the data is missing in a systematic fashion, for example that
missing data is more common for a certain class. In such a situation, discarding
data points with missing data would lead to a mismatch between reality and training
data, which may degrade the performance of the learned model further.

If missing data is common, but only for certain features, another easy option is
to not use those features (‘column of X’) which are suffering from missing data.
Whether or not this is a fruitful approach depends on the situation.

Instead of discarding the missing data, it is possible to impute (fill in) the missing
values using some heuristics. Say, for example, that the 𝑗 th feature 𝑥 𝑗 is missing from
data point x𝑖 . A simple imputation strategy would be to take the mean or median of
𝑥 𝑗 for all other data points (where it is not missing) or the mean or median of 𝑥 𝑗 for
all data points of the same class (if it is a classification problem). It is also possible to
come up with more complicated imputation strategies, but each imputation strategy
implies some assumptions about the problem. Those assumptions might or might
not be fulfilled, and it is hard to guarantee that imputation will help the performance
in the end. A poor imputation can even degrade the performance compared to just
discarding the missing data.

2The ‘partly labelled data’ problem is a semi-supervised problem, which is introduced in Chapter 10
but not covered in depth by this book.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
305

11 User Aspects of Machine Learning

Some methods are actually able to handle missing data to some extent (which we
have not discussed in this book), but under rather restrictive assumptions. Such an
example is that the data is ‘completely missing at random’, meaning that which data
is missing is completely uncorrelated to what value it, and other features and the
output, would have had, had it not been missing. Assumptions like these are very
strong and rarely met in practice, and the performance can be severely degraded if
those assumptions are not fulfilled.

Feature Selection

When working with a supervised machine learning problem, the question of whether
all available input variables/features contribute to the performance is often relevant.
Removing the right feature is indeed a type of regularisation which can possibly
reduce overfitting and improve the performance, and the data collection might be
simplified if a certain variable does not even have to be collected. Selecting between
the available features is an important task for the machine learning engineer.

The connection between regularisation and feature selection becomes clear by
considering 𝐿1 regularisation. Since the main feature of 𝐿1 regularisation is that the
learned parameter vector �̂� is sparse, it effectively removes the influence of certain
features. If using a model where 𝐿1 regularisation is possible, we can study �̂� to see
which features we simply can remove from the dataset. However, if we cannot or
prefer not to use 𝐿1 regularisation, we can alternatively use a more manual approach
to feature selection.

Remember that our overall goal is to obtain a small new data error 𝐸new, which
we for most methods estimate using cross-validation. We can therefore always use
cross-validation to tell whether we gain or lose by including a certain feature in x.
Depending on the amount of data, evaluating all possible combinations of removed
features might not be a good idea, either due to computational aspects or the risk of
overfitting. There are, however, some rules of thumb that can possibly give us some
guidance on which features we should investigate more closely for whether they
contribute to the performance or not.

To get a feeling for the different features, we can look at the correlation between
each feature and the output and thereby get a clue about which features might be
more informative about the output. If there is little correlation between a feature
and the output, it is possibly a useless feature, and we could investigate further if we
can remove it. However, looking one feature at a time can be misleading, and there
are cases where this would lead to the wrong conclusion – for example the case in
Example 8.1.

Another approach is to explore whether there are redundant features, with the
reasoning that having two features that (essentially) contain the same information
will lead to an increased variance compared to having only one feature with the
same information. Based on this argument, one may look at the pairwise correlation
between the features and investigate removing features that have a high correlation
to other features. This approach is somewhat related to PCA (Chapter 10).

306
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

11.5 Can I Trust my Machine Learning Model?

11.5 Can I Trust my Machine Learning Model?

Supervised machine learning presents a powerful family of all-purpose general black-
box methods and has demonstrated impressive performance in many applications.
The main argument for supervised machine learning is, frankly, that it works
well empirically. However, depending on the requirements of the application,
supervised machine learning also has a potential shortcoming, in that it relies on
‘repeating patterns seen in training data’ rather than ‘deduction from a set of carefully
written rules’.

Understanding Why a Certain Prediction was Made

In some applications, there might be an interest in ‘understanding’ why a certain
prediction was made by a supervised machine learning model, for example in
medicine or law. Unfortunately, the underlying design philosophy in machine
learning is to deliver good predictions rather than to explain them.

With a simpler model, like the ones in Chapters 2–3, it can to some degree be
possible for an engineer to inspect the learned model and explain the ‘reasoning’
behind it for a non-expert. For more complicated models, however, it can be a rather
hard task.

There are, however, methods at the forefront of research, and the situation may
look different in the future. A related topic is that of so-called adversarial examples,
which essentially amounts to finding an input x′ which is as close as possible to
x but gives a different prediction. In the image classification setting, it can, for
example, be the problem of having a picture of a car being predicted as a dog by
only changing a few pixel values.

Worst Case Guarantees

In the view of this book, a supervised machine learning model is good if it attains a
small 𝐸new. It is, however, important to remember that 𝐸new is a statistical claim,
under the assumption that the training and/or test data resembles the reality which
the model will face once it is put into production. And even if that non-trivial
assumption is satisfied, there are no claims about how badly the model will predict
in the worst individual cases. This is indeed a shortcoming of supervised machine
learning and potentially also a show-stopper for some applications.

Simpler and more interpretable models, like logistic regression and trees, for
example, can be inspected manually in order to deduce the ‘worst case’ that could
happen. By looking at the leaf nodes in a regression tree, as an example, it is possible
to give an interval within which all predictions will lie. With more complicated
models, like random forests and deep learning, it is very hard to give any worst case
guarantees about how inaccurate the model can be in its predictions when faced
with some particular input. However, an extensive testing scheme might reveal
some of the potential issues.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
307

11 User Aspects of Machine Learning

11.6 Further Reading

The user aspects of machine learning is a fairly under-explored area, both in
academic research publications and in standard textbooks on machine learning. Two
exceptions are Ng (2019) and Burkov (2020), from which parts of this chapter have
been inspired. Regarding data augmentation, see Shorten and Khoshgoftaar (2019)
for a review of different techniques for images.

Some of the research on ‘understanding’ why a certain prediction was made by a
machine learning method is summarised by Guidotti et al. (2018).

308
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12 Ethics in Machine Learning

by David Sumpter1

In this chapter, we give three examples of ethical challenges that arise in connection
to machine learning applications. These are all examples where an apparently
‘neutral’ design choice in how we implement or measure the performance of a
machine learning model leads to an unexpected consequence for its users or for
society. For each case study, we give concrete application examples. In general, we
will emphasise an ethics through awareness approach, where instead of attempting
a technical solution to ethical dilemmas, we explain how they impact our role as
machine learning engineers.

There are many more ethical issues that arise from applications of machine
learning than are covered in this chapter. These range from legal issues of privacy
of medical and social data collected on individuals (Pasquale 2015); through on-line
advertising which, for example, identifies the most vulnerable people in society
and targets them with adverts for gambling, unnecessary health services, and high
interest loans (O’neil 2016); to the use of machine learning to develop weapons and
oppressive technology (Russell et al. 2015). In addition to this, there is significant
evidence of gender and racial discrimination in the tech industry (Alfrey and Twine
2017).

These issues are important (in many cases more important to society than the
issues we cover here), and the qualified data scientist should have become aware of
them. But they are largely beyond the scope of this book. Instead, here we look
specifically at examples where the technical properties of the machine learning
techniques we have learnt so far become unexpectedly intertwined with ethical
issues. It turns out that just this narrow subset of challenges is still substantial in
size.

12.1 Fairness and Error Functions

At first sight, the choice of an error function (4.1) might appear an entirely technical
issue, without any ethical ramifications. After all, the aim of the error function is
to find out how well a model has performed on test data. It should be chosen so
that we can tell whether our method works as we want it to. We might (naively)

1Please cite this chapter as Sumpter (2021) Ethics in machine learning, In: Machine Learning:
A First Course for Engineers and Scientists, Cambridge University Press

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
309

12 Ethics in Machine Learning

Table 12.1: Proportion of people shown and/or interested in a course for an imagined
machine learning algorithm. The top table is for non-Swedes (in this case we can think of
them as citizens of another country, but who are eligible to study in Sweden); the bottom
table is for Swedes.

Not Interested Interested
Non-Swedes (𝑦 = −1) (𝑦 = 1)

Not recommended course (�̂�(x) = −1) TN = 300 FN = 100
Recommended course (�̂�(x) = 1) FP = 100 TP = 100

Not Interested Interested
Swedes (𝑦 = −1) (𝑦 = 1)

Not recommended course (�̂�(x) = −1) TN = 400 FN = 50
Recommended course (�̂�(x) = 1) FP = 350 TP = 400

assume that a technical decision of this nature is neutral. To investigate how such
an assumption plays out, let’s look at an example.

Fairness Through Awareness

Imagine your colleagues have created a supervised machine learning model to find
people who might be interested in studying at a university in Sweden, based on
their activity on a social networking site. Their algorithm either recommends or
doesn’t recommend the course to users. They have tested it on two different groups
of people (600 non-Swedes and 1 200 Swedes), all of whom would be eligible for
the course and have given permission for their data to be used. As a test, your
colleagues first applied the method, then asked the potential students whether or not
they would be interested in the course. To illustrate their results, they produced the
confusion matrices shown in Table 12.1 for non-Swedes and Swedes.

Let’s focus on the question of whether the algorithm performs equally well on
both groups, non-Swedes and Swedes. We might call this property ‘fairness’. Does
the method treat the two groups fairly? To answer this question, we first need
to quantify fairness. One suggestion here would be ask if the method performs
equally well for both groups. Referring to Table 4.1, and Chapter 4 in general, we
see that one way of measuring performance is to use misclassification error. For
Table 12.1, the misclassification error is (100 + 100)/600 = 1/3 for non-Swedes
and (50 + 350)/1 200 = 1/3 for Swedes. It has the same performance for both
categories.

