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AI is stepping into risk-sensitive areas

2

Shifting from Performance Driven to Risk Sensitive



Problems of today’s ML - Explainability

3

Human in the loopUnexplainable

Health  Military  Finance  Industry

Most machine learning models are black-box models



Problems of today’s ML - Explainability

4

Embedding-based methods for knowledge graph acquisition are unexplainable
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Most ML methods are developed under I.I.D hypothesis

Problems of today’s ML - Stability

OOD Generalization Problem
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Yes

Maybe

No

Problems of today’s ML - Stability



7

• Cancer survival rate prediction

Training Data

Predictive Model

Testing Data

City Hospital

University Hospital
Higher income, higher survival rate.

City Hospital

Survival rate is not so correlated with income.

Problems of today’s ML - Stability
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Problems of today’s ML - Fairness
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Problems of today’s ML - Verifiability

Data   Data      Data      Data
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A plausible reason: Correlation

Correlation is the very basics of machine learning.
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Correlation is not explainable
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Correlation is ‘unstable’
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It’s not the fault of correlation, but the way we use it

• Three sources of correlation:

• Causation

• Causal mechanism

• Stable and explainable

• Confounding

• Ignoring X

• Spurious Correlation

• Sample Selection Bias

• Conditional on S

• Spurious Correlation

T Y

T Y

X

T Y

S

Weight 

Increase

Age

Smoke

DogGrass

Sample 

Selection

Ice Cream 

Sales
Summer



A Practical Definition of Causality

Definition: T causes Y if and only if 

changing T leads to a change in Y,

while keeping everything else constant.

Causal effect is defined as the magnitude by which Y is 

changed by a unit change in T.

Called the “interventionist” interpretation of causality.

15

http://plato.stanford.edu/entries/causation-mani/

X

T Y

http://plato.stanford.edu/entries/causation-mani/
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The benefits of bringing causality into learning

Causal Framework

T：grass

X：dog nose

Y：label

Grass—Label: Strong correlation

Weak causation

Dog nose—Label: Strong correlation

Strong causation
X

T Y

More Explainable and More Stable



Explainability with Causality

Application --- visibility fluent reasoning 

• introduce a Causal And-Or Graph (C-AOG) to represent the causal-effect 

relations between an object’s visibility fluent and its actions 

17

Xu, Yuanlu, et al. "A causal and-or graph model for visibility fluent reasoning in tracking interacting objects." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Atomic actions

Visibility fluent

Causal And-Or Graph Atomic actions



Explainability with Causality

Application --- counterfactual visual explanations

• A causal explanation: why the example image was classified as class 𝑐
instead of 𝑐’?
• If the bird on the left had a similar beak to that on the right, then the system would have 

output the right class.

18

Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019.



Explainability with Causality

Application --- causal recommendation

19

He et al. ”Collaborative Causal Filtering for Out-of-Distribution Recommendation." Under review.

ExampleCaual structure among user features and item features



Explainability and OOD

• Explainability would be a side product when pursuing OOD with causality

20



Knowledge Graph and Causality

• Representation and Construction
•知 (fact) 识 (causality)

•格物致知 -》格数致知

• Inference

• Know Why -> Know How -> Know What

• What Known -> What Unknown  BIAS! (the target of stable learning)

• Utility

• Prediction (we are here!)

• Inference

• Decision

21



Outline

➢ Brief introduction to causal inference

➢ Stable learning and its development

➢ Positioning stable learning in OOD generalization

➢ Benchmark and dataset

22
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T Y

U Z W• Causal Identification with back 

door criterion

• Causal Estimation with do 

calculus

Paradigms - Structural Causal Model

A graphical model to describe the causal mechanisms of a system

How to discover the causal structure?
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• Causal Discovery

• Constraint-based: conditional independence 

• Functional causal model based

Paradigms – Structural Causal Model

A generative model with strong expressive power. 

But it induces high complexity. 



25



Paradigms - Potential Outcome Framework

• A simpler setting
• Suppose the confounders of T are known a priori

• The computational complexity is affordable
• Under stronger assumptions

• E.g. all confounders need to be observed

26

More like a discriminative way to estimate treatment’s 

partial effect on outcome.



