

Do large language models need sensory grounding for meaning and understanding?

Spoiler: YES!

Yann LeCun

Courant Institute & Center for Data Science, NYU Meta – Fundamental AI Research

> NYU 2023-03-24

Machine Learning sucks! (compared to humans and animals)

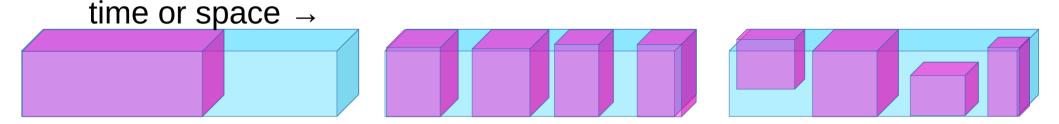
- **Supervised learning (SL) requires large numbers of labeled samples.**
- Reinforcement learning (RL) requires insane amounts of trials.
- Self-Supervised Learning (SSL) requires large numbers of unlabeled samples.
- Most current ML-based AI systems:
 - make stupid mistakes, do not reason nor plan
- Animals and humans:
 - Can learn new tasks very quickly.
 - Understand how the world works
 - Can reason and plan
- Humans and animals have common sense
- current machines, not so much (it's very superficial).

Self-Supervised Learning has taken over the world

For understanding & generation of images, audio, text...

Self-Supervised Learning = Learning to Fill in the Blanks

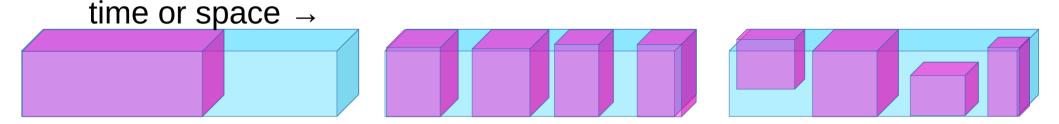
Reconstruct the input or Predict missing parts of the input.



Y. LeCun

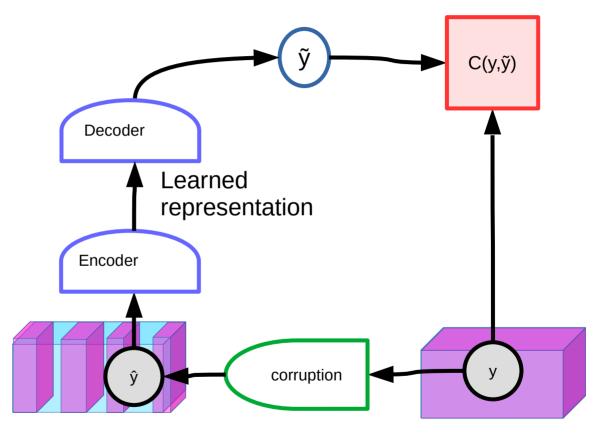
Self-Supervised Learning = Learning to Fill in the Blanks

Reconstruct the input or Predict missing parts of the input.



Y. LeCun

SSL via Denoising Auto-Encoder / Masked Auto-Encoder

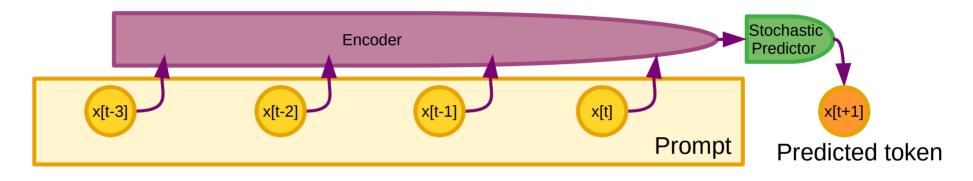


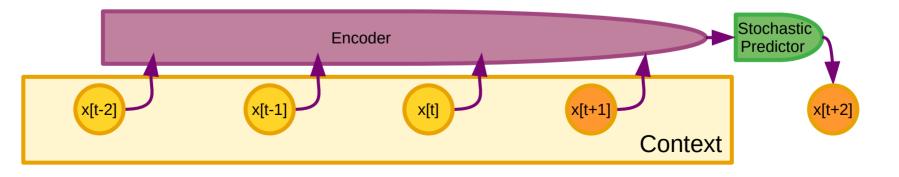
This is a [...] of text extracted [...] a large set of [...] articles

This is a piece of text extracted from a large set of news articles

Auto-Regressive Generative Models

- Outputs one "token" after another
- **Tokens may represent words, image patches, speech segments...**