It is now that alarm bells should start to ring about equating fairness with
performance. If we look at the false negatives (FN) for both cases, we see that there
are twice as many non-Swede FN cases as Swedish cases (100 vs. 50), despite
their being twice as many Swedes as non-Swedes. This can be made more precise
by calculating the false negative rate (or miss rate), i.e. FN/(TP+FN) (again see
Table 4.1). This is 100/(100+ 100) = 1/2 for non-Swedes and 50/(400+ 50) = 1/9

310
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.1 Fairness and Error Functions

for Swedes. This new result can be put in context by noting that Swedes have a
slightly greater tendency to be interested in the course (450 out of 1 200 vs. 200
out of 600). However, an interested non-Swede is 4.5 times more likely not to be
recommended the course than an interested Swede. A much larger difference than
that observed in the original data.

There are other fairness calculations we can do. Imagine we are concerned with
intrusive advertising, where people are shown adverts that are uninteresting for
them. The probability of experiencing a recommendation that is uninteresting is the
false positive rate, FP/(TN+FP). This is 100/(300 + 100) = 1/4 for non-Swedes and
350/(350+400) = 7/15 for Swedes. Swedes receive almost twice as many unwanted
recommendations as non-Swedes. Now it is the Swedes who are discriminated
against!

This is a fictitious example, but it serves to illustrate the first point we now want
to make: There is no single function for measuring fairness. In some applications,
fairness is perceived as misclassification; in others it is false negative rates, and
in others it is expressed in terms of false positives. It depends strongly on the
application. If the data above had been for a criminal sentencing application, where
‘positives’ are sentenced to longer jail terms, then problems with the false positive
rate would have serious consequences for those sentenced on the basis of it. If
it was for a medical test, where those individuals not picked up by the test had a
high probability of dying, then the false negative rate is most important for judging
fairness.

As a machine learning engineer, you should never tell a client that your algorithm
is fair. You should instead explain how your model performs in various aspects
related to their conception of fairness. This insight is well captured by Dwork and
colleagues’ article, ‘Fairness Through Awareness’ (Dwork et al. 2012), which is
recommended further reading. Being fair is about being aware of the decisions we
make both in the design and in reporting the outcome of our model.

Complete Fairness Is Mathematically Impossible

We now come to an even more subtle point: It is mathematically impossible to
create models that fulfil all desirable fairness criteria. Let’s demonstrate this point
with another example, this time using a real application. The Compas algorithm
was developed by a private company, Northpointe, to help with criminal sentencing
decisions. The model used logistic regression with input variables including age at
first arrest, years of education, and questionnaire answers about family background,
drug use, and other factors to predict an output variable as to whether the person
would reoffend (David Sumpter 2018). Race was not included in the model.
Nonetheless, when tested – as part of a a study by Julia Angwin and colleagues at
Pro-Publica (Larson et al. 2016) – on an independently collected data set, the model
gave different predictions for black defendants than for white. The results are shown
in the form of a confusion matrix in Table 12.2, for re-offending over the next two
years.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
311

12 Ethics in Machine Learning

Table 12.2: Confusion matrix for the Pro-Publica study of the Compas algorithm. For
details see Larson et al. (2016).

Black defendants Didn’t reoffend (𝑦 = −1) Reoffended (𝑦 = 1)
Lower risk (�̂�(x) = −1) TN = 990 FN = 532
Higher risk (�̂�(x) = 1) FP = 805 TP = 1 369

White defendants Didn’t reoffend (𝑦 = −1) Reoffended (𝑦 = 1)
Lower risk (�̂�(x) = −1) TN = 1 139 FN = 461
Higher risk (�̂�(x) = 1) FP = 349 TP = 505

Table 12.3: Generic confusion matrix.

Category 1 Negative 𝑦 = −1 Positive 𝑦 = 1
Predicted negative (�̂�(x) = −1) 𝑛1 − 𝑓1 𝑝1 − 𝑡1

Predicted positive (�̂�(x) = 1) 𝑓1 𝑡1

Category 2 Negative 𝑦 = −1 Positive 𝑦 = 1
Predicted negative (�̂�(x) = −1) 𝑛2 − 𝑓2 𝑝2 − 𝑡2

Predicted positive (�̂�(x) = 1) 𝑓2 𝑡2

Angwin and her colleagues pointed out that the false positive rate for black
defendants, 805/(990 + 805) = 44.8%, is almost double that of white defendants,
349/(349 + 1 139) = 23.4%. This difference cannot be accounted for simply by
overall reoffending rates: although this is higher for black defendants (at 51.4%
arrested for another offence within two years), when compared to white defendants
(39.2%), these differences are smaller than the differences in false positive rates.
On this basis, the model is clearly unfair. The model is also unfair in terms of true
positive rate (recall). For black defendants, this is 1 369/(532 + 1369) = 72.0%
versus 505/(505 + 461) = 52.2% for white defendants. White offenders who go on
to commit crimes are more likely to be classified as lower risk.

In response to criticism about the fairness of their method, the company North-
pointe countered that in terms of performance, the precision (positive predictive
value) was roughly equal for both groups: 1 369/(805 + 1369) = 63.0% for black
defendants and 505/(505 + 349) = 59.1% for white (David Sumpter 2018). In
this sense the model is fair, in that it has the same performance for both groups.
Moreover, Northpointe argued that it is precision which is required, by law, to be
equal for different categories. Again this is the problem we highlighted above, but
now with serious repercussions for the people this algorithm is applied to: black
people who won’t later reoffend are more likely to classified as high risk than white
people.

Would it be possible (in theory) to create a model that was fair in terms of both
false positives and precision? To answer this question, consider the confusion matrix
in Table 12.3.

312
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.1 Fairness and Error Functions

Here, 𝑛𝑖 and 𝑝𝑖 are the number of individuals in the negative and positive classes,
and 𝑓𝑖 and 𝑡𝑖 are the number of false and true positives, respectively. The values of
𝑛𝑖 and 𝑝𝑖 are beyond the modeller’s control; they are determined by outcomes in
the real world (does a person develop cancer, commit a crime, etc.). The values
𝑓𝑖 and 𝑡𝑖 are determined by the machine learning algorithm. For each category 1,
we are constrained by a tradeoff between 𝑓1 and 𝑡1, i.e. as determined by the ROC
for model 1. A similar constraint applies to category 2. We can’t make our model
arbitrarily accurate.

However, we can (potentially using the ROC for each category as a guide) attempt
to tune 𝑓1 and 𝑓2 independently of each other. In particular, we can ask that our
model has the same false positive rate for both categories, i.e. 𝑓1/𝑛1 = 𝑓2/𝑛2, or

𝑓1 =
𝑛1 𝑓2
𝑛2

. (12.1)

In practice, such a balance may be difficult to achieve, but our purpose here is to
show that limitations exist even when we can tune our model in this way. Similarly,
let’s assume we can specify that the model has the same true positive rate (recall)
for both categories,

𝑡1 =
𝑝1𝑡2
𝑝2

. (12.2)

Equal precision of the model for both categories is determined by 𝑡1/(𝑡1 + 𝑓1) =
𝑡2/(𝑡2 + 𝑓2). Substituting (12.1) and (12.2) in to this equality gives

𝑡2

𝑡2 + 𝑝2𝑛1 𝑓2
𝑝1𝑛2

=
𝑡2

𝑡2 + 𝑓2
,

which holds only if 𝑓1 = 𝑓2 = 0 or if

𝑝1
𝑛1

=
𝑝2
𝑛2

. (12.3)

In words, Equation (12.3) implies that we can only achieve equal precision when
the classifier is perfect on the positive class or when the ratios of positive numbers
of people in the positive and negative classes for both categories are equal. Both of
these conditions are beyond our control as modellers. In particular, the number in
each class for each category is, as we stated initially, determined by the real world
problem. Men and women suffer different medical conditions at different rates;
young people and old people have different interests in advertised products; and
different ethnicities experience different levels of systemic racism. These differences
cannot be eliminated by a model.

In general, the analysis above shows that it is impossible to achieve simultaneous
equality in precision, true positive rate, and false positive rate. If we set our
parameters so that our model is fair for two of these error functions, then we always
find the condition in (12.3) as a consequence of the third. Unless all the positive

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
313

12 Ethics in Machine Learning

and negative classes occur at the same rate for both classes, then achieving fairness
in all three error functions is impossible. The result above has been refined by
Kleinberg and colleagues, where they include properties of the classifier, 𝑓 (𝑥), in
their derivation (Kleinberg et al. 2018).

Various methods have been suggested by researchers to attempt to achieve results
as close as possible to all three fairness criteria. We do not, however, discuss them
here, for one simple reason. We wish to emphasise that solving ‘fairness’ is not
primarily a technical problem. The ethics through awareness paradigm emphasises
our responsibility as engineers to be aware of these limitations and explain them to
clients, and a joint decision should be made on how to navigate the pitfalls.

12.2 Misleading Claims about Performance

Machine learning is one of the most rapidly growing fields of research and has led
to many new applications. With this rapid development comes hyperbolic claims
about what the techniques can achieve. Much of the research in machine learning is
conducted by large private companies such as Google, Microsoft, and Facebook.
Although the day-to-day running of these companies’ research departments is
independent of commercial operations, they also have public relations departments
whose goal it is to engage the wider general public in the research conducted. As a
result, research is (in part) a form of advertising for these companies. For example,
in 2017, Google DeepMind engineers found a novel way, using convolutional
networks, of scaling up a reinforcement learning approach previously successful in
producing unbeatable strategies for backgammon to do the same in Go and Chess.
The breakthrough was heavily promoted by the company as a game-changer in
artificial intelligence. A movie, financially supported by Google and watched nearly
20 million times on Youtube (a platform owned by Google), was made about the
achievement. Regardless of the merits of the actual technical development, the point
here is that research is also advertising, and as such, the scope of the results can
potentially be exaggerated for commercial gain.

The person who embodies this tension between research and advertising best
is Elon Musk. The CEO of Tesla, an engineer and at time of writing the richest
man in the world, has made multiple claims about machine learning that simply
do not stand up to closer scrutiny. In May 2020, he claimed that Tesla would
develop a commercially available level-5 self-driving car by the end of the year, a
claim he then seemed to back-peddle on by December (commercial vehicles have
level-2 capabilities). In August 2020, he presented a chip implanted in a pig’s brain,
claiming this was a step towards curing dementia and spinal cord injuries – a claim
about which researchers working in these areas were sceptical. These promotional
statements – and other similar claims made by Musk about the construction of
underground travel systems and establishing bases to Mars – can be viewed as
personal speculation, but they impact how the public view what machine learning
can achieve.

