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Today’s topic

 Neuralizing Symbolic 

Approaches to NLP

 Turning symbolic systems 

to neural networks

 Learning symbolic systems 

using neural networks

Symbolism

Connectionism

✔ Expressive, 

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance, 

flexible

✘ Black-box, data-hungry, 

hard to incorporate 

knowledge



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and 

Kewei Tu, "Cold-start and Interpretability: Turning Regular 

Expressions into Trainable Recurrent Neural Networks", EMNLP 

2020.

 Learning symbolic systems using neural networks



Regular Expressions (RE)

 One of the most representative and useful forms of 

symbolic rules

 Widely used in practice: text classification, slot filling, etc.



Regular Expressions (RE)

 Pros

 Highly interpretable

 Support fine-grained diagnosis and manipulation

 Easy to add/delete/revise rules to quickly adapt to changes in 

task specification

 No need for training

 Hence no need for data annotation, less computational cost

 Good for cold-start scenarios

 Cons

 Rely on human experts to write 

 Often: high precision but low recall

 Cannot evolve by training on labeled data when available

 Underperform neural approaches in rich-resource scenarios



Our Idea

 Convert a RE to a new form of recurrent neural networks

 Roughly equivalent to RE

✓ Can still be used in cold-start scenarios

 Trainable on labeled data

✓ Can outperform REs and compete with neural approaches in 

rich-resource scenarios

 Can be converted back to RE

✓ Possibility of fine-grained manipulation

 Let’s start with classification…



Step 1. RE to Finite Automaton (FA)

 Any RE can be converted into a FA that expresses the 

same language

FA parameters

• Binary transition 
tensor: 

𝑇 ∈ ℝ𝑉×𝐾×𝐾

• Binary start vector: 

𝛼0 ∈ ℝ𝐾

• Binary final vector: 

𝛼∞ ∈ ℝ𝐾

𝑉: vocabulary size

𝐾: state number



Step 2. FA as Recurrent Neural Network (RNN)

 Score of a FA accepting a sentence can be calculated 

using the forward algorithm

𝑠0

𝑠1

𝑠2

𝑠0 𝑠1𝑠2

𝛼0 𝑇[𝑥1] 𝑇[𝑥4] 𝑇[𝑥5] 𝑇 𝑥6 , … , 𝑇[𝑥9] 𝛼∞𝑇 𝑥2 , 𝑇[𝑥3]

<BOS> Tell me how far is Oakland airport <EOS>

Forward score:



Step 2. FA as Recurrent Neural Network (RNN)

 The computation can be rewritten into a recurrent form

(recurrent step)



Step 3. Decomposing the Parameter Tensor

 Goal: reduce the computational complexity to match that 

of traditional RNN

 Now the recurrent step becomes:

Tensor Rank 

Decomposition

(word embedding) (state embeddings)



Step 4. Integrating Pretrained Word Embedding

 Goal: bringing external lexical knowledge into our model

 Method: 

 Approximate 𝑬ℛ with 𝑬𝑤𝑮

 Interpolate 𝑬ℛ and 𝑬𝑤𝑮

 The recurrent step becomes:

external word embedding

initialized with 𝑬𝑤
† 𝑬ℛ

𝑬𝑤
†

is the pseudo-inverse of 𝑬𝑤

FA-RNN



FA-RNN Extensions

 Gated extension

 Add forget gate and reset gate like in GRU

 Initialize parameters to make the gates inactive initially

 Combine two FA-RNNs of opposite directions

 Create a left-to-right FA-RNN from the RE

 Create a right-to-left FA-RNN from the reversed RE

 Output the average score of the two FA-RNNs



Text classification

 An RE system for text classification: 

 Aggregating results from multiple REs to form a prediction

simple propositional logic rules 

specifying priorities among REs



Text classification

 From a RE system to a FA-RNN system
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Text classification

 From a RE system to a FA-RNN system

RE 

system

FA-RNN

system

Trainable on 

labeled data!



Experiments

 Three intent classification datasets: 

 ATIS, QC (TREC-6), SMS

 Baselines

 Bi-RNN/GRU/LSTM, CNN, DAN

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,. 