Causal Effect Estimation

• Treatment Variable: 𝑇 = 1 or 𝑇 = 0

• Treated Group (𝑇 = 1)  and Control Group (𝑇 = 0)

• Potential Outcome: 𝑌(𝑇 = 1) and 𝑌(𝑇 = 0)

• Average Causal Effect of Treatment (ATE):

27

𝐴𝑇𝐸 = 𝐸[𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 ]



Counterfactual Problem

• Two key points for causal effect 

estimation

• Changing T

• Keeping everything else constant

• For each person, observe only one: 

either 𝑌𝑡=1or 𝑌𝑡=0
• For different group (T=1 and T=0), 

something else are not constant

28

Person T 𝒀𝑻=𝟏 𝒀𝑻=𝟎
P1 1 0.4 ?

P2 0 ? 0.6

P3 1 0.3 ?

P4 0 ? 0.1

P5 1 0.5 ?

P6 0 ? 0.5

P7 0 ? 0.1



Ideal Solution: Counterfactual World

• Reason about a world that does not exist

• Everything in the counterfactual world is the same as the

real world, except the treatment

29

𝑌 𝑇 = 1 𝑌 𝑇 = 0



Randomized Experiments are the “Gold Standard”

• Drawbacks of randomized experiments:

• Cost

• Unethical

• Unrealistic

30



Causal Inference with Observational Data

• Counterfactual Problem:

• Can we estimate ATE by directly comparing the average 

outcome between treated and control groups?

• Yes with randomized experiments (X are the same)

• No with observational data (X might be different)

31

𝑌 𝑇 = 1 or 𝑌 𝑇 = 0



Confounding Effect

32

weightsmoking

age

Balancing Confounders’ Distribution



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing

33



Matching

34

𝑇 = 0 𝑇 = 1



Matching

35



Matching

• Identify pairs of treated (T=1) and control (T=0) units 
whose confounders X are similar or even identical to 
each other

• Paired units guarantee that the everything else 
(Confounders) approximate constant

• Small 𝜖: less bias, but higher variance

• Fit for low-dimensional settings

• But in high-dimensional settings, there will be few exact 
matches

36

𝒊 𝒋𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋𝑖 , 𝑋𝑗 ≤ 𝜖



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing

37



Propensity Score Based Methods

• Propensity score 𝑒(𝑋) is the probability of a unit to get treated

• Then, Donald Rubin shows that the propensity score is sufficient 

to control or summarize the information of confounders

• Propensity scores cannot be observed, need to be estimated

38

𝑒 𝑋 = 𝑃(𝑇 = 1|𝑋)

𝑇 ⫫ 𝑋 | 𝑒(𝑋) 𝑇 ⫫ (𝑌 1 , 𝑌(0)) | 𝑒(𝑋)



Propensity Score Matching

• Estimating propensity score:

• Supervised learning: predicting a known 

label T based on observed covariates X.

• Conventionally, use logistic regression

• Matching pairs by distance between 

propensity score:

• High dimensional challenge:

• But this is a ‘hard’ solution.

39

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋𝑖 , 𝑋𝑗 ≤ 𝜖

Ƹ𝑒 𝑋 = 𝑃(𝑇 = 1|𝑋)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋𝑖 , 𝑋𝑗 = | Ƹ𝑒 𝑋𝑖 − Ƹ𝑒 𝑋𝑗 |

from matching to PS estimation

P. C. Austin. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3):399–424, 2011.



Inverse of Propensity Weighting (IPW)

• Why weighting with inverse of propensity score?

• Propensity score induces the distribution bias on confounders X

40

Unit 𝒆(𝑿) 𝟏 − 𝒆(𝑿) #units #units

(T=1)

#units

(T=0)

A 0.7 0.3 10 7 3

B 0.6 0.4 50 30 20

C 0.2 0.8 40 8 32

𝑒 𝑋 = 𝑃(𝑇 = 1|𝑋)

Reweighting by inverse of propensity score:

Unit #units

(T=1)

#units

(T=0)

A

B

C

𝑤𝑖 =
𝑇𝑖
𝑒𝑖
+
1 − 𝑇𝑖
1 − 𝑒𝑖

Confounders 

are the same!