- Outputs one text token after another
- Tokens may represent words or subwords
- Encoder/predictor is a transformer architecture
 - ► With billions of parameters: typically from 1B to 500B
 - Training data: 1 to 2 trillion tokens
- **LLMs for dialog/text generation:**
 - BlenderBot, Galactica, LLaMA (FAIR), Alpaca (Stanford), LaMDA/Bard (Google), Chinchilla (DeepMind), ChatGPT (OpenAI), GPT-4 ??...
- Performance is amazing ... but ... they make stupid mistakes
 - ► Factual errors, logical errors, inconsistency, limited reasoning, toxicity...
- LLMs have no knowledge of the underlying reality
 - They have no common sense & they can't plan their answer

Unpopular Opinion about AR-LLMs

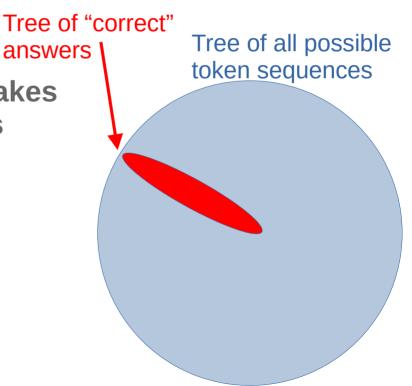
- Auto-Regressive LLMs are doomed.
- They cannot be made factual, non-toxic, etc.
- They are not controllable

Probability e that any produced token takes us outside of the set of correct answers

Probability that answer of length n is correct:

P(correct) =
$$(1-e)^n$$

This diverges exponentially.
It's not fixable.



Auto-Regressive Generative Models Suck!

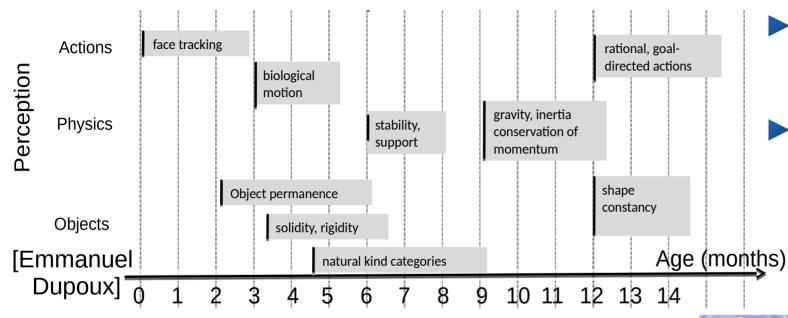
AR-LLMs

- Have a constant number of computational steps between input and output. Weak representational power.
- Do not really reason. Do not really plan

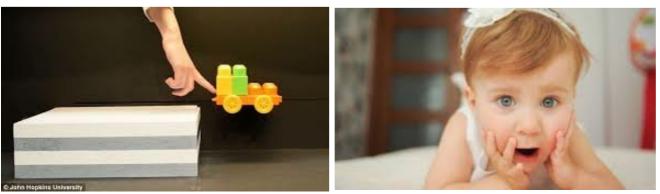
Humans and many animals

- Understand how the world works.
- Can predict the consequences of their actions.
- Can perform chains of reasoning with an unlimited number of steps.
- Can plan complex tasks by decomposing it into sequences of subtasks

How could machines learn like animals and humans?



- How can babies learn how the world works?
- How can teenagers learn to drive with 20h of practice?



Three challenges for AI & Machine Learning

- 1. Learning representations and predictive models of the world
 - Supervised and reinforcement learning require too many samples/trials
 - Self-supervised learning / learning dependencies / to fill in the blanks
 - learning to represent the world in a non task-specific way
 - Learning predictive models for planning and control
- 2. Learning to reason, like Daniel Kahneman's "System 2"
 - Beyond feed-forward, System 1 subconscious computation.
 - Making reasoning compatible with learning.
 - Reasoning and planning as energy minimization.

3. Learning to plan complex action sequences

Learning hierarchical representations of action plans

A Cognitive Architecture capable of reasoning & planning

Position paper:

"A path towards autonomous machine intelligence" https://openreview.net/forum?id=BZ5a1r-kVsf