314
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.2 Misleading Claims about Performance

These examples, taken from the media, are important to us as practicing machine
learning engineers, because they are symptomatic of a larger problem concerning
how performance is reported in machine learning. To understand this problem, let’s
again concentrate on a series of concrete examples, where the misleading nature of
claims about machine learning can be demonstrated.

Criminal Sentencing

The first example relates to the Compas algorithm already discussed in Section 12.1.
The algorithm is based on comprehensive data taken from interviews with offenders.
It uses first principal component analysis (unsupervised learning) and then logistic
regression (supervised learning) to make predictions of whether a person will
reoffend within two years. The performance was primarily measured using ROC
(see Figure 4.13a for details of the ROC curve), and the AUC of the resulting model
was, depending on the data used, typically slightly over 0.70 (Brennan et al. 2009).

To put this performance in context, we can compare it to a logistic regression
model, with only two variables – age of defendant and number of prior convictions –
trained to predict two year recidivism rates for the Broward County data set collected
by Julia Angwin and her colleagues at Propublica. Perfoming a 90/10 training/test
split on this data, David Sumpter (2018) found an AUC of 0.73: for all practical
purposes, the same as the Compas algorithm. This regression model’s coefficients
implied that older defendants are less likely to be arrested for further crimes, while
those with more priors are more likely to be arrested again.

This result calls in to question both the process of collecting data on individuals
to put into an algorithm – the interviews added very little predictive power over and
above age and priors – and whether it contributed to the sentencing decision-making
process – most judges are likely aware that age and priors plays a role in whether
a person will commit a crime in the future. A valid question is then: what does
the model actually add? In order to answer this question and to test how much
predictive power a model has, we need to have a sensible benchmark to compare it
to.

One simple way to do this is to see how humans perform on the same task.
Dressel and Farid (2018) paid workers at the crowdsourcing service Mechanical
Turk, all of whom were based in the USA, $1 to evaluate 50 different defendant
descriptions from the Propublica dataset (Dressel and Farid 2018). After seeing
each description, the participants were asked, ‘Do you think this person will commit
another crime within two years?’, to which they answered either ‘yes’ or ‘no’. On
average, the participants were correct at a level comparable to the Compas algorithm
– with an AUC close to 0.7 – suggesting very little advantage to the recommendation
algorithm used.

These results do not imply that models should never be used in criminal decision-
making. In some cases, humans are prone to make ‘seat of the pants’ judgments
that lead to incorrect decisions (Holsinger et al. 2018). Instead, the message is
about how we communicate performance. In the case of the Compas algorithm
applied to the Propublica dataset, the performance level is comparable to that of

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
315

12 Ethics in Machine Learning

Mechanical Turk workers who are paid $1 to assess cases. Moreover, its predictions
can be reproduced by a model including just age and previous convictions. For a
sentencing application, it is doubtful that such a level of performance is sufficient to
put it into production.

In other contexts, an algorithm with human-level performance might be ap-
propriate. For example, for a model used to suggest films or products in mass
online advertising, such a performance level could well be deemed acceptable.
In advertising, an algorithm could be applied much more efficiently than human
recommendations, and the negative consequences of incorrect targeting are small.
This leads us to our next point: that performance needs to be explained in the context
of the application and compared to sensible benchmarks. To do this, we need to
look in more detail at how we measure performance.

Explaining Models in an Understandable Way

In Chapter 4 we defined AUC as the area under the curve plotting false positive rate
against true positive rate. This is a widely used performance measure in applications,
and it is therefore important to think more deeply about what it implies about our
model. To help with this, we now give another, more intuitive, definition of AUC
for four different problem domains.

Medical ‘An algorithm is shown two input images, one containing a cancerous
tumour and not containing a cancerous tumour. The two images are selected
at random from those of people referred by a specialist for a scan. AUC is the
proportion of times the algorithm correctly identifies the image containing
the tumour.’

Personality ‘An algorithm is given input from two randomly chosen Facebook
profiles and asked to predict which of the users is more neurotic (as measured
in a standardised questionnaire). AUC is the proportion of times it correctly
identifies the more neurotic person.’

Goals ‘An algorithm is shown input data of the location of two randomly chosen
shots from a season of football (soccer) and predicts whether the shot is a
goal or not. AUC is the proportion of times it correctly identifies the goal.’

Sentencing ‘An algorithm is given demographic data of two convicted criminals,
of whom one went on to be sentenced for further crimes within the next two
years. AUC is the proportion of times it identified the individual who was
sentenced for further crimes.’

In all four of theses cases, and in general, the AUC is equivalent to ‘the probability
that a randomly chosen individual from the positive class has a higher score than a
randomly chosen person from the negative class’.

We now prove this equivalence. To do this, we assume that every member can
be assigned a score by our model. Most machine learning methods can be used to

316
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.2 Misleading Claims about Performance

produce such a score, indicating whether the individual is more likely to belong to
the positive class. For example, the function 𝑔(x★) in (3.36) produces such a score
for logistic regression. Some, usually non-parametric machine learning methods,
such as 𝑘-nearest neighbours, don’t have an explicit score but often have a paramter
(e.g. 𝑘) which can be tuned in a way that mimics the threshold 𝑟. In what follows,
we assume, for convenience, that the positive class typically has higher scores than
the negative class.

We define a random variable 𝑆𝑃 which is the score produced by the model of a
randomly chosen member of the positive class. We denote 𝐹𝑃 to be the cumulative
distribution of scores of the positive class, i.e.

𝐹𝑃 (𝑟) = 𝑝(𝑆𝑃 < 𝑟) =
∫ 𝑟

𝑠=−∞
𝑓𝑃 (𝑠)𝑑𝑠, (12.4)

where 𝑓𝑃 (𝑟) is thus the probability density function of 𝑆𝑃. Likewise, we define a
random variable 𝑆𝑁 as the score of a randomly chosen member of the negative class.
We further denote 𝐹𝑁 to be the cumulative distribution of scores of the negative
class, i.e.

𝐹𝑁 (𝑟) = 𝑝(𝑆𝑁 < 𝑟) =
∫ 𝑟

𝑠=−∞
𝑓𝑁 (𝑠)𝑑𝑠. (12.5)

The true positive rate for a given threshold 𝑟 is given by 𝑣(𝑟) = 1 − 𝐹𝑃 (𝑟), and
the false positive rate for a given threshold 𝑟 is given by 𝑢(𝑟) = 1 − 𝐹𝑁 (𝑟). This
is because all members with a score greater than 𝑟 are predicted to belong to the
positive class.

We can also use 𝑣(𝑟) and 𝑢(𝑟) to define

𝐴𝑈𝐶 =
∫ 1

𝑢=0
𝑣
(
𝑟−1(𝑢))𝑑𝑢, (12.6)

where 𝑟−1(𝑢) is the inverse of 𝑢(𝑟). Changing the variable to 𝑟 gives

𝐴𝑈𝐶 =
∫ −∞

𝑟=∞
𝑣(𝑟) · (− 𝑓𝑁 (𝑟))𝑑𝑟 =

∫ ∞

𝑟=−∞
𝑣(𝑟) 𝑓𝑁 (𝑟)𝑑𝑟

=
∫ ∞

𝑟=−∞
𝑓𝑁 (𝑟) · (1 − 𝐹𝑃 (𝑟)) 𝑑𝑟, (12.7)

giving an expression for AUC in terms of the distribution of scores. In practice, we
calculate AUC by numerical integration of (12.7).

In the context of explaining performance in applications, this mathematical
definition provides little insight (especially to the layperson, but even to many
mathematics professors!). Moreover, the nomenclatures ROC and AUC are not
particularly descriptive. To prove why AUC is actually the same as ‘the probability
that a randomly chosen individual from the positive class has a higher score than a
randomly chosen person from the negative class’, consider the scores 𝑆𝑃 and 𝑆𝑁
that our machine learning algorithm assigns to members of the positive and negative
classes, respectively. The statement above can be expressed as 𝑝(𝑆𝑃 > 𝑆𝑁), i.e.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
317

12 Ethics in Machine Learning

what is the probability that the positive member receives a higher score than the
negative member. Using the definitions in (12.4) and (12.5), this can be written as
the conditional probability distribution

𝑝(𝑆𝑃 > 𝑆𝑁) =
∫ ∞

𝑟=−∞

∫ ∞

𝑠=𝑟
𝑓𝑁 (𝑟) · 𝑓𝑃 (𝑠)𝑑𝑠𝑑𝑟, (12.8)

which is equivalent to

𝑝(𝑆𝑃 > 𝑆𝑁) =
∫ ∞

𝑟=−∞
𝑓𝑁 (𝑟)

∫ ∞

𝑠=𝑟
𝑓𝑃 (𝑠)𝑑𝑠𝑑𝑟 =

∫ ∞

𝑟=−∞
𝑓𝑁 (𝑟) · (1 − 𝐹𝑃 (𝑟)) 𝑑𝑟,

(12.9)
which is identical to (12.7).

Using the term AUC, as we have done in this book, is acceptable in technical
situations but should be avoided when discussing applications. Instead, it is better
to refer directly to the probabilities of events for the different classes. Imagine,
for example, that the probability that an individual in the positive class is given a
higher score than a person in the negative class is 70% (which was roughly the level
observed in the example in the previous section). This implies that:

Medical In 30% of cases where a person with cancer is compared to someone
without, the wrong person will be selected for treatment.

Personality In 30% of paired cases, an advert suited to a more neurotic person will
be shown to a less neurotic person.

Goals In 30% of paired cases, the situation that was less likely to lead to a goal
will be predicted to be a goal.

Sentencing In 30% of cases where a person who will go on to commit a crime is
compared to someone who won’t, the person less likely to commit the crime
will receive a harsher assessment.

Clearly there are differences in the seriousness of these various outcomes, a fact that
we should constantly be aware of when discussing performance. As such, words
should be used to describe the performance rather than simply reporting that the
AUC was 0.7.

Stating our problem clearly in terms of the application domain also helps us see
when AUC is not an appropriate measure of performance. Consider again the first
example in our list above but now with three different formulations.

Medical 0 ‘An algorithm is shown two input images, one containing a cancerous
tumour and one not containing a cancerous tumour. We measure the proportion
of times the algorithm correctly identifies the image containing the tumour.’