10 10

50 50

40 40

Distribution Bias

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.



Inverse of Propensity Weighting (IPW)

• Estimating ATE by IPW [1]:

• Interpretation: IPW creates a pseudo-population where the 

confounders are the same between treated and control groups.

• But requires correct model specification for propensity score

• High variance when 𝑒 is close to 0 or 1

41

𝑤𝑖 =
𝑇𝑖
𝑒𝑖
+
1 − 𝑇𝑖
1 − 𝑒𝑖

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.



Non-parametric solution

• Model specification problem is inevitable

• Can we directly learn sample weights that can balance 

confounders’ distribution between treated and control

groups?

42



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing

43



Directly Confounder Balancing

• Motivation: The collection of all the moments of variables 

uniquely determine their distributions.

• Methods: Learning sample weights by directly balancing 

confounders’ moments as follows (ATT problem)

44

The first moments of X 

on the Control Group

The first moments of X 

on the Treated Group

With moments, the sample weights can be learned 

without any model specification.

J. Hainmueller. Entropy balancing for causal effects: A mul- tivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1):25–46, 2012.



Entropy Balancing

• Directly confounder balancing by sample weights W

• Minimize the entropy of sample weights W

45

Either know confounders a priori or regard all variables as confounders .

All confounders are balanced equally.

Athey S, et al. Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B, 2018, 80(4): 597-623.
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The gap between causality and learning

How to evaluate the outcome? 

Wild environments

 High-dimensional

 Highly noisy

 Little prior knowledge (model specification, confounding structures)

 Targeting problems

 Understanding v.s. Prediction

 Depth v.s. Scale and Performance

How to bridge the gap between causality and learning?



Outline

➢ Brief introduction to causal inference

➢ Stable learning and its development

➢ Positioning stable learning in OOD generalization

➢ Benchmark and dataset
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Stability and Prediction

48

True Model

Learning Process

Prediction 

Performance
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Bin Yu (2016), Three Principles of Data Science: predictability, computability, stability



Stable Learning

49

ModelDistribution 1

Distribution 1

Distribution 2

Distribution 3

Distribution n

…

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy n

…

I.I.D. Learning

Transfer Learning

VAR (Acc)
Stable 

Learning

Training

Testing



Revisit Directly Balancing for causal inference 

50

X

T Y

Typical Causal Framework

Sample reweighting can make a variable independent of other 

variables. 

Directly Confounder Balancing

Given a feature T

Assign different weights to samples so that

the samples with T and the samples without

T have similar distributions in X

Calculate the difference of Y distribution in

treated and controlled groups. (correlation

between T and Y)



The core idea of stable learning: Sample Reweighting

51

X

T Y

Typical Causal Framework

If all variables are independent after sample reweighting, 

Correlation = Causality

Analogy of A/B Testing

Given ANY feature T

Assign different weights to samples so that the

samples with T and the samples without T have

similar distributions in X

Calculate the difference of Y distribution in

treated and controlled groups. (correlation

between T and Y)



Theoretical Guarantee

52

→

0

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018. 



Causal Regularizer for Global Balancing

53

All features
excluding

treatment j

Set feature j as treatment variable

Sample
Weights

Indicator of
treatment

status

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



Causally Regularized Logistic Regression (CRLR)

54

Sample
reweighted
logistic loss

Causal
Contribution

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



Experiment – Non-i.i.d. image classification

• Source: YFCC100M

• Type: high-resolution and multi-tags

• Scale: 10-category, each with nearly 1000 images

• Method: select 5 context tags which are frequently co-occurred with 
the major tag (category label)

55



Experimental Result - insights



Experimental Result - insights

57



Limitations of Global Balancing

• A hidden assumption for Global Balancing to work

• Practical constraints

• High dimensional features (potential treatment)

• Sparsity of real world data

• Possible interactions between features

• More complex data type: categorical and continuous

58



From Shallow to Deep - DGBR

59

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



From Shallow to Deep - DGBR

60

• Deep Global Balancing Regression (DGBR) Algorithm

Stable PredictionGlobal BalancingDeep Auto-

Encoder



Experiments on Synthetic Data

61

The RMSE of DGBR is consistently stable and small across

environments under all settings.