Longer talk: search "LeCun Berkeley" on YouTube

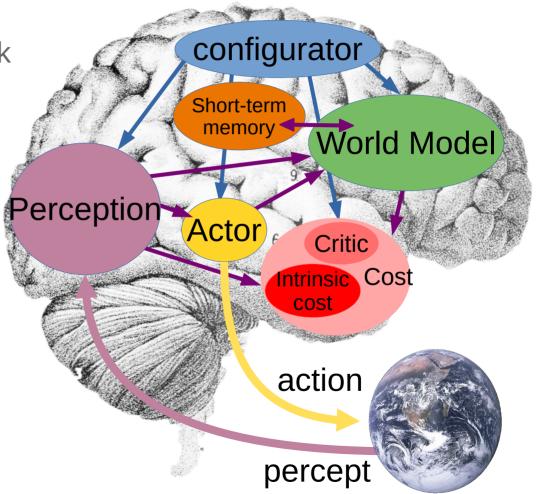
Modular Architecture for Autonomous Al

Configurator

Configures other modules for task

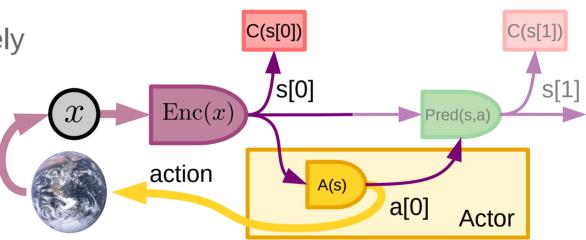
Perception

- Estimates state of the world
- World Model
 - Predicts future world states
- Cost
 - Compute "discomfort"
- Actor
 - Find optimal action sequences
- Short-Term Memory
 - Stores state-cost episodes



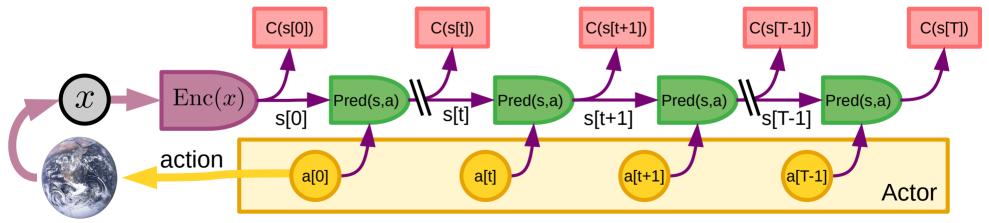
Mode-1 Perception-Action Cycle

- Perception module s[0]=Enc(x)
 - Extract representation of the world
- Policy module A(s[0])
 - Computes an action reactively
- Cost module C(s[0])
 - Computes cost of state
- Optionally:
 - World Model Pred(s,a)
 - Predicts future state
 - Stores states and costs in short-term memory



Mode-2 Perception-Planning-Action Cycle

- Akin to classical Model-Predictive Control (MPC)
- Actor proposes an ation sequence
- World Model predicts outcome
- Actor optimizes action sequence to minimize cost
- e.g. using gradient descent, dynamic programming, MC tree search...
- Actor sends first action(s) to effectors



[Henaff et al ICLR 19], [Hafner et al. ICML 19], [Chaplot et al. ICML 21], [Escontrela CoRL 22],...

Cost Module

Intrinsic Cost (IC)

- Immutable cost modules.
- ► Hard-wired drives.
- Trainable Cost (TC)
 - ► Trainable
 - Predicts future values of IC
 - Equivalent to a critic in RL
 - Implements subgoals
 - Configurable
- All are differentiable

$$C(s) = IC(s) + ITC(s); IC(s) = \sum_{i=1}^{k} u_i IC_i(s); TC(s) = \sum_{j=1}^{l} v_j TC_j(s)$$

$$IC_1(s) IC_2(s) \cdots IC_k(s) IC_k(s) IC_2(s) \cdots IC_k(s)$$

S

NEW YORK UNIVERSITY Neta Al

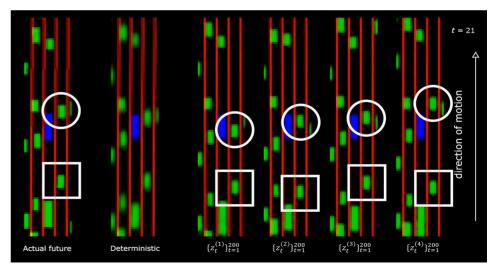
Building & Training the World Model

Energy-Based Models Joint-Embedding Architecture

How do we represent uncertainty in the predictions?

