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Do large language models
need sensory grounding
for meaning and
understanding?
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Machine Learning sucks! (compared to humans at'
| ’ 1

» Supervised learning (SL) requires large numbers of labeled samples.
» Reinforcement learning (RL) requires insane amounts of trials.

» Self-Supervised Learning (SSL) requires large numbers of unlabeled
samples.

» Most current ML-based Al systems:
» make stupid mistakes, do not reason nor plan

» Animals and humans:
» Can learn new tasks very quickly.

» Understand how the world works
» Can reason and plan

» Humans and animals have common sense
» current machines, not so much (it’s very superficial).
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Self-Supervised Learning
has
taken over the world

For understanding & generation
of Images, audio, text...
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- Self-Supervised Learf}‘ng = Learning to Fil ilril

» Reconstruct the input or Predict missing parts of the input.
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Self-Supervised Learning = Learning to Fill 1

» Reconstruct the input or Predict missing parts of the input.
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- SSL via Denoising Autbﬁkncoder | Masked Auto

» BERT [Devlin 2018]
» RoBERTa [Ott 2019] Cy.9)
-

Decoder A

Learned
representation

corruption

This is a [...] of text extracted This is a piece of text extracted
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» Outputs one “token” after another
» Tokens may represent words, image patches, speech segments...

Prompt |  predicted token
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- Auto-Regressive Large Language Models (A

» Outputs one text token after another
» Tokens may represent words or subwords
» Encoder/predictor is a transformer architecture
» With billions of parameters: typically from 1B to 500B

» Training data: 1 to 2 trillion tokens

» LLMs for dialog/text generation:
» BlenderBot, Galactica, LLaMA (FAIR), Alpaca (Stanford), LaMDA/Bard
(Google), Chinchilla (DeepMind), ChatGPT (OpenAl), GPT-4 ?7?...
» Performance is amazing ... but ... they make stupid mistakes
» Factual errors, logical errors, inconsistency, limited reasoning, toxicity...

» LLMs have no knowledge of the underlying reality
» They have no common sense & they can’t plan their answer



Unpopular Opinion about AR-LLMs

» Auto-Regressive LLMs are doomed.
» They cannot be made factual, non-toxic, etc.
» They are not controllable Tree of “correct”

answers Tree of all possible

. token sequences
» Probability e that any produced token takes

us outside of the set of correct answers

» Probability that answer of length n is
correct:

> p(correct) = (1-e)"

» This diverges exponentially.
» It’s not fixable.



- Auto-Regressive Gerﬂ‘rative Models Suck! h

» AR-LLMs

» Have a constant number of computational steps between input and
output. Weak representational power.

» Do not really reason. Do not really plan

» Humans and many animals
» Understand how the world works.

» Can predict the consegquences of their actions.
» Can perform chains of reasoning with an unlimited number of steps.
» Can plan complex tasks by decomposing it into sequences of subtasks
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How could machines learn like animals and huq\ ns
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Three challenges forAf!j & Machine Learning h_

» 1. Learning representations and predictive models of the world
» Supervised and reinforcement learning require too many samples/trials
» Self-supervised learning / learning dependencies / to fill in the blanks
» learning to represent the world in a non task-specific way
» Learning predictive models for planning and control
» 2. Learning to reason, like Daniel Kahneman’s “System 2”
» Beyond feed-forward, System 1 subconscious computation.
» Making reasoning compatible with learning.
» Reasoning and planning as energy minimization.

» 3. Learning to plan complex action sequences
» |earning hierarchical representations of action plans
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A Cognitive Archltecture
capable of
reasoning & planning

Position paper:
“A path towards autonomous machine intelligence”
https://openreview.net/forum?id=BZ5alr-kVsf

Longer talk: search “LeCun Berkeley” on YouTube



https://openreview.net/forum?id=BZ5a1r-kVsf

 Modular Architecture‘*r Autonomous Al

» Configurator
» Configures other modules for task

» Perception
» Estimates state of the world

» World Model
» Predicts future world states

» Cost
» Compute “discomfort”

» Actor
» Find optimal action sequences

—

» Short-Term Memory

» Stores state-cost episodes percept
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» Perception module s[0]=Enc(X)
» Extract representation of the world

» Policy module A(s[0])
» Computes an action reactively

» Cost module C(s[0])
» Computes cost of state

C(s[1])

s[0] 2 s[1]
P Pred(s,a)
a[0]

Actor

» Optionally:
» World Model Pred(s,a)
» Predicts future state

action

» Stores states and costs In short-term
memory



Mode-2 Perception'—]%.ilanning-Action Cycleh \

» Akin to classical Model-Predictive Control (MPC)
» Actor proposes an ation sequence
» World Model predicts outcome
» Actor optimizes action sequence to minimize cost
» e.g. using gradient descent, dynamic programming, MC tree search...