From Binary to Continuous Variable - DWR

Independence condition for continuous variable

For all ,

62

Causal Regularizer for Continuous Variable

Decorrelated Weighted Regression:
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Stable Learning with Linear model

Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, Bo Li. Stable Prediction with Model Misspecification and Agnostic Distribution Shift.

AAAI, 2020.



De-confounding for continuous variable

64



From Causal problem to Learning problem

65

• Previous logic:

• More direct logic:

Sample

Reweighting

Independent

Variables

Causal

Variable

Stable

Prediction

Sample

Reweighting

Independent

Variables

Stable

Prediction



Thinking from the Learning end

66

𝑃𝑡𝑟𝑎𝑖𝑛(𝑥) 𝑃𝑡𝑒𝑠𝑡(𝑥)

𝑠𝑚𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟

𝑙𝑎𝑟𝑔𝑒 𝑒𝑟𝑟𝑜𝑟

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. AAAI, 2020.



Stable Learning of Linear Models 

• Consider the linear regression with misspecification bias

• By accurately estimating     with the property that 𝑏 𝑥 is uniformly 

small for all 𝑥, we can achieve stable learning.

• However, the estimation error caused by misspecification term can 

be as bad as                                      , where 𝛾2 is the smallest 

eigenvalue of centered covariance matrix.

67

Bias term with bound 𝑏 𝑥 ≤ 𝛿Goes to infinity when perfect collinearity exists!

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. AAAI, 2020.



Toy Example

• Assume the design matrix 𝑋 consists of two variables 𝑋1, 𝑋2, 

generated from a multivariate normal distribution:

• By changing 𝜌, we can simulate different extent of collinearity.

• To induce bias related to collinearity, we generate bias term 𝑏 𝑋
with 𝑏 𝑋 = 𝑋𝑣, where 𝑣 is the eigenvector of centered covariance 

matrix corresponding to its smallest eigenvalue 𝛾2.

• The bias term is sensitive to collinearity.

68

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. AAAI, 2020.



Simulation Results

69

𝑙𝑎𝑟𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)

𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑐𝑜𝑙𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. AAAI, 2020.



Stable Learning of Sparse Linear Models

• Suppose 𝑋={𝑆,𝑉}, and 𝑌=𝑓(𝑆)+𝜀

•𝑆: set of stable (causal) features, i.e., eyes, ears of dog

•𝑉: set of unstable (contextual) features, i.e., grass,

ground

• We assume the outcome is determined by sparse stable

signals 𝑆 regardless of 𝑉

70

Key reason of instability: Spurious correlation between 𝑉 and 𝑌



Theoretical Analysis

• The estimation error is induced by 

• Cov(S, V)

• Cov(V, g(S))

• Cov(S, g(S))   

71

Spurious correlation between 𝑉 and S

may shift due to different time spans,

regions and data collecting strategies,

leading to unstable performance.



Our Idea – Heterogeneity & Modularity

Ear

Nose

Grass

Cloud

72

Clustering?



Differentiated Variable Decorrelation

73

• Feature Partition by Stable Correlation Clustering

• Define the dissimilarity of two variables:

• Remove the correlation between variables via sample reweighting:

Zheyean Shen, Peng Cui, Jiashuo Liu, Tong Zhang, Bo Li and Zhitang Chen. Stable Learning via Differentiated Variable Decorrelation. KDD, 2020.



Experimental Results 

74

Effective Sample Size

Zheyean Shen, Peng Cui, Jiashuo Liu, Tong Zhang, Bo Li and Zhitang Chen. Stable Learning via Differentiated Variable Decorrelation. KDD, 2020.



Variable Decorrelation by Sample Reweighting and RFF:

• Measure and eliminate the complex non-linear dependencies 

among features with RFF

• The computation cost is acceptable

75

StableNet: From Linear Models to Deep Models

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, Zheyan Shen. Deep Stable Learning for Out-Of-Distribution Generalization. CVPR, 2021



Optimize sample weights globally by saving and 

reloading all features and weights.