- The world is only partially predictable
- How can a predictive model represent multiple predictions?
- Probabilistic models are intractable in continuous domains.
- Generative Models must predict every detail of the world
- My solution: Joint-Embedding Predictive Architecture

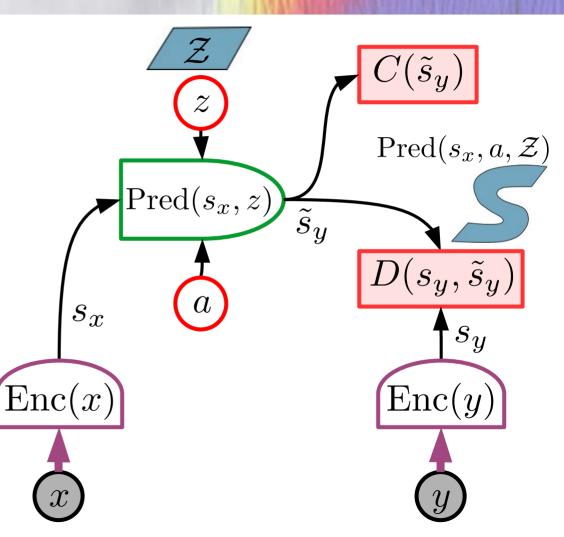
[Mathieu, Couprie, LeCun ICLR 2016]



[Henaff, Canziani, LeCun ICLR 2019]

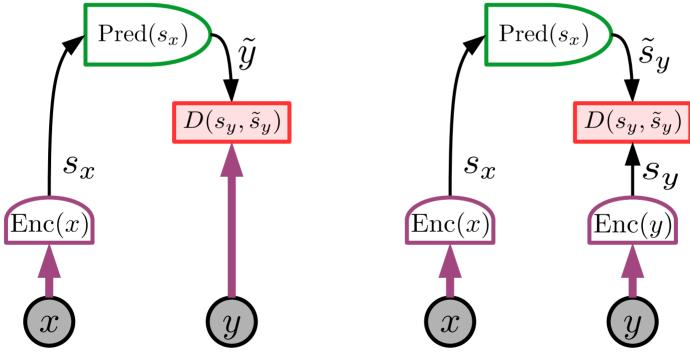
Architecture for the world model: JEPA

- JEPA: Joint Embedding Predictive Architecture.
 - x: observed past and present
 - ► y: future
 - ► a: action
 - z: latent variable (unknown)
 - ► D(): prediction cost
 - C(): surrogate cost
 - JEPA predicts a representation of the future S_y from a representation of the past and present S_x



Architectures: Generative vs Joint Embedding

Generative: predicts y (with all the details, including irrelevant ones)
 Joint Embedding: predicts an abstract representation of y

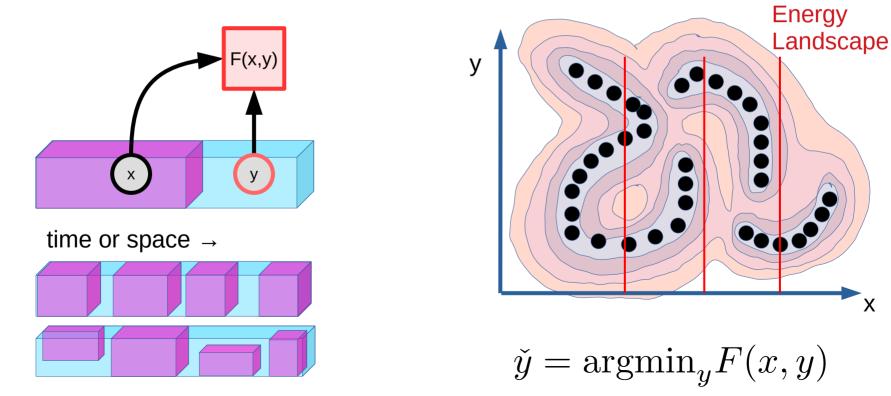


a) Generative Architecture Examples: VAE, MAE... b) Joint Embedding Architecture

Y. LeCun

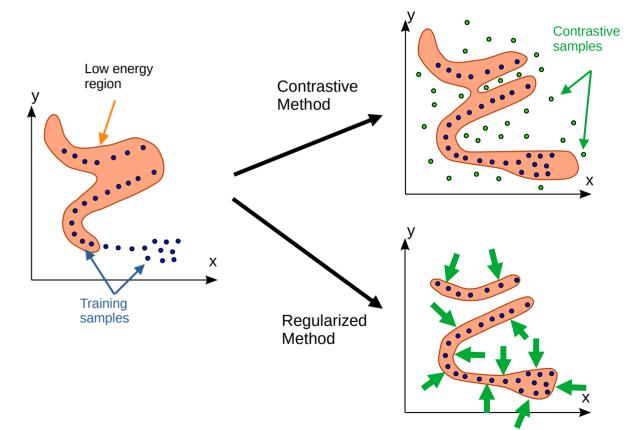
Energy-Based Models: Implicit function

- **The only way to formalize & understand all model types**
 - Gives low energy to compatible pairs of x and y
 - Gives higher energy to incompatible pairs