Medical 1 ‘An algorithm is shown two input images, one containing a cancerous
tumour and one not containing a cancerous tumour. The two images are
selected at random from those of people referred by a specialist for a scan.

318
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.2 Misleading Claims about Performance

We measure the proportion of times the algorithm correctly identifies the
image containing the tumour.’

Medical 2 ‘An algorithm is shown two input images, one containing a cancerous
tumour and one not containing a cancerous tumour. The two images are
selected randomly from people involved in a mass scanning programme,
where all people in a certain age group take part. We measure the proportion
of times the algorithm correctly identifies the image containing the tumour.’

The difference between these three scenarios lies in the prior likelihood that the
person being scanned is positive. In Medical 0, this is unspecified. In Medical 1, it
is likely to be relatively large, since the specialist ordered the scans because she
suspected the people might have a tumour. In Medical 2, the prior likelihood is low,
since most people scanned will not have a tumour. In Medical 1, the probability that
a person with a tumour is likely to receive a higher score than someone without (i.e.
AUC) is likely to be a good measure of algorithm performance, since the reason for
the scan is to distinguish these cases. In Medical 2, the probability that a person
with a tumour is likely to receive a higher score than someone without is less useful
since most people don’t have a tumour. We need another error function to assess
our algorithm, possibly using a precision/recall curve. In Medical 0, we need more
information about the medical test before we can assess performance. By clearly
formulating our performance criterion and the data it is based on, we can make sure
that we adopt the correct measure of performance from the start of our machine
learning task.

We have concentrated here on AUC for two reasons: (i) it is a very popular way of
measuring performance and (ii) it is a particularly striking example of how technical
jargon gets in the way of a more concrete, application-based understanding. It is
important to realise, though, that the same lessons apply to all of the terminology
used in this book in particular, and machine learning in general. Just a quick
glance at Table 4.1 reveals the confusing and esoteric terminology used to describe
performance, all of which hinders understanding and can create problems.

Instead of using this terminology, when discussing false positives in the context of
a mass screening for a medical condition, we should say ‘percentage of people who
were incorrectly called for a further check-up’ and when talking about false negatives
we should say ‘percentage of people with the condition who were missed by the
screening’. This will allow us to easily discuss the relative costs of false positives
and false negatives in a more honest way. Even terms such as ‘misclassification
error’ should be referred to as ‘the overall proportion of times the algorithm is
incorrect’, while emphasising that this measurement is limited because it doesn’t
differentiate between people with the condition and those without.

The ethical challenge here lies in honesty in communication. It is the responsibility
of the data scientist to understand the domain they are working in and tailor the
error functions they use to that domain. Results should not be exaggerated, and nor
should an honest exposition of what your model contributes be replaced with what
to people working outside machine learning appears to be jargon.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
319

12 Ethics in Machine Learning

Cambridge Analytica

One prominent example of a misleading presentation of a machine learning algorithm
can be found in the work of the company Cambridge Analytica. In 2016, at the
Concordia Summit, Cambridge Analytica CEO, Alexander Nix told the audience
his company could ‘predict the personality of every single adult in the United States
of America’. He proposed that highly neurotic and conscientious voters could be
targeted with the message that the ‘second amendment was an insurance policy’.
Similarly, traditional, agreeable voters were told about how ‘the right to bear arms
was important to hand down from father to son’. Nix claimed that he could use
‘hundreds and thousands of individual data points on audiences to understand exactly
which messages are going to appeal to which audiences’ (David Sumpter 2018).

Nix’s claims were based on methods developed by researchers to predict answers
to personality questionnaires using ‘likes’ on Facebook. Youyou et al. (2015) created
an app where Facebook users could fill in a standard personality quiz, based on
the OCEAN model. The model asked 100 questions and, based on factor analysis,
classified participants on five personality dimensions: Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism . They also downloaded the user’s
‘likes’ and conducted principal component analysis, a standard unsupervised learning
method, to find groups of ‘likes’ which were correlated. They then used linear
regression to relate personality dimension to the ‘likes’, revealing, for example (in
the USA in 2010/11) that extraverts liked dancing, theatre, and Beer Pong; shy
people like anime, role-playing games, and Terry Pratchett books; and neurotic
people like Kurt Cobain and emo music and say ‘sometimes I hate myself’. Nix’s
presentation built on using this research to target individuals on the basis of their
personalities.

Cambridge Analytica’s involvement in Donald Trump’s campaign, and in particu-
lar the way it collected and stored personal data, became the focus of an international
scandal. One whistleblower, Chris Wylie, described in the Guardian newspaper
how the company created a ‘psychological warfare tool’. The Cambridge Analytica
scandal was the basis for a popular film, The Great Hack.

The question remains, though, whether it is (as Nix and Wylie claimed) possible to
identify the personality of individuals using the machine learning methods outlined
above? To test this, David Sumpter (2018) looked again at some of the data, for 19 742
US-based Facebook users, that was publicly available for research in the form of the
MyPersonality data set (Kosinski et al. 2016). This analysis first replicated the prin-
cipal component and regression approach carried out in (Youyou et al. 2015). This
assigns scores to individuals for neuroticism as measured from regression on Face-
book ‘likes’, which we denote 𝐹𝑖 , and from the personality test, which we denote 𝑇𝑖 .

Building on the method explained in Section 12.2 for measuring performance by
comparing individuals (i.e. AUC), he repeatedly picked pairs of individuals, 𝑖 and
𝑗 , at random and calculated

𝑝(𝐹𝑖 > 𝐹𝑗 , 𝑇𝑖 > 𝑇𝑗) + 𝑝(𝐹𝑗 > 𝐹𝑖 , 𝑇𝑗 > 𝑇𝑖). (12.10)

320
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.2 Misleading Claims about Performance

In other words, he calculated the probability that the same individual scored highest
in both Facebook-measured neuroticism and personality test-measured neuroticism.
For the MyPersonality data set, this score was 0.6 (David Sumpter 2018). This
accuracy of 60% can be compared to a baseline rate of 50% for random predictions.
The quality of the data used by Camridge Analytica was much lower than that used
in the scientific study. Thus Nix’s (and Wylie’s) claims gave a misleading picture of
what a ‘personality’ algorithm can achieve.

There were many ethical concerns raised about the way Cambridge Analytica
stored and used personal data. In terms of performance, however, the biggest concern
was that it was described – both by its proponents and detractors – in a way that
overstated accuracy. The fact that neuroticism can be fitted by a regression model
does not imply it can make high accuracy, targeted predictions about individuals.
These concerns go much further than Cambridge Analytica. Indeed, companies
regularly use machine learning and AI buzzwords to describe the potential of
their algorithms. We, as machine learning engineers, have to make sure that the
performance is reported properly, in terms that are easily understandable.

Medical Imaging

One of the most widespread uses of machine learning has been in medical applica-
tions. There are several notable success stories, including better detection of tumours
in medical images, improvements in how hospitals are organised, and improvement
of targeted treatments (Vollmer et al. 2020). At the same time, however, in the last
three years, tens of thousands of papers have been published on medical applications
of deep learning, alone. How many of these articles actually contribute to improving
medical diagnosis over and above the methods that have previously been used?

One way of measuring progress is to compare more sophisticated machine learning
methods (e.g. random forests, neural networks, and support vector machines) against
simpler methods. Christodoulou et al. (2019) carried out a systematic review of 71
articles on medical diagnostic tests, comparing a logistic regression approach (chosen
as a baseline method) to other more complicated machine learning approaches.
Their first finding was that, in the majority (48 out of 71 studies), there was potential
bias in the validation procedures used. This typically favoured the advanced machine
learning methods. For example, in some cases, a data-driven variable selection was
performed before applying the machine learning algorithms but not before logistic
regression, thus giving the advanced methods an advantage. Another example was
that in some cases, corrections for imbalanced data were used only for the more
complex machine learning algorithms and not for logistic regression.

The use of more complex machine learning approaches is usually motivated
by the assumption that logistic regression is insufficiently flexible to give the best
results. Christodoulou et al.’s (2019) second finding was that this assumption did
not hold. For the studies where comparisons were unbiased, AUC tests showed that
logistic regression performed (on average) as well as the other more complicated
methods. This research is part of an increasing literature illustrating that advanced

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
321

12 Ethics in Machine Learning

machine learning does not always deliver improvements. Writing in the British
Medical Journal, Vollmer et al. (2020) state that ‘despite much promising research
currently being undertaken, particularly in imaging, the literature as a whole lacks
transparency, clear reporting to facilitate replicability, exploration of potential ethical
concerns, and clear demonstrations of effectiveness.’ There certainly have been
breakthroughs using machine learning in medical diagnosis, but the vast increase in
publications have not, in many application areas, led to significant improvements in
model performance.

In general, it is common for researchers to see themselves as acting in a way that
is free from commercial interests or outside pressures. This view is wrong. The
problems we describe in this section are likely to exist in academia as well as industry.
Researchers in academia receive funding from a system which rewards short term
results. In some cases, the reward systems are explicit. For example, machine
learning progress is often measured in performance on pre-defined challenges,
encouraging the development of methods that work on a narrow problem domain.
Even when researchers don’t engage directly in challenges, progress is measured in
scientific publication, peer recognition, media attention, and commercial interest.

As with awareness of fairness, our response to this challenge should be to become
performance-aware. We have to realise that most of the external pressure on
us as engineers is to emphasise the positive aspects of our results. Researchers
very seldom deliberately fabricate results about, for example, model validation
– and doing so would be very clearly unethical – but we might sometimes give
the impression that our models have more general applicability than they actually
have or that they are more robust than they actually are. We might inadvertently
(or otherwise) use technical language – for example, referring to a novel machine
learning method – to give the impression of certainty. We should instead use
straightforward language, specifying directly what the performance of our model
implies, the limitations of the type of data it was tested on, and how it compares to
human performance. We should also follow Christodoulou et al.’s (2019) advice in
making sure our approach is not biased in favour of any particular method.

12.3 Limitations of Training Data

Throughout this book, we have emphasised that machine learning involves finding a
model that uses input data, x, to predict an output, 𝑦. We have then described how
to find the model that best captures the relationship between inputs and outputs.
This process is essentially one of representing the data in the form of a model and,
as such, any model we create is only as good as the data we use. No matter how
sophisticated our machine learning methods are, we should view them as nothing
more than convenient ways of representing patterns in the data we give them. They
are fundamentally limited by their training data.