76

Learning sample weights globally

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, Zheyan Shen. Deep Stable Learning for Out-Of-Distribution Generalization. CVPR, 2021



• Sample weights learning module is an independent module 

which can be easily assembled with current deep models.

• Sample weights and the classification model are trained 

iteratively.

Learning sample weights globally

77

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, Zheyan Shen. Deep Stable Learning for Out-Of-Distribution Generalization. CVPR, 2021



• The heterogeneity of training data is not significant nor known.

• The capacities of different domains can varies significantly.

Out-Of-Distribution Generalization

78

NICO dataset



• The domains for different categories can be different.

• For instance, birds can be on trees but hardly in the water 
while fishes are the opposite. 

Flexible OOD Generalization

79

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, Zheyan Shen. Deep Stable Learning for Out-Of-Distribution Generalization. CVPR, 2021



• The visualization of the gradient of the class score function 

with respect to the input pixels. The brighter the pixel is, the 

more contribution it makes to prediction.

Saliency maps of StableNet and other models

80

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, Zheyan Shen. Deep Stable Learning for Out-Of-Distribution Generalization. CVPR, 2021



OOD generalization: Model v.s. Optimization?

81

Overall Good = Majority Good + Minority Bad



Overall Good = Majority Good + Minority Good

82

Heterogeneity → Invariance

Problem I

Uncovering 

Heterogeneity

Problem II

Finding 

Invariance

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimization. ICML, 2021.
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ERM → HRM (Heterogeneous Risk Minimization)

87

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimization. ICML, 2021.
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Results

91

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimization. ICML, 2021.



Kernelized Heterogeneous Risk Minimization 

• To solve the HRM problem beyond the raw feature level. 

• Incorporate Neural Tangent Kernel. 

• Perform the heterogeneity identification and invariant prediction in the Neural Tangent 

Feature Space. 

92

Jiashuo Liu, Zheyuan Hu, Peng Cui, et al. Kernelized Heterogeneous Risk Minimization. NeurIPS, 2021.
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Stable Learning of Graph Structure
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• High Ordered

• Non-Linear

• Large Scale

Core Idea
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Algorithm: Graph Based Set Generation in Single Environment

element embedding  1

graph  

construction

Embedding Matrix

element embedding  k

element embedding  2

0 1 1 0…

1 1 0 0…

…

1 0 0 1…

Set Matrix

Set Embedding

~ 𝑁(0,1)

Latent Variable …

sampling 

𝑝

1   2 ⋯ k-1   k 

⋯

mean pooling

normalization

𝑝

1   2 ⋯ k-1   k 

⋯≈

Element-wise Variational Auto-Encoder

si

𝑝(I|si)

GCN Encoder Decoder softmax

…

fixed 
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Algorithm:   Stable Graph Learning from Multiple Environment

parameter 

sharing

…

𝐺(1)

𝑆𝑖

…

𝑮𝑺

𝑚𝑒𝑎𝑛

=

𝐺(M)…

GCN        E-VAE GCN        E-VAE

GCN        E-VAE𝑝𝑖
(u)

𝑝𝑖
(1) 𝑝𝑖

(M)

… fixed 

Joint Optimization
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Env1

Experiment:   Simulation Data

Set Prediction

7

1 2 3

1 2 3

6 7 8

6 8

…

Env2

1 2 5

4 7 8

4 7 8

…

𝐺(1)

+𝐺𝐴 𝐺𝑆

𝐺𝐶

11 testing datasets: mixing of Env1 and Env2 (10:0 to 0:10)

𝐺(2)

SGLMEAN
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Experiment:   Simulation Data

Stability 

Improvement



Causal Graph--- stable graph structure 

99

• Causal Discovery Problem

• Functional Causal Models (FCMs)

• Additional Noise Model

• Linear Model

X

exogenous noise

𝑋 = 𝑊𝑋 + 𝜖

x = 𝑓x 𝑃𝐺 x + ϵx

𝑥1
(1)

𝑥1
(𝑛)

𝑥𝑑
(𝑛)

𝑥𝑑
(1)

Observation Data Causal Graph

d variables

n samples …

…

…

…



Continuous Optimization for Structure Learning 

100

• DAG Constraint

𝑊

𝑥1

𝑥𝑚

…

min

𝑖=1

𝑚

𝐸(𝑅𝑥𝑖
2)