» Actor sends first action(s) to effectors

action

[Henaff et al ICLR 19],[Hafner et al. ICML 19],[Chaplot et al. ICML 21],[Escontrela CoRL 22],...



- Cost Module

» Intrinsic Cost (IC)

C(s) =1C(s) +ITC(s) ; IC wlCy(s) ; TC(s 0 TG (
» Immutable cost modules. Z Z j

» Hard-wired drives. Trainable Cost / Critic (TC)

» Trainable Cost (TC)
» Trainable

» Predicts future values of IC
» Equivalent to a critic in RL
» Implements subgoals
» Configurable

» All are differentiable
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Buildi Nng & Trainin 9 '
the World Model =

Energy-Based Models
Joint-Embedding Architecture
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i i [Mathieu,
The world is only partially Couprie.
predictable LeCun
How can a predictive model

represent multiple
predictions?
Probabilistic models are
Intractable in continuous
domains.

Generative Models must
predict every detail of the
world

My solution: Joint-
Embedding Predictive

Architecture [Henaff, Canziani, LeCun ICLR 2019]




~ Architecture for the W’cp}rld model: JEPA

» JEPA: Joint Embedding
Predictive Architecture.

» X: observed past and present

» v future
» a: action

» z: latent variable (unknown)
» D( ): prediction cost

» C(): surrogate cost

» JEPA predicts a representation Enc(x)
of the future Sy from a
representation of the past and
present Sy




| il
 Architectures: Generative vs Joint Embeddinh {

» Generative: predicts y (with all the details, including irrelevant ones)
» Joint Embedding: predicts an abstract representation of y

Pred(s,) ~ Pred(s;)

ID(Syagy)I ID Syasy
Sx Sy
Enc(x) 'Enc I Enc

a) Generative Architecture b) Joint Embedding Architecture
Examples: VAE, MAE...
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Energy-Based Model’q} Implicit function | h

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape




EBM Training: two categories of methods IL

» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
Method

Contrastive
samples

» Pull up on energy of
suitably-generated
contrastive samples

\

» Scales very badly with
dimension

» Regularized Methods Training | \
] L samples Regularized
» Regularizer minimizes the Method ¥
volume of space that can =
X

take low energy -




- Recommendations:

» Abandon generative models
» in favor joint-embedding architectures

» Abandon Auto-Regressive generation

» Abandon probabilistic model
» in favor of energy-based models

» Abandon contrastive methods
» in favor of regularized methods

» Abandon Reinforcement Learning
» In favor of model-predictive control

» Use RL only when planning doesn'’t yield the
predicted outcome, to adjust the world model or
the critic.



Training a JEPA non contrastively

» Four terms in the cost

» Maximize information
content in
representation of x

» Maximize information
content in
representation of y

» Minimize Prediction
error

» Minimize information
content of latent
variable z

Maximize
Information
Content

Ix

Minimize
Pred(sw ) Z) § Prediction
Y Error

‘D(Syagy)‘

R(z)

Minimize
Information
Content

Maximize
Information
Content
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VICReg: Variance, Invariance, Covariance Regular

» Variance: Covar(vs, v;) Covar(v;,v;)

> Maintai .
Maintains variance of _ Tl _ e
components of

representations
» Covariance:
» Decorrelates 3:1:

components of
covariance matrix of
representations

Enc(y)

» Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]



VICRegL: local matching latent variable for s¢

» Latent variable optimization:
» Finds a pairing between local feature vectors of the two images

» [Bardes, Ponce, LeCun NeurlPS 2022, arXiv:2210.01571]