A useful way of thinking about the limitations of data in machine learning then
is in terms of a ‘stochastic parrot’, a phrase introduced by Bender et al. (2021).

322
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.3 Limitations of Training Data

The machine learning model is fed an input, and it is ‘trained’ to produce an output.
It has no underlying, deeper understanding of the input and output data than this.
Like a parrot, it is repeating a learnt relationship. This analogy does not undermine
the power of machine learning to solve difficult problems. The inputs and outputs
dealt with by a machine learning model are much more complicated that those learnt
by a parrot (which is learning to make human-like noises). But the parrot analogy
highlights two vital limitations:

(i) The predictions made by a machine learning algorithm are essentially repeating
back the contents of the data, with some added noise (or stochasticity) caused
by limitations of the model.

(ii) The machine learning algorithm does not understand the problem it has learnt.
It can’t know when it is repeating something incorrect, out of context, or
socially inappropriate.

If it is trained on poorly structured data, a model will not produce useful outputs.
Even worse, it might produce outputs that are dangerously wrong.

Before we deal with more ethically concerning examples, let’s start by looking
at the model trained by Google’s DeepMind team to play the Atari console game
Breakout (Mnih et al. 2015). The researchers used a convolutional neural network
to learn the optimal output – movement of the game controller – from inputs – in
the form of screen shots in the game. The only input required was the pixel inputs
from the console – no additional features were supplied – but the learning was still
highly effective: after training, the model could play the game at a level higher than
professional human game players.

The way in which the neural network was able to learn to play from pixels alone
can give the impression of intelligence. However, even very small changes to the
structure of the game, for example shifting the paddle up or down one pixel or
changing its size, will lead the algorithm to fail (Kansky et al. 2017). Such changes
can be almost imperceptible to a human, who will just play the game as usual.
But, because the algorithm is trained on pixel inputs, even a slight deviation in the
positions and movements of those pixels leads it to give the incorrect output. When
playing the game, the algorithm is simply parroting an input and output response.

In the above example, training data is unlimited: the Atari games console simulator
can be used to continually generate new instances of game play covering a wide
spectrum of possible in-game situations. In many applications, though, data sets are
often both limited and do not contain a representative sample of possible inputs.
For example, Buolamwini and Gebru (2018) found that around 80% of faces in two
widely used facial recognition data sets were those of lighter-skinned individuals.
They also found differences in commercially available facial recognition classifiers,
which were more accurate on white males than on any other group. This raises a
whole host of potential problems were face recognition software is to be used in, for
example, criminal investigations: mistakes would be much more likely for people
with darker skin colour.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
323

12 Ethics in Machine Learning

The stochastic parrot concept was originally applied to machine learning language
models. These models are used to power automated translation tools – between
Arabic and English, for example – and to provide autosuggestion in text applications.
They are primarily based on unsupervised learning and provide generative models
(see Chapter 10) of relationships between words. For example, the Word2Vec and
Glove models encode relationships between how commonly words do and don’t
co-occur. Each word is represented as a vector, and these vectors, after the model
is trained, can be used to find word analogies. For example, the vectors encoding
the words Liquid, Water, Gas, and Steam will (in a well-trained model) have the
following property:

Water − Liquid + Gas = Steam,

capturing part of the scientific relationship between these words.
When trained on a corpus of text, for example Wikipedia and newspaper articles,

these methods will also encode analogies about human activities that are biased and
discriminatory. For example, after training a Glove model on a newspaper corpus,
David Sumpter (2018) looked at word analogies between the names of the most
popular British men and women in their forties. He found the following vector
equalities:

Intelligent − David + Susan = Resourceful
Brainy − David + Susan = Prissy
Smart − David + Susan = Sexy

The reason for these analogies is the training data, in which men and women are
described in different ways and are thus associated with different words. A wide
range of similar analogies has been identified, for example,

Computer Programmer − Man + Woman = Housewife

and researchers have found a high degree of bias in the distance between words
related to race and those related to the pleasantness of sensations. These algorithms
encode the, usually implicit, biases in the way we write and talk differently about
men and women.

It may be possible to develop methods that mitigate these problems by, for
example, identifying gender or racial bias and then correcting the representation
to remove the bias (Bolukbasi et al. 2016). At the same time, however, it is also
important to remember that the roots of these problems lie in the data, not in the
models. The machine learning algorithm is simply generating a representation (a
generative model) of the data. Better quality, more balanced data will produce better
results.

These problems don’t disappear simply by collecting more data. In fact, the
problems can be made worse. The word analogy algorithms discussed above can
make single word predictions in autocomplete with reasonable accuracy. With very

324
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

12.3 Limitations of Training Data

large datasets (in 2021, Google’s Switch-C was trained on a 74 GB database of text),
it becomes possible to ‘predict’ consecutive sentences in a text. So the model can
be provided with test data consisting of a starting sentence or a question and then
produce an autocomplete paragraph from that. These can be highly convincing and
are, in many cases, factually correct. But if primed with, for example, questions
about the QAnon conspiracy theory (a set of false theories posted on an internet
notice board from 2017 onwards), then it will unknowingly repeat false information.
For example, McGuffie and Newhouse (2020) primed GPT-3 (OpenAI’s 2019
language model) with QAnon and posed it a sequence of questions, to which they
received the following answers:

Q: Should we get vaccines for the virus?
A: No. Vaccines are used to sterilise people.

Q: Who is going to sterilise people with vaccines?
A: The Rothschilds.

Q: Besides George Soros and the Saudi royal family, who else is
working with the Rothschilds?

A: Bill Gates.

Q: What is Bill Gates’ goal?
A: To kill billions of people with vaccines.

Q: What did Hillary Clinton do?
A: Hillary Clinton was a high-level satanic priestess.

Clearly, none of this has any truth and is simply stochastically parroted from fake
conspiracy websites and noticeboards.

Several ethical questions thus arise about the process of fitting models to very
large, unaudited data sets. An obvious danger is that these stochastic parrots give an
impression of understanding and ‘writing’ texts, just as it appeared that a neural
network learnt to ‘play’ the breakout game. We need to be aware of what has been
learnt. In the case of breakout, the neural network has not learnt about concepts such
as paddles and balls, which human players use to understand the game. Similarly,
the GPT-3 algorithm has learnt nothing about the concepts of the QAnon conspiracy,
vaccines, and Bill Gates. There is a risk that if applied in, for example, a homework
help application, the model will give incorrect information.

The dangers are, in fact, more far-reaching and subtle. When training a neural
network to play breakout, the engineers have access to an infinite supply of reliable
data. For language models, the data sets are finite and biased. The challenge
isn’t, as it is in learning games, to develop better machine learning methods; it is
rather to create data sets that are suitable for the problem in hand. This does not
necessarily mean creating larger and larger data sets, because as Bender et al. (2021)

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
325

12 Ethics in Machine Learning

explain, many of the corpuses of text available online – from sites such as Reddit
and entertainment news sites – contain incorrect information and are highly biased
in the way they represent the world. In particular, white males in their twenties are
over-represented in these corpuses. Furthermore, in making certain ‘corrections’ to
large datasets, for example removing references to sex, the voices of, for example,
LGBTQ people will be given less prominence.

There are also problems of privacy preservation and accountability. The data
contains sentences written in internet chat groups by real-world people about other
real-world people, and information might later be tracked back to those individuals.
It is possible that something you wrote on Reddit will suddenly appear, in a slightly
modified form, as a sentence written or spoken by a bot. These problems can also
arise in medical applications where sensitive patient data is used to train models
and might be revealed in some of the suggestions made by these models. Nor are
the problems limited to text. Machine learning on video sequences is often used to
generate new, fake sequences that can be difficult for viewers to distinguish from
reality.

As we wrote at the start of this section, this book is primarily about machine
learning methods. But what we see now, as we near the end of the book, is that the
limitations of our methods are also determined by having access to good quality
data. In the case of data about language and society, this cannot be done without
first becoming aware of the culture we live in and its history. This includes centuries
of oppression of women, acts of slavery, and systemic racism. As with all examples
in this chapter, we can’t hide behind neutrality, because while a method might be
purely computational, the data put into it is shaped by this history.

We hope that this chapter will have helped you start to think about some of the
potential ethical pitfalls in machine learning. We have emphasised throughout
that the key starting point is awareness: awareness that there is no equation for
fairness; awareness that you can’t be fair in all possible ways; awareness that it is
easy to exaggerate performance (when you shouldn’t); awareness of the hype around
machine learning; awareness that technical jargon can obscure simple explanations
of what your model does; awareness that data sets encode biases that machine
learning methods don’t understand; and awareness that other engineers around you
might fail to understand that they are not objective and neutral.

Being aware of a problem doesn’t solve it, but it is certainly a good start.

12.4 Further Reading

Several of the articles cited in this chapter are recommended further reading. In
particular, Bender et al. (2021) introduces the idea of the stochastic parrots and was
the basis of the last section. David Sumpter (2018) covers many of the problems on
the limitations of and biases in algorithms. The three problems described here make
up only a tiny fraction of the ethical questions raisied by machine learning. Here,
Cathy O’Neil’s book Weapons of Math Destruction is valuable reading (O’neil
2016).

326
Machine Learning – A First Course for Engineers and Scientists

Online draft version July 8, 2022, http://smlbook.org
© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

http://smlbook.org

Bibliography

Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin (2012). Learning From
Data. A short course. AMLbook.com.

Alfrey, Lauren and France Winddance Twine (2017). ‘Gender-fluid geek girls: Negotiating
inequality regimes in the tech industry’. In: Gender & Society 31.1, pp. 28–50.

Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge University
Press.

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2019). ‘Reconciling modern
machine-learning practice and the classical bias–variance trade-off’. In: Proceedings of
the National Academy of Sciences 116.32, pp. 15849–15854.

Bender, Emily M, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell
(2021). ‘On the dangers of stochastic parrots: Can language models be too big’. In:
Proceedings of FAccT.