Sparsity Constraint 𝑙1 𝑜𝑟 𝑙2

…

∙

∙
…

𝑥1
′

𝑥𝑚
′

𝑅𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖
′

Reconstruction Constraint 



Inconsistency between Reconstruction and Causality

101



Algorithm---Differentiable Adversarial Causal Discovery

102



Wild Scenario

103

exogenous noise

Small and Equal Variance

& Single Type

√

Large and Unequal Variance

& Single Type

√

Small and Equal Variance

& Various Type

√

Large and Unequal Variance

& Various Type

√
Realistic



Simulation Experiment

• Linear Synthetic Data

104

• Promote and achieve best perform-

ance for all metrics 

• Global optimization

• More remarkable for large scale 

• Availability

• Make up gap of baseline models 

• Robustness



Simulation Experiment

• Non-Linear Synthetic Data
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Alleviate 

overfitting 

More remarkable 

for small sample size



Outline

➢ Brief introduction to causal inference

➢ Stable learning and its development

➢ Positioning stable learning in OOD generalization

➢ Benchmark and dataset
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Problem Definition
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Key Question: 𝑷𝒕𝒓 𝑿,𝒀 ≠ 𝑷𝒕𝒆 𝑿,𝒀



Categorization of OOD Methods
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Feature

Extractor
Latent

Represen-

tation

Unsupervised Representation Learning



Categorization of OOD Methods
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Target

Label

Supervised Model Learning

Stable Learning



Categorization of OOD Methods
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Optimization

Stable Learning



Stability and Robustness

• Robustness

• More on prediction performance over data perturbations

• Prediction performance-driven

• Stability

• More on the true model

• Lay more emphasis on Bias

• May help for robustness
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Domain Generalization
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• Given data from different 

observed environments          :

• The task is to predict Y given X 

such that the prediction works 

well (is “robust”) for “all possible” 

(including unseen) environments



Domain Generalization

• Assumption: the conditional probability P(Y|X) is stable or 

invariant across different environments.

• Idea: taking knowledge acquired from a number of related domains 

and applying it to previously unseen domains

• Theorem: Under reasonable technical assumptions. Then with 

probability at least
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Muandet K, Balduzzi D, Schölkopf B. Domain generalization via invariant feature. ICML 2013.



Invariant Prediction
• Invariant Assumption: There exists a subset 𝑆 ∈ 𝑋 is causal for the prediction 

of 𝑌, and the conditional distribution P(Y|S) is stable across all environments.

• Idea: Linking to causality

• Structural Causal Model (Pearl 2009): 

• The parent variables of Y in SCM satisfies Invariant Assumption

• The causal variables lead to invariance w.r.t. “all” possible environments

114

Peters, J., Bühlmann, P., & Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and 

confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016



Distributionally Robust Optimization
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• Problem Definition:

where 𝒫 is a class of distributions around the data-generating distribution 𝑃0

• Idea: if class 𝒫 contains all distributions under shift-interventions or 

do-interventions, then causal parameter 𝜃𝑐𝑎𝑢𝑠𝑎𝑙 is the distributionally 

robust parameter.



Over Pessimism Problem

• DRO has the over-pessimism problem. 

• When the radius of the 𝒫 is large, the distribution set includes many unrealistic/useless 

cases, which will make the learned model refuse to make a decision in order to guarantee 

such a overwhelmingly-considered robustness. 

• When the radius of the distribution set is too small, the distribution set may not contain the 

possible test distributions, resulting in an inability to guarantee the expected robustness.

Image from Frogner, C.; Claici, S.; Chien, E.; and Solomon, J. 2019. Incorporating Unlabeled Data into Distributionally Robust Learning. 

Assign equal probability

to each class !