LOCAL CRITERION Local Embeddings: D X H X W

MODEL [ 010
. }-am uuuuu ﬁam

Global Features: C

lllll

Poclin

G ﬂ{

e
GLOBAL CRITERION




MC-JEPA: Motion & Content JEPA

» Simultaneous SSL for
» Image recognition

Encoder

Self-Supervised
Learning
of
Content Features

» Motion estimation

» Trained on
» ImageNet 1k

» Various video datasets

Encoder

» Uses VCReg to prevent
collapse

» ConvNext-T backbone

Self-Supervised
Flow Estimation

Encoder




MC-JEPA: Motion & Content JEPA

» Motion estimation architecture uses a top-down hierarchical
predictor that “warp” feature maps.

Motion Learning

I

\VC Reg.|Cycle Loss|
7

\VC Reg.|Cycle Loss|
T

v \
e Reg.||CycIe Loss|

VCReg| .~

e

v
VC Reg.|Cycle Loss|

VC Reg.|

/ xO N8 N

Flow Estimator

Archr'tectum/

(__J Non-parametric Function
| Learnable Function

- Flow Estimator

[ ] Loss Function

. Flow frame t -> t+1 at layer |

Features frame X at layer |

Content Learning

View 1 Vlew 2



MC-JEPA: Optical Flow Estimation Results i

Reference Image Ground Truth MC-JEPA

KITTI

Sintel




» “SSL from images with a JEPA” - . predictor

» M. Assran et al arxiv:2301.08243 encoder - e

context

» Jointly embeds a context and a

]
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Hierarchical Prediction at Multiple Time-Scales & Ab _;:

» Low-level

representations
can only predict in
the short term.

» Too much details
» Prediction I1s hard — ==

» Higher-level
representations

can predict in the s1[0]
longer term.

» Less detalils.




- Hierarchical Plannind*é/ith Uncertainty | 'L

» Predictors use latent variables sampled from regularizers.

C(s2[4])

s2[2] s2[4]
D D
s[0] s[1] s[2] s[3] s[4]

D D @) D
action @/ _/ @/ @/ -




~Hierarchical Planning with Uncertainty

s2initial

Rl
a2

» Hierarchical world model

» Hierarchical planning

» An action at level k specifies an
>

objective for level k-1

Prediction in higher levels are
more abstract and longer-range.

slinitial sl

oMo

‘a1

» This type of planning/reasoning
by minimizing a cost w.r.t “action”
variables is what’s missing from
current architectures

» Including AR-LLMs, multimodal
systems, learning robots,...

sO initial

© (a0



- Steps towards Autonor’@us Al Systems

» Self-Supervised Learning
» To learn representations of the world

» To learn predictive models of the world

» Handling uncertainty in predictions __
» Joint-embedding predictive architectures %

» Energy-Based Model framework

» Learning world models from observation %
» Like animals and human babies? ‘

» Reasoning and planning N
» That is compatible with gradient-based learning -

» No symbols, no logic - vectors & continuous functions



Positions / Conjectures

» Prediction is the essence of intelligence
» Learning predictive models of the world is the basis of common sense

Almost everything is learned through self-supervised learning
» Low-level features, space, objects, physics, abstract representations...

» Almost nothing is learned through reinforcement, supervision or imitation

» Reasoning == simulation/prediction + optimization of objectives
» Computationally more powerful than auto-regressive generation.

» H-JEPA with non-contrastive training is the thing
» Probabilistic generative models and contrastive methods are doomed.

» Intrinsic cost & architecture drive behavior & determine what is learned
» Emotions are necessary for autonomous intelligence
» Anticipation of outcomes by the critic or world model+intrinsic cost.
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~ Challenges for Al Research h_

» Finding a general recipe for training Hierarchical Joint Embedding
Architectures-based World Models from video, image, audio, text...

» Designing surrogate costs to drive the H-JEPA to learn relevant
representations (prediction is just one of them)

Integrating an H-JEPA into an agent capable of planning/reasoning

Devising inference procedures for hierarchical planning in the
presence of uncertainty (gradient-based methods, beam search,
MCTS,....)

» Minimizing the use of RL to situations where the model or the critic
are inaccurate and lead to unforeseen outcomes.

» Scaling

vy



NEW YORK UNIVERSITY 00 Metq A|
V

Thank you!
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