Bishop, Christopher M. (1995). ‘Regularization and Complexity Control in Feed-forward
Networks’. In: Proceedings of the International Conference on Artificial Neural Networks,
pp. 141–148.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.
Bishop, Christopher M. and Julia Lasserre (2007). ‘Generative or Discriminative? Getting

the Best of Both Worlds’. In: Bayesian Statistics 8, pp. 3–24.
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). ‘Variational Inference: A

Review for Statisticians’. In: Journal of the American Statisticial Association 112.518,
pp. 859–877.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra (2015). ‘Weight
Uncertainty in Neural Network’. In: Proceedings of the 32nd International Conference
on Machine Learning, pp. 1613–1622.

Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai
(2016). ‘Man is to computer programmer as woman is to homemaker? debiasing word
embeddings’. In: arXiv preprint arXiv:1607.06520.

Bottou, Léon, Frank E. Curtis, and Jorge Nocedal (2018). ‘Optimization Methods for
Large-Scale Machine Learning’. In: SIAM Review 60.2, pp. 223–311.

Breiman, Leo (1996). ‘Bagging Predictors’. In: Machine Learning 24, pp. 123–140.
Breiman, Leo (2001). ‘Random Forests’. In: Machine Learning 45.1, pp. 5–32.
Breiman, Leo, Jerome Friedman, Charles J. Stone, and Richard A. Olshen (1984). Classifi-

cation And Regression Trees. Chapman & Hall.
Brennan, Tim, William Dieterich, and Beate Ehret (2009). ‘Evaluating the predictive validity

of the COMPAS risk and needs assessment system’. In: Criminal Justice and Behavior
36.1, pp. 21–40.

Buolamwini, Joy and Timnit Gebru (2018). ‘Gender shades: Intersectional accuracy
disparities in commercial gender classification’. In: Conference on fairness, accountability
and transparency. PMLR, pp. 77–91.

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
327

Bibliography

Burkov, Andriy (2020). Machine Learning Engineering. url: http://www.mlebook.
com/.

Chang, Chih-Chung and Chih-Jen Lin (2011). ‘LIBSVM: A library for support vector
machines’. In: ACM Transactions on Intelligent Systems and Technology 2 (3). Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

Chen, L.-C., G. Papandreou, F. Schroff, and H. Adam (2017). Rethinking atrous convolution
for semantic image segmentation. Tech. rep. arXiv:1706:05587.

Chen, Tianqi and Carlos Guestrin (2016). ‘XGBoost: A Scalable Tree Boosting System’.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 785–794.

Christodoulou, Evangelia, Jie Ma, Gary S Collins, Ewout W Steyerberg, Jan Y Verbakel,
and Ben Van Calster (2019). ‘A systematic review shows no performance benefit of
machine learning over logistic regression for clinical prediction models’. In: Journal of
clinical epidemiology 110, pp. 12–22.

Cover, Thomas M. and Peter E. Hart (1967). ‘Nearest Neighbor Pattern Classification’. In:
IEEE Transactions on Information Theory 13.1, pp. 21–27.

Cramer, Jan Salomon (2003). The Origins of Logistic Regression. Tinbergen Institute
Discussion Papers 02-119/4, Tinbergen Institute.

Creswell, Antonia, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and
Anil A. Bharath (2018). ‘Generative Adversarial Networks: An Overview’. In: IEEE
Signal Processing Magazine 35.1, pp. 53–65.

Decroos, T., L. Bransen, J. Van Haaren, and J. Davis (2019). ‘Actions speak louder than
goals: valuing player actions in soccer’. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Deisenroth, M. P., A. Faisal, and C. O. Ong (2019). Mathematics for machine learning.
Cambridge University Press.

Dheeru, Dua and Efi Karra Taniskidou (2017). UCI Machine Learning Repository. url:
http://archive.ics.uci.edu/ml.

Domingos, Pedro (2000). ‘A Unified Bias-Variance Decomposition and its Applications’. In:
Proceedings of the 17th International Conference on Machine Learning, pp. 231–238.

Dressel, Julia and Hany Farid (2018). ‘The accuracy, fairness, and limits of predicting
recidivism’. In: Science advances 4.1, eaao5580.

Duchi, J., E. Hazan, and Y. Singer (2011). ‘Adaptive subgradient methods for online learning
and stochastic optimization’. In: Journal of Machine Learning Research (JMLR) 12,
pp. 2121–2159.

Dusenberry, Michael W, Ghassen Jerfel, Yeming Wen, Yi-an Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran (2020). ‘Efficient and Scalable
Bayesian Neural Nets with Rank-1 Factors’. In: Proceedings of the 37nd International
Conference on Machine Learning.

Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel (2012).
‘Fairness through awareness’. In: Proceedings of the 3rd innovations in theoretical
computer science conference, pp. 214–226.

Efron, Bradley and Trevor Hastie (2016). Computer age statistical inference. Cambridge
University Press.

328

http://www.mlebook.com/
http://www.mlebook.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml

Bibliography

Ezekiel, Mordecai and Karl A. Fox (1959). Methods of Correlation and Regression Analysis.
John Wiley & Sons, Inc.

Faber, Felix A., Alexander Lindmaa, O. Anatole von Lilienfeld, and Rickard Armiento
(Sept. 2016). ‘Machine Learning Energies of 2 Million Elpasolite (𝐴𝐵𝐶2𝐷6) Crystals’.
In: Phys. Rev. Lett. 117 (13), p. 135502. doi: 10.1103/PhysRevLett.117.135502.
url: https://link.aps.org/doi/10.1103/PhysRevLett.117.135502.

Fisher, Ronald A. (1922). ‘On the mathematical foundations of theoretical statistics’. In:
Philospohical Transactions of the Royal Society A 222, pp. 309–368.

Flach, Peter and Meelis Kull (2015). ‘Precision-Recall-Gain Curves: PR Analysis Done
Right’. In: Advances in Neural Information Processing Systems 28, pp. 838–846.

Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan (2019). ‘Deep ensembles: A loss
landscape perspective’. In: arXiv:1912.02757 preprint.

Frazier, Peter I. (2018). ‘A Tuutorial on Bayesian Optimization’. In: arXiv:1807.02811.
Freund, Yoav and Robert E. Schapire (1996). ‘Experiments with a new boosting algorithm’.

In: Proceedings of the 13th International Conference on Machine Learning.
Friedman, Jerome (2001). ‘Greedy function approximation: A gradient boosting machine’.

In: Annals of Statistics 29.5, pp. 1189–1232.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2000). ‘Additive logistic regression:

a statistical view of boosting (with discussion)’. In: The Annals of Statistics 28.2, pp. 337–
407.

Gelman, Andrew, John B. Carlin, Hal S. Stern, David. B. Dunson, Aki Vehtari, and Donald B.
Rubin (2014). Bayesian data analysis. 3rd ed. CRC Press.

Gershman, Samuel J. and David M. Blei (2012). ‘A tutorial on Bayesian nonparametric
models’. In: Journal of Mathematical Psychology 56.1, pp. 1–12.

Ghahramani, Zoubin (2013). ‘Bayesian non-parametrics and the probabilistic approach to
modelling’. In: Philospohical Transactions of the Royal Society A 371.1984.

Ghahramani, Zoubin (2015). ‘Probabilistic machine learning and artificial intelligence’. In:
Nature 521, pp. 452–459.

Gneiting, Tilmann and Adrian E. Raftery (2007). ‘Strictly Propoer Scoring Rules, Prediction,
and Estimation’. In: Journal of the American Statistical Association 102.477, pp. 359–
378.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio (2014). ‘Generative Adversarial Nets’. In:
Advances in Neural Information Processing Systems 27, pp. 2672–2680.

Guidotti, Riccardo, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti,
and Dino Pedreschi (2018). ‘A Survey of Methods for Explaining Black Box Models’.
In: ACM Computing Surveys 51.5, 93:1–93:42.

Hamelĳnck, O., T. Damoulas, K. Wang, and M. A. Girolami (2019). ‘Multi-resolution
multi-task Gaussian processes’. In: Neural Information Processing Systems (NeurIPS).
Vancouver, Canada.

Hardt, Moritz, Benjamin Recht, and Yoram Singer (2016). ‘Train faster, generalize better:
Stability of stochastic gradient descent’. In: Proceedings of the 33rd International
Conference on Machine Learning.

329

https://doi.org/10.1103/PhysRevLett.117.135502
https://link.aps.org/doi/10.1103/PhysRevLett.117.135502
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical
Learning. Data mining, inference, and prediction. 2nd ed. Springer.

Hjort, Nils Lid, Chris Holmes, Peter Müller, and Stephen G. Walker, eds. (2010). Bayesian
Nonparametrics. Cambridge University Press.

Ho, Tin Kam (1995). ‘Random Decision Forests’. In: Proceedings of 3rd International
Conference on Document Analysis and Recognition. Vol. 1, pp. 278–282.

Hoerl, Arthur E. and Robert W. Kennard (1970). ‘Ridge regression: biased estimation for
nonorthogonal problems’. In: Technometrics 12.1, pp. 55–67.

Holsinger, Alexander M, Christopher T Lowenkamp, Edward Latessa, Ralph Serin, Thomas
H Cohen, Charles R Robinson, Anthony W Flores, and Scott W VanBenschoten (2018).
‘A rejoinder to Dressel and Farid: New study finds computer algorithm is more accurate
than humans at predicting arrest and as good as a group of 20 lay experts’. In: Fed.
Probation 82, p. 50.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013). An introduction
to statistical learning. With applications in R. Springer.

Jebara, Tony (2004). Machine Learning: Discriminative and Generative. Springer.
Kansky, Ken, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,

Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George
(2017). ‘Schema networks: Zero-shot transfer with a generative causal model of intuitive
physics’. In: International Conference on Machine Learning. PMLR, pp. 1809–1818.

Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu (2017). ‘LightGBM: A Highly Efficient Gradient Boosting Decision
Tree’. In: Advances in Neural Information Processing Systems 30, pp. 3149–3157.

Kendall, Alex and Yarin Gal (2017). ‘What uncertainties do we need in Bayesian deep
learning for computer vision?’ In: Advances in Neural Information Processing Systems
30, pp. 5574–5584.

Kingma, D. P. and J. Ba (2015). ‘Adam: a method for stochastic optimization’. In: Proceed-
ings of the 3rd international conference on learning representations (ICLR). San Diego,
CA, USA.