Stable Learning

• Finding the common ground between causal inference and 

machine learning

Machine

Learning

Causal 

Inference



Stable Learning

• One training distribution, multiple testing distributions 
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ModelDistribution 1

Distribution 1

Distribution 2

Distribution 3

Distribution n

…

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy n

…

I.I.D. Learning

Transfer Learning

VAR (Acc)
Stable 

Learning

Training

Testing



Outline

➢ Brief introduction to causal inference

➢ Stable learning and its development

➢ Positioning stable learning in OOD generalization

➢ Benchmark and dataset
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Image Dataset —— Synthetic Transformation
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Colored MNIST[1]

[1] Ye, N., Li, K., Hong, L., Bai, H., Chen, Y., Zhou, F., & Li, Z. (2021). OoD-Bench: Benchmarking and Understanding Out-of-Distribution Generalization Datasets and Algorithms. arXiv preprint arXiv:2106.03721.

[2] Sagawa, S., Koh, P. W., Hashimoto, T. B., & Liang, P. (2019). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.

Waterbirds[2]

Training

Test



Image Dataset —— Multi-Style
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DomainNet

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1406-1415).



Image Dataset —— Fixed Wild Data
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[1] Koh, P. W., Sagawa, S., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.

iWildCam[1]

camera at 



Image Dataset —— Controllable Wild Data
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NICO[1] (Non-I.I.D. Image Dataset with Contexts) 

[1] He, Y., Shen, Z., & Cui, P. (2021). Towards non-iid image classification: A dataset and baselines. Pattern Recognition, 110, 107383.

Training Test

dog

lying
grass

yellow

context



NICO——Non-I.I.D. Image Dataset with Contexts

• Contextual labels (Contexts)

• the attributes or actions of a category

• e.g. white bear, double decker 

• the background or scene of a category

• e.g. cat on snow, airplane in sunrise

• Structure of NICO
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Animal Vehicle

Bird …

…

Train

flying on bridge…

…

2 Superclass

10 or 9 Class

10 or 9 Contexts

per

per Diverse & 

Meaningful

Overlapping



NICO——Non-I.I.D. Image Dataset with Contexts

• Data size of each class in NICO

• Samples with contexts in NICO
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[1] He, Y., Shen, Z., & Cui, P. (2021). Towards non-iid image classification: A dataset and baselines. Pattern Recognition, 110, 107383.



NICO——Non-I.I.D. Image Dataset with Contexts

• Range of average NI over Animal superclass for different settings supported in NICO.
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2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

ImageNet

Minimum Bias

Proportional Bias

Compositional Bias

Adversarial Bias

NI

class specialized

class overall

Large NI

Controllable

[1] He, Y., Shen, Z., & Cui, P. (2021). Towards non-iid image classification: A dataset and baselines. Pattern Recognition, 110, 107383.



Other Data Type
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Graph Data (OGB-LSC[1]) Text Data (Amazon Review[2])

[1] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., ... & Leskovec, J. (2020). Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687.

[2] Sagawa, S., Koh, P. W., Hashimoto, T. B., & Liang, P. (2019). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.



OOD Evaluation Metric
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Average Accuracy

𝑨𝒄𝒄 =
𝟏

𝑲


𝒌=𝟏

𝑲

𝒂𝒄𝒄𝒌

Worst-Case AccuracyStandard Deviation (STD)

𝑨𝑪𝑪𝒘𝒐𝒓𝒔𝒕 = 𝐦𝐢𝐧
𝒌∈[𝑲]

𝒂𝒄𝒄𝒌𝑨𝑪𝑪𝒔𝒕𝒅 =
𝟏

𝑲 − 𝟏


𝒌=𝟏

𝑲

(𝒂𝒄𝒄𝒌 − 𝑨𝒄𝒄)𝟐

performance in 𝑘𝑡ℎ environment



Conclusions

• Stable Learning: finding the common ground between causal 

inference and machine learning

• StableNet demonstrates its capacity and power in CNN networks

• Rethink the risk minimization framework

• HRM: heterogeneity + invariance
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Conclusions

• Explainability, Stability, Fairness, Verifiability problems are 

becoming more critical

• They are not independent!

• Stable Learning: finding the common ground between causal

inference and machine learning

• Theoretical problems

• Sample efficiency problems

• Application problems
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A survey on OOD generalization
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Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, Peng Cui. Towards Out-Of-Distribution Generalization: A Survey. arxiv, 2021.

http://out-of-distribution-generalization.com/

http://out-of-distribution-generalization.com/
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