Contrastive methods

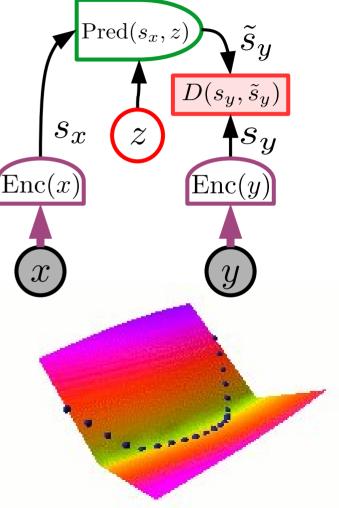
- Push down on energy of training samples
- Pull up on energy of suitably-generated contrastive samples
- Scales very badly with dimension
- Regularized Methods
- Regularizer minimizes the volume of space that can take low energy



Y. LeCun

Recommendations:

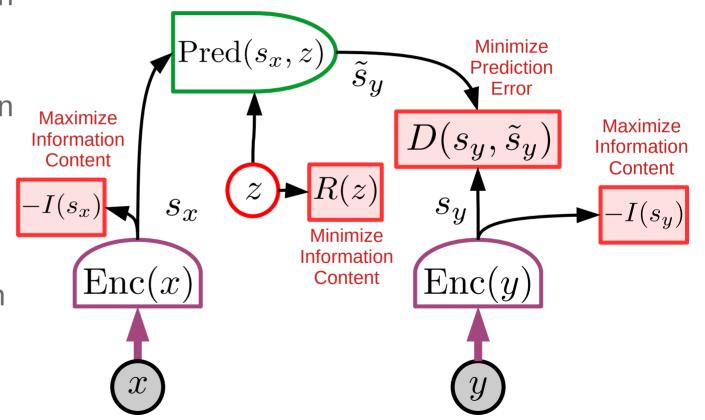
- Abandon generative models
 in favor joint-embedding architectures
 - Abandon Auto-Regressive generation
- Abandon probabilistic model
 in favor of energy-based models
- Abandon contrastive methods
 in favor of regularized methods
- Abandon Reinforcement Learning
 In favor of model-predictive control
 - Use RL only when planning doesn't yield the predicted outcome, to adjust the world model or the critic.



Training a JEPA non contrastively

Four terms in the cost

- Maximize information content in representation of x
- Maximize information content in representation of y
- Minimize Prediction error
- Minimize information content of latent variable z



VICReg: Variance, Invariance, Covariance Regularization

Variance:

Maintains variance of components of representations

Covariance:

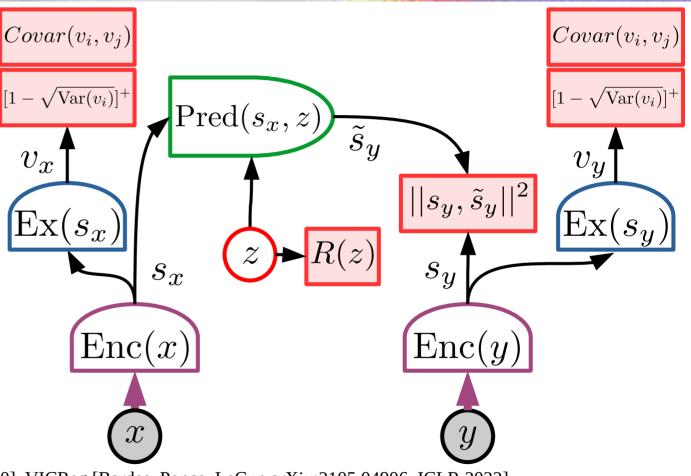
 Decorrelates components of covariance matrix of representations

Invariance:

 Minimizes prediction error.

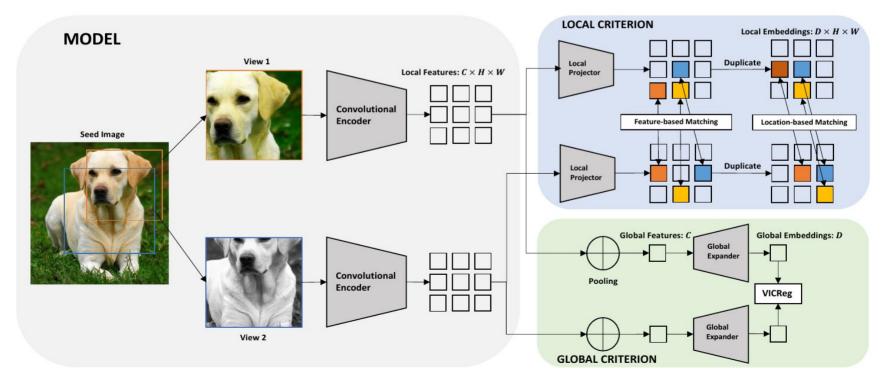
Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],

VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



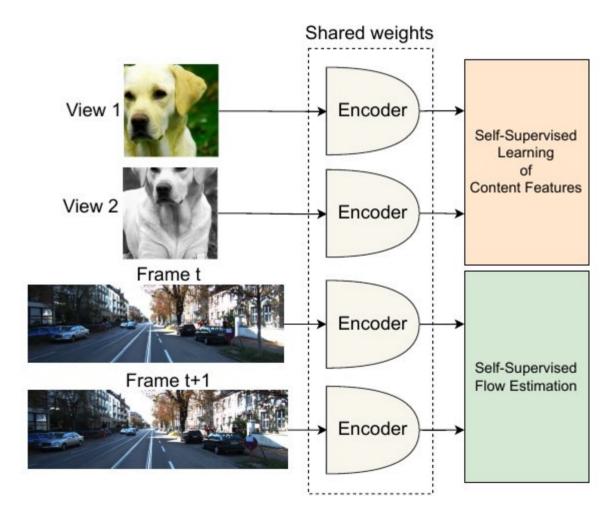
VICRegL: local matching latent variable for segmentation

- Latent variable optimization:
- Finds a pairing between local feature vectors of the two images
- [Bardes, Ponce, LeCun NeurIPS 2022, arXiv:2210.01571]



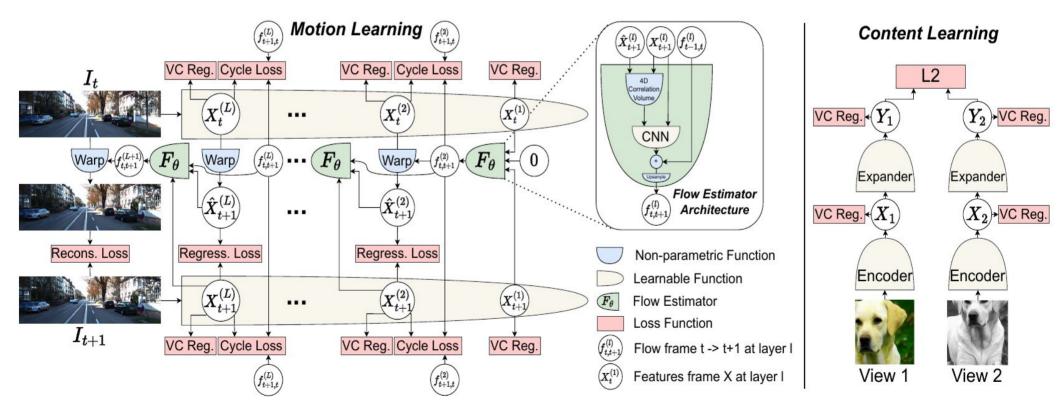
MC-JEPA: Motion & Content JEPA

- Simultaneous SSL for
 - Image recognition
 - Motion estimation
- Trained on
 - ImageNet 1k
 - Various video datasets
- Uses VCReg to prevent collapse
 - ConvNext-T backbone



MC-JEPA: Motion & Content JEPA

Motion estimation architecture uses a top-down hierarchical predictor that "warp" feature maps.