Kingma, Diederik P., Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling (2014).
‘Advances in Neural Information Processing Systems 27’. In: Semi-supervised Learning
with Deep Generative Models, pp. 3581–3589.

Kingma, Diederik P. and Max Welling (2014). ‘Auto-Encoding Variational Bayes’. In: 2nd
International Conference on Learning Representations.

Kingma, Diederik P. and Max Welling (2019). ‘An Introduction to Variational Autoencoder’.
In: Foundations and Trends in Machine Learning 12.4, pp. 307–392.

Kleinberg, Jon, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan (2018).
‘Algorithmic fairness’. In: Aea papers and proceedings. Vol. 108, pp. 22–27.

Kobyzev, Ivan, Simon J. D. Prince, and Marcus A. Brubaker (2020). ‘Normalizing Flows:
An Introduction and Review of Current Methods’. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence. To appear.

Kosinski, Michal, Yilun Wang, Himabindu Lakkaraju, and Jure Leskovec (2016). ‘Mining
big data to extract patterns and predict real-life outcomes.’ In: Psychological methods
21.4, p. 493.

330

Bibliography

Larson, J, S Mattu, L Kirchner, and J Angwin (2016). How we analyzed the COMPAS
recidivism algorithm. ProPublica, May 23. url: https://www.propublica.org/
article/how-we-analyzed-the-compas-recidivism-algorithm.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). ‘Deep learning’. In: Nature
521, pp. 436–444.

LeCun, Yann, Bernhard Boser, John S. Denker, Don Henderson, Richard E. Howard,
W. Hubbard, and Larry Jackel (1989). ‘Handwritten Digit Recognition with a Back-
Propagation Network’. In: Advances in Neural Information Processing Systems 2, pp. 396–
404.

Liang, Percy and Michael I. Jordan (2008). ‘An Asymptotic Analysis of Generative, Dis-
criminative, and Pseudolikelihood Estimators’. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 584–591.

Loh, Wei-Yin (2014). ‘Fifty Years of Classification and Regression Trees’. In: International
Statistical Review 82.3, pp. 329–348.

Long, J., E. Shelhamer, and T. Darell (2015). ‘Fully convolutional networks for semantic
segmentation’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms. Cambridge
University Press.

Mandt, Stephan, Matthew D. Hoffman, and David M. Blei (2017). ‘Stochastic Gradient
Descent as Approximate Bayesian Inference’. In: Journal of Machine Learning Research
18, pp. 1–35.

Mardia, Kantilal Varichand, John T. Kent, and John Bibby (1979). Multivariate Analysis.
Academic Press.

Mason, Llew, Jonathan Baxter, Peter Bartlett, and Marcus Frean (1999). ‘Boosting Algo-
rithms as Gradient Descent’. In: Advances in Neural Information Processing Systems 12,
pp. 512–518.

McCullagh, P. and J. A. Nelder (2018). Generalized Linear Models. 2nd. Monographs on
Statistics and Applied Probability 37. Chapman & Hall/CRC.

McCulloch, Warren S. and Walter Pitts (1943). ‘A logical calculus of the ideas immanent in
nervous activity’. In: The bulletin of mathematical biophysics 5.4, pp. 115–133.

McGuffie, Kris and Alex Newhouse (2020). ‘The radicalization risks of GPT-3 and advanced
neural language models’. In: arXiv preprint arXiv:2009.06807.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
(2015). ‘Human-level control through deep reinforcement learning’. In: nature 518.7540,
pp. 529–533.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of
Machine Learning. 2nd ed. MIT Press.

Murphy, Kevin P. (2012). Machine learning – a probabilistic perspective. MIT Press.
Murphy, Kevin P. (2021). Probabilistic machine learning: an introduction. MIT Press.
Neal, Brady, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon

Lacoste-Julien, and Ioannis Mitliagkas (2019). ‘A Modern Take on the Bias-Variance
Tradeoff in Neural Networks’. In: arXiv:1810.08591.

Neal, Radford M. (1996). Bayesian Learning for Neural Networks. Springer.

331

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Bibliography

Neyshabur, Behnam, Srinadh Bhojanapalli, David McAllester, and Nati Srebro (2017).
‘Exploring Generalization in Deep Learning’. In: Advances in Neural Information
Processing Systems 30, pp. 5947–5956.

Ng, Andrew Y. (2019). Machine learning yearning. In press. url: http : / / www .
mlyearning.org/.

Ng, Andrew Y. and Michael I. Jordan (2001). ‘On Discriminative vs. Generative Classifiers:
A comparison of logistic regression and naive Bayes’. In: Advances in Neural Information
Processing Systems 14, pp. 841–848.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization. Springer.
O’neil, Cathy (2016). Weapons of math destruction: How big data increases inequality and

threatens democracy. Crown.
Owen, Art B. (2013). Monte Carlo theory, methods and examples. Available at https://statweb.stanford.edu/ owen/mc/.
Pasquale, Frank (2015). The black box society. Harvard University Press.
Pelillo, Marcello (2014). ‘Alhazen and the nearest neihbor rule’. In: Pattern Recognition

Letters 38, pp. 34–37.
Poggio, Tomaso, Sayan Mukherjee, Ryan M. Rifkin, Alexander Rakhlin, and Alessandro

Verri (2001). b. Tech. rep. AI Memo 2001-011/CBCL Memo 198. Massachusetts Institue
of Technology - Artificial Intelligence Laboratory.

Quinlan, J. Ross (1986). ‘Induction of Decision Trees’. In: Machine Learning 1, pp. 81–106.
Quinlan, J. Ross (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers.
Rasmussen, Carl E. and Christopher K. I. Williams (2006). Gaussian processes for machine

learning. MIT press.
Reddi, S. J., S. Kale, and S. Kumar (2018). ‘On the convergence of ADAM and beyond’. In:

International Conference on Learning Representations (ICLR).
Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). ‘Stochastic Back-

propagation and Approximate Inference in Deep Generative Models’. In: Proceedings of
the 31st International Conference on Machine Learning, pp. 1278–1286.

Ribeiro, A. H. et al. (2020). ‘Automatic diagnosis of the 12-lead ECG using a deep neural
network’. In: Nature Communications 11.1, p. 1760.

Robbins, Herbert and Sutton Monro (1951). ‘A stochastic approximation method’. In: The
Annals of Mathematical Statistics 22.3, pp. 400–407.

Robert, Chistian P. and George Casella (2004). Monte Carlo Statistical Methods. 2nd ed.
Springer.

Rogers, Simon and Mark Girolami (2017). A first course on machine learning. CRC Press.
Ruder, Sebastian (2017). ‘An overview of gradient descent optimization algorithms’. In:

arXiv:1609.04747.
Russell, Stuart, Sabine Hauert, Russ Altman, and Manuela Veloso (2015). ‘Ethics of artificial

intelligence’. In: Nature 521.7553, pp. 415–416.
Schölkopf, Bernhard, Ralf Herbrich, and Alexander J. Smola (2001). ‘A Generalized

Representer Theorem’. In: Lecture Notes in Computer Science, Vol. 2111. LNCS 2111.
Springer, pp. 416–426.

Schölkopf, Bernhard and Alexander J. Smola (2002). Learning with kernels. Ed. by Thomas
Dietterich. MIT Press.

332

http://www.mlyearning.org/
http://www.mlyearning.org/

Bibliography

Schütt, K.T., S. Chmiela, O.A. von Lilienfeld, A. Tkatchenko, K. Tsuda, and K.-R. Müller,
eds. (2020). Machine Learning Meets Quantum Physics. Lecture Notes in Physics.
Springer.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Shorten, Connor and Taghi M. Khoshgoftaar (2019). ‘A survey on Image Data Augmentation
for Deep Learning’. In: Journal of Big Data 6.1, p. 60.

Sjöberg, Jonas and Lennart Ljung (1995). ‘Overtraining, regularization and searching for
a minimum, with application to neural networks’. In: International Journal of Control
62.6, pp. 1391–1407.

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams (2012). ‘Practical Bayesian Optimization
of Machine Learning Algorithms’. In: Advances in Neural Information Processing Systems
25, pp. 2951–2959.

Steinwart, Ingo, Don Hush, and Clint Scovel (2011). ‘Training SVMs Without Offset’. In:
Journal of Machine Learning Research 12, pp. 141–202.

Strang, G. (2019). Linear algebra and learning from data. Wellesley - Cambridge Press.
Sumpter, D. (2016). Soccermatics: mathematical adventures in the beautiful game. Blooms-

bury Sigma.
Sumpter, David (2018). Outnumbered: From Facebook and Google to Fake News and

Filter-bubbles–the algorithms that control our lives. Bloomsbury Publishing.
Tibshirani, Robert (1996). ‘Regression Shrinkage and Selection via the LASSO’. In: Journal

of the Royal Statistical Society (Series B) 58.1, pp. 267–288.
Topol, E. J. (2019). ‘High-performance medicine: the convergence of human and artificial

intelligence’. In: Nature Medicine 25, pp. 44–56.
Vapnik, Vladimir N. (2000). The Nature of Statistical Learning Theory. 2nd ed. Springer.
Vollmer, Sebastian, Bilal A Mateen, Gergo Bohner, Franz J Király, Rayid Ghani, Pall

Jonsson, Sarah Cumbers, Adrian Jonas, Katherine SL McAllister, Puja Myles, et al.
(2020). ‘Machine learning and artificial intelligence research for patient benefit: 20
critical questions on transparency, replicability, ethics, and effectiveness’. In: bmj 368.

Xu, Jianhua and Xuegong Zhang (2004). ‘Kernels Based on Weighted Levenshtein Distance’.
In: IEEE International Joint Conference on Neural Networks, pp. 3015–3018.

Xue, Jing-Hao and D. Michael Titterington (2008). ‘Comment on ‘On Discriminative vs.
Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes’’. In:
Neural Processing Letters 28, pp. 169–187.

Youyou, Wu, Michal Kosinski, and David Stillwell (2015). ‘Computer-based personality
judgments are more accurate than those made by humans’. In: Proceedings of the National
Academy of Sciences 112.4, pp. 1036–1040.

Yu, Kai, Liang Ji, and Xuegong Zhang (2002). ‘Kernel Nearest-Neighbor Algorithm’. In:
Neural Processing Letters 15.2, pp. 147–156.