2016]



Experiments – Zero-Shot



Experiments – Low-Resource and Full Training



Conversion Back to RE

 From a FA-RNN, we can recover a WFA tensor from the 

model parameters

 The WFA tensor can be rounded to a 0/1 tensor, resulting 

in a FA and hence a RE

 Extracted RE vs. original RE

 ATIS: +0.45%

 QC: +9.2%

 SMS: -1.2%



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Zijian Jin, and Kewei Tu, "Neuralizing Regular 

Expressions for Slot Filling", EMNLP 2021.

 Learning symbolic systems using neural networks



RE for slot filling

 Slot filling

 Regular expression to catch fr.city:

show me flights from  san francisco to dallas(san francisco)
fr.city

capturing group



Step 1. RE → Finite State Transducer (FST)

BIO scheme
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Step 1. RE → Finite State Transducer (FST)

 FST parameters

 Transition tensor 𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾

 Start & final vectors  𝝁, 𝝂 ∈ ℝ𝐾

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

𝝁(𝑞0) 𝝂(𝑞3)𝑻Ω("flight", 𝑙⋄, 𝑞0, 𝑞0)× × ×⋯⋯Score



Step 2. FST as BiRNN

 FST inference

 Given an input sequence, find the highest-scoring output 

sequence

 Need to sum out the state sequence & optimize the output 

sequence

 NP-hard!

 Given an input sequence, find the highest-scoring output 

label at each position

1. Compute forward scores

2. Compute backward scores

3. Compute label scores at each position

A form of Bidirectional RNN

Sum out label 

dimension of 𝑻Ω

Einsum notation



Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source 

state (F) given the target state (T)

𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾 𝑻 ∈ ℝ𝑉×𝐾×𝐾

𝑶 ∈ ℝ𝐿×𝐾

parameter



Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source 

state (F) given the target state (T)

 Inference

1. Forward

2. Backward

3. Label scoring

Time complexity per position: 𝑂 𝐿𝐾2 → 𝑂(𝐿𝐾 + 2𝐾2)



Step 3. FST → iFST



 Exactly the same as in the FA-RNN paper

external word 

embedding

Rank Decomposition

Step 4&5. Tensor Decomposition & Pretrained 

Word Embedding

FST-RNN



 Nonlinearity

 Dummy states

 Gating

 Initialized to make the gates inactive initially

 Label priority

 CRF layer

 Initialized with uniform transitions

FSTRNN Extensions



Experiments

 Three slot-filling datasets

 ATIS, ATIS-ZH, SNIPS

 Baselines:

 Bi-RNN/GRU/LSTM

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,. 

2016]



Experiments – Zero-Shot



Fewshot and rich resource results

Experiments – Low-Resource and Full Training



Part 1 Summary

 FA-RNN / FST-RNN combines strengths of symbolic 

rules and neural networks

 Can be converted from RE

 Can also learn from labeled data

 Excels in zero-shot and low-resource scenarios; competitive 

in rich-resource scenarios



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks



Learning symbolic systems using neural networks

 Goal: learning symbolic rules from scratch

 Running example: grammar induction

 Grammar: a set of rules (with probabilities)

 Induction: unsupervised learning

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules



Context-Free Grammars

 A context-free grammar (CFG) has 

four components

 A set  of terminals (words)

 A set N of nonterminals (phrases)

 A start symbol SN

 A set R of production rules

 Specifies how a nonterminal can 

produce a string of terminals and/or 

nonterminals



Generation & Parsing

……

Book   the  dinner   flight

Example from [Jurafsky & Martin, 2006]



Probabilistic Grammars

 Each rule is associated with a conditional probability

 The probability of a parse tree is the product of the 

probabilities of all the rules used in generating the parse 

tree



Example

……

Book   the  dinner   flight

P(T) = .05  .20  .20  .20  .75  .30  .60  .10 

 .40 = 2.2×10−6

Example from [Jurafsky & Martin, 2006]



Parse tree scoring

 Assign a probability (or score) to a parse tree of a 

sentence

 Why?

 Disambiguation!