MC-JEPA: Optical Flow Estimation Results

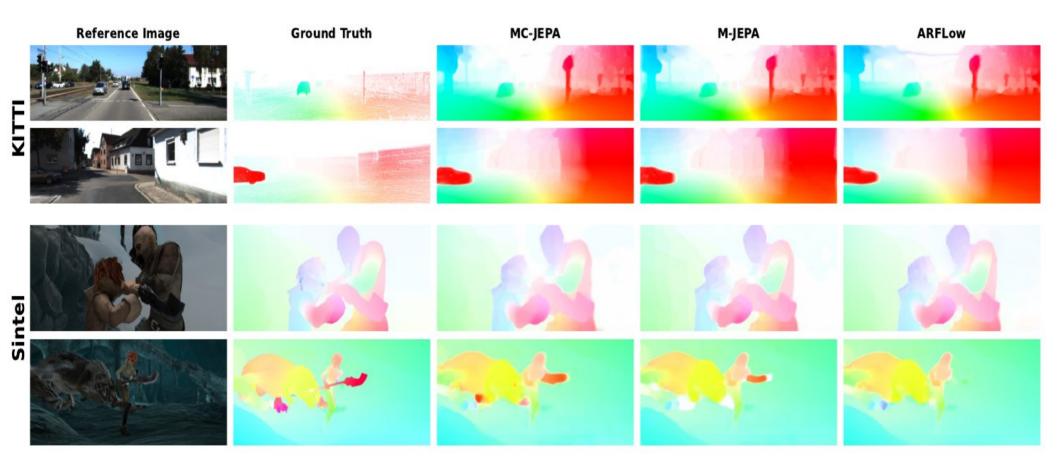
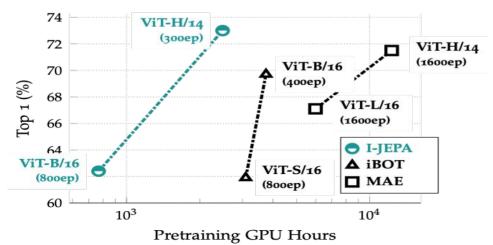
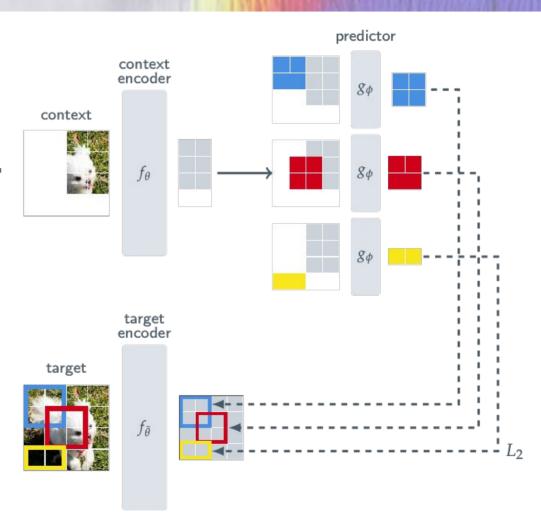


Image-JEPA: uses masking, transformer, EMA weights

- "SSL from images with a JEPA"
 M. Assran et al arxiv:2301.08243
- Jointly embeds a context and a number of neighboring patches.
 - Uses predictors
 - Uses only masking

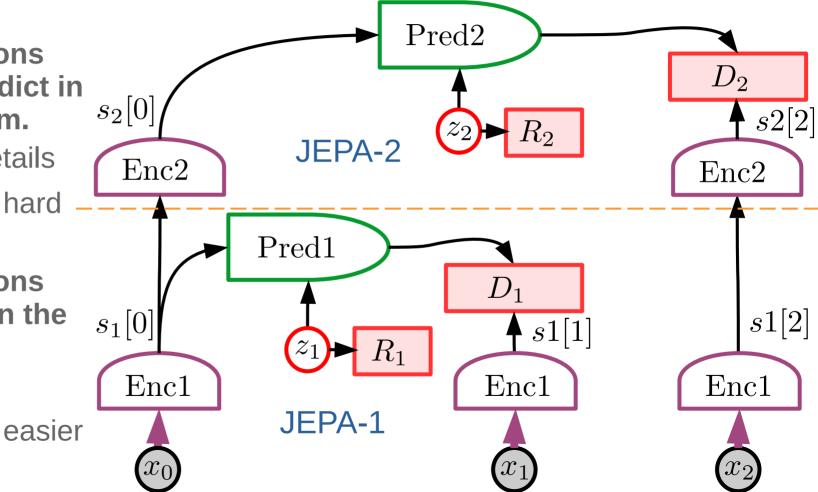
Semi-Supervised ImageNet-1K 1% Evaluation vs GPU Hours





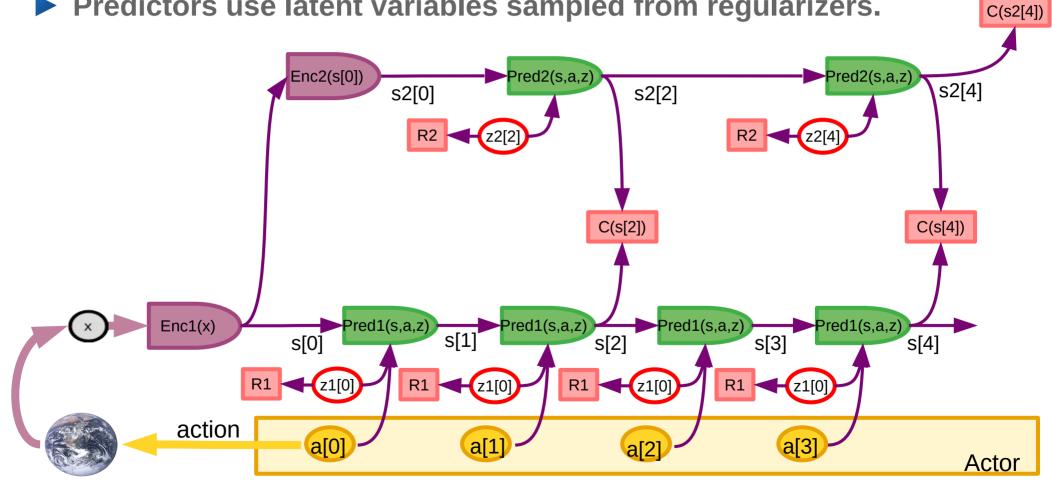
Hierarchical Prediction at Multiple Time-Scales & Abstraction Levels