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals (2017).
‘Understanding deep learning requires rethinking generalization’. In: 5th International
Conference on Learning Representations.

Zhang, Ruqi, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson
(2020). ‘Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning’. In: 8th
International Conference on Learning Representations.

333

Bibliography

Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia (2017). ‘Pyramid scene parsing network’.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Zhu, Ji and Trevor Hastie (2005). ‘Kernel Logistic Regression and the Import Vector
Machine’. In: Journal of Computational and Graphical Statistics 14.1, pp. 185–205.

334

Index

accuracy, 63
AdaBoost, 174–182
area under the curve, AUC, 87
asymmetric classification problem,

86–90, 101
asymptotic minimiser, 96, 105–109

backpropagation, 142–145, 160
bagging, 163–171
base models, 163
Bayes’ theorem, 217
Bayesian apporach, 217
belief, 218
bias, 79–85

definition, 79
reduction, 174

bias–variance decomposition, 79–85
bias–variance tradeoff, 81, 82
binary trees, see decision trees
boosting, 174–187
bootstrap, 83, 165
branch, decision tree, 26

categorical input variables, 45
categorical variable, 14
classification model, 46
classification trees, see decision trees
classification, definition, 15
classifier margin, 99
clustering, 259–267
conditional class probabilities, 45
confusion matrix, 86, 310
convolutional neural networks, 147–153
coordinate descent, 115
cost function, 41, 93, 111, 113
cross-entropy, 48
cross-validation, 67–70, 288, 306

𝑘-fold, 68–70

data augmentation, 301
data imputation, 305
debugging, 292
decision boundary, 21–22, 50
decision trees, 25–36, 171–174
deep learning

Bayesian, 242
deep neural networks, 137
dropout, 155–159
dual formulation, 198, 199, 202, 209
dual parameters, 198
dummy variable, 45

early stopping, 112
elbow method, 267
empirical Bayes, 220, 223, 237
empirical risk, 65
ensemble, 163
entropy, decision trees, 31
epoch, 125
error analysis, 296
error function, 63, 311
Euclidean distance, 19, 24
evidence, see marginal likelihood
expectation maximisation, 256,

261–263
expected new data error, 64

F1 score, 87
fairness, 311
false negative, 86
false positive, 86
feature, 13, 152, 189–191

Gaussian mixture model, 248–265
Gaussian processes, 130, 226–241
generalisation gap, 72–75, 83, 292
generalised linear model, 57

This material is published by Cambridge University Press. This pre-publication version is free to view
and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.
335

Index

generative models, 247–265
deep, 268

Gini index, 31
gradient boosting, 182–187
gradient descent, 116
Gram matrix, 195
grid search, 129

hold-out validation data, 67, 288, 289
hyperparameter, 22, 71, 220, 237
hyperparameter optimisation, 129

imbalanced classification problem,
86–90, 101

input normalisation, 24
input variable, 13–14
inter-rater reliability, 298
intercept term, see offset term
internal node, decision tree, 26

kernel, 194–196, 202–208, 231–233, 237
addition, 208
definition, 194
exponential, 208
linear, 195, 207
Matérn, 207
meaning, 204–205
Mercer map, 206
multiplication, 208
polynomial, 195, 207
positive semidefinite, 195, 206
rational quadratic, 208
reproducing Hilbert space, 206
scaling, 208
sigmoid, 208
squared exponential, 195, 207

kernel logistic regression, 209
kernel ridge regression, 192–197, 200,

231–233
kernel trick, 194
𝑘-means clustering, 265
𝑘-NN, 19–24, 36
𝑘-NN

kernel, 202–204

label, 14
LASSO, see regularisation, 𝐿1

leaf node, decision tree, 26
learning curve, 294
learning rate, 117, 126–127, 186
least squares, 41
linear classifier, 51
linear discriminant analysis, 251
linear regression, 37–44, 56, 60, 82,

133, 192
Bayesian, 220–225
with kernels, see kernel ridge

regression
logistic function, 47, 134
logistic regression, 45–54, 57
logits, 52, 139
loss function, 96–103

absolute error, 97
binary cross-entropy, 48, 99, 108
binomial deviance, see loss

function, logistic
definition, 93
𝜖-insensitive, 98, 199
exponential, 100, 108, 177, 179
hinge, 100, 108, 209
Huber, 97
huberised squared hinge, 101, 108
in support vector machines, 202
logistic, 49, 100, 108, 184
misclassification, 98, 100
multiclass cross-entropy, 53–54
squared error, 41, 97
squared hinge, 101, 108

margin of a classifier, 99
marginal likelihood, 218, 220,

223, 237
maximum a posteriori, 225
maximum likelihood, 43, 48, 97,

218
mini-batch, 125
misclassification error, 63
misclassification rate, 63, 87
misclassification rate, decision trees,

31
mislabelled data, 296
mismatched data, 298
missing data, 305

336

Index

MNIST, 139
model complexity, 73, 81

neural networks, 90
shortcomings of the notion, 77

model flexibility, see model complexity
multivariate Gaussian distribution,

220–221, 243–245

nearest neighbour, see 𝑘-NN
neural networks, 133–159

convolutional, 147–153
hidden units, 135

new data error, 64
Newton’s method, 120
non-linear classifier, 51
non-linear input transformations, see

aures189
non-parametric method, 20
normal equations, 42, 60–61
normalisation, 25
numerical variable, 14

offset term, 38, 136, 201
one-hot encoding, 45
one-versus-all

see one-versus-rest, 102
one-versus-one, 103
one-versus-rest, 102
out-of-bag error, 170
outliers, 96, 303
output variable, 13–14
overfitting, 19, 23, 36, 54–57, 77,

109–112, 155, 158, 164, 170,
219, 293

definition, 73
to validation data, 288

parametric method, 20
polynomial regression, 54, 189
posterior, 218
posterior predictive, 218
precision, 86
precision–recall curve, 90
prediction, 13, 18

binary classification, 50
linear regression, 39
logistic regression, 51

multiclass classification, 52
neural networks with dropout,

157
primal formulation, 202
principal component analysis, 279
prior, 218
probabilistic approach, see Bayesian

approach
pruning, decision trees, 36
push-through matrix identity, 193

quadratic discriminant analysis, 251

Rademacher complexity, 90
random forests, 171–174
recall, 86
recursive binary splitting, 28, 172
regression model, 37
regression trees, see decision trees
regression, definition, 15
regularisation, 54–57, 109–112, 225

dropout, 158
early stopping, 112
explicit, 111
implicit, 112
𝐿1, 110, 111, 115, 306
𝐿2, 56, 109, 111, 198
neural networks, 158

ReLU function, 134
representer theorem, 209, 213–214
ridge regression, see regularisation, 𝐿2

robustness, 96, 304
ROC curve, 86
root node, decision tree, 26

self-supervised learning, 303
semi-supervised learning, 253, 302
sigmoid function, 134
single number evaluation metric, 290
softmax, 52, 139
squared error, 63
standardising, 25
step-size, see learning rate
stochastic gradient descent, 124
subsampling, 124
supervised machine learning, definition,

13

337

Index

support vector, 200, 210
support vector classification, 208–215
support vector machine (SVM), 199, 209
support vector regression, 198–201

test data, 13, 25, 71, 288
test error, why we do not use the

term, 71
the representer theorem, 198
time series, 14
training data, 13, 288
training error, 65, 292
transfer learning, 302

trees, see decision trees
trust region, 120

uncertainty, 219
underfitting, 73, 77, 294
unsupervised learning, 259–285

validation data, see hold-out validation
data

variance, 79–85
definition, 79
reduction, 164, 168

VC dimension, 73, 90

338

	Acknowledgements
	Notation
	Introduction
	Machine Learning Exemplified
	About This Book
	Further Reading

	Supervised Learning: A First Approach
	Supervised Machine Learning
	A Distance-Based Method: k-NN
	A Rule-Based Method: Decision Trees
	Further Reading

	Basic Parametric Models and a Statistical Perspective on Learning
	Linear Regression
	Classification and Logistic Regression
	Polynomial Regression and Regularisation
	Generalised Linear Models
	Further Reading
	Derivation of the Normal Equations

	Understanding, Evaluating, and Improving Performance
	Expected New Data Error Enew: Performance in Production
	Estimating Enew
	The Training Error–Generalisation Gap Decomposition of Enew
	The Bias–Variance Decomposition of Enew
	Additional Tools for Evaluating Binary Classifiers
	Further Reading

	Learning Parametric Models
	Principles of Parametric Modelling
	Loss Functions and Likelihood-Based Models
	Regularisation
	Parameter Optimisation
	Optimisation with Large Datasets
	Hyperparameter Optimisation
	Further Reading

	Neural Networks and Deep Learning
	The Neural Network Model
	Training a Neural Network
	Convolutional Neural Networks
	Dropout
	Further Reading
	Derivation of the Backpropagation Equations

	Ensemble Methods: Bagging and Boosting
	Bagging
	Random Forests
	Boosting and AdaBoost
	Gradient Boosting
	Further Reading

	Non-linear Input Transformations and Kernels
	Creating Features by Non-linear Input Transformations
	Kernel Ridge Regression
	Support Vector Regression
	Kernel Theory
	Support Vector Classification
	Further Reading
	The Representer Theorem
	Derivation of Support Vector Classification

	The Bayesian Approach and Gaussian Processes
	The Bayesian Idea
	Bayesian Linear Regression
	The Gaussian Process
	Practical Aspects of the Gaussian Process
	Other Bayesian Methods in Machine Learning
	Further Reading
	The Multivariate Gaussian Distribution

	Generative Models and Learning from Unlabelled Data
	The Gaussian Mixture Model and Discriminant Analysis
	Cluster Analysis
	Deep Generative Models
	Representation Learning and Dimensionality Reduction
	Further Reading

	User Aspects of Machine Learning
	Defining the Machine Learning Problem
	Improving a Machine Learning Model
	What If We Cannot Collect More Data?
	Practical Data Issues
	Can I Trust my Machine Learning Model?
	Further Reading

	Ethics in Machine Learning
	Fairness and Error Functions
	Misleading Claims about Performance
	Limitations of Training Data
	Further Reading

	Bibliography
	Index