- Low-level representations can only predict in the short term.
 - ► Too much details
 - Prediction is hard
- Higher-level representations can predict in the longer term.
 - Less details.
 - Prediction is easier



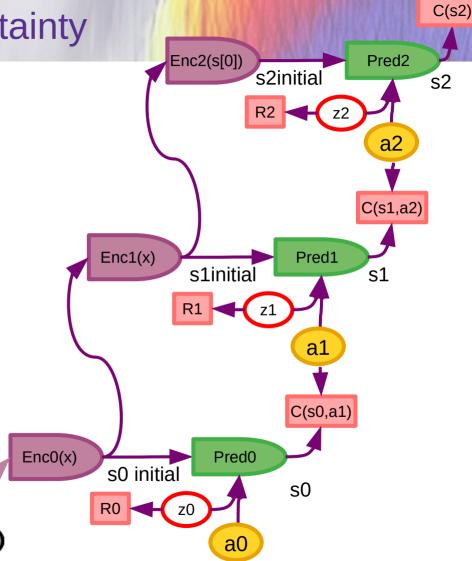
Hierarchical Planning with Uncertainty

Predictors use latent variables sampled from regularizers.



Hierarchical Planning with Uncertainty

- Hierarchical world model
- Hierarchical planning
- An action at level k specifies an objective for level k-1
- Prediction in higher levels are more abstract and longer-range.
- This type of planning/reasoning by minimizing a cost w.r.t "action" variables is what's missing from current architectures
 - Including AR-LLMs, multimodal systems, learning robots,...



Steps towards Autonomous AI Systems

Self-Supervised Learning

- ► To learn representations of the world
- ► To learn predictive models of the world

Handling uncertainty in predictions

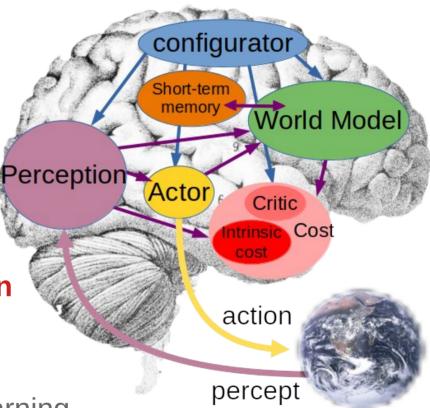
- Joint-embedding predictive architectures
- Energy-Based Model framework

Learning world models from observation

Like animals and human babies?

Reasoning and planning

- That is compatible with gradient-based learning
- ► No symbols, no logic → vectors & continuous functions



Positions / Conjectures

Prediction is the essence of intelligence

Learning predictive models of the world is the basis of common sense

Almost everything is learned through self-supervised learning

- Low-level features, space, objects, physics, abstract representations...
- Almost nothing is learned through reinforcement, supervision or imitation

Reasoning == simulation/prediction + optimization of objectives

Computationally more powerful than auto-regressive generation.

H-JEPA with non-contrastive training is the thing

- Probabilistic generative models and contrastive methods are doomed.
- Intrinsic cost & architecture drive behavior & determine what is learned
- Emotions are necessary for autonomous intelligence
- Anticipation of outcomes by the critic or world model+intrinsic cost.

Challenges for AI Research

- Finding a general recipe for training Hierarchical Joint Embedding Architectures-based World Models from video, image, audio, text...
- Designing surrogate costs to drive the H-JEPA to learn relevant representations (prediction is just one of them)
- Integrating an H-JEPA into an agent capable of planning/reasoning
- Devising inference procedures for hierarchical planning in the presence of uncertainty (gradient-based methods, beam search, MCTS,....)
- Minimizing the use of RL to situations where the model or the critic are inaccurate and lead to unforeseen outcomes.
- Scaling

Thank you!