 A natural language sentence may have many possible 

parses

 Ambiguities are ubiquitous in natural languages



Ambiguity

 Astronomers saw stars with ears.

Example from [Manning and Schütze, 1999]



Dependency Grammar

 Dependency grammar & parsing

 ROOT → is,   ROOT → give,   …

 is+left → learning,   is+right → hard,   …

Learning probabilistic grammars is hard

ROOT



Learning a grammar from a corpus

 Supervised Methods

 Rely on a training corpus of sentences annotated with 

parses (treebank)

 Unsupervised Methods (Grammar Induction)

 Do not require annotated data

A square is above the 

triangle.

A triangle rolls.

The square rolls.

A triangle is above the 

square.

A circle touches a square.

……

S  → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces(0.1)

……

Training Corpus Grammar
Learning



Grammar Induction

 Learn a grammar from unannotated sentences

 Two subtasks

 Structure search

 Learn a set of grammar rules

 Parameter learning

 Given a set of grammar rules, learn their probabilities

Extremely difficult on real data. 

Almost no success.

Still difficult, but doable. A lot of 

work over the past 20yrs.



Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "PCFGs Can Do 

Better: Inducing Probabilistic Context-Free Grammars with 

Many Symbols", NAACL 2021.

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "Neural Bi-

Lexicalized PCFG Induction", ACL 2021.

 Symbol embedding and neural parameterization

 Contextualize grammar rules



Parameter Learning

 Typical objective function: MLE

𝐹 𝜃 = log 𝑃𝜃(𝒘) = log 

𝑡∈𝑇(𝒘)

𝑃𝜃(𝑡) = log 

𝑡∈𝑇(𝒘)

ෑ

𝑟∈𝑡

𝜃𝑟

 Can be computed with dynamic programming (the inside 

algorithm)

 Traditionally optimized using the EM algorithm

 Non-trivial to understand, implement, and parallelize

 Optimization with gradient descent?
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Computation graph of the inside algorithm
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Computation graph of the inside algorithm

𝑃(𝒘)

w0 w1 w2 w3

𝑃(𝒘) = 𝐬0,𝑛𝐫

Probabilities of 

start rule ( S→A )
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1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

𝑃(𝒘)

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

𝑃(𝒘) = 𝐬0,𝑛𝐫

𝑂(𝑚3𝑙3) time & 

space complexity!



Reducing Complexity

 Kruskal form of T:

 Neural parameterization of U, V, W

 More on this later…

 Problem: T contains probabilities

 Solution:

 V and W are column-normalized

 U is row-normalized



A Bayesian network perspective

 A→BC

A

B C

A

B C

RT

U

V W



Reducing Complexity

 Simplified update formula:

 Reduced complexity: 𝑂(𝑑𝑙3 +𝑚𝑑𝑙2)

 A form of recursive neural networks if given a parse tree!



Experimental results

F1 of Previous 

SOTA



Extension to Bilexical PCFG

 Unlexicalized production rules:

 A → B C

Pronoun

wash

cats

S

VPNP

Verb NP

Determiner Noun

our

we



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

Pronounwe

wash

cats

Swash

VPwashNPwe

Verbwash NPcats

Determinerour Nouncats

our

we



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

 A bilexical CFG can simultaneously produce a 

constituency parse and a dependency parse

we wash our cats

ROOT



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

 Rule probability:

wp

B C

A

wq D

wp

B C

A

wq D

R

Kruskal Form 



Experimental results



Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Yong Jiang, Wenjuan Han, and Kewei Tu, "Unsupervised Neural 

Dependency Parsing", EMNLP 2016.

 Contextualize grammar rules



Problem

 Different terminal/nonterminal symbols in a grammar are 

regarded as being distinct

 But correlations exist between many of them

 Example: verb base form, past tense, 3rd person singular 

(subtypes of the same parent type)



Problem

 Solution: symbol embedding

 Learn to embed terminal/nonterminal symbols into a 

continuous vector space

 Similar symbols are close to each other in the embedding 

space

 Predict grammar rule weights or parsing actions from the 

vector representations of the grammar symbols



Neural DMV

𝑃 𝑐ℎ𝑖𝑙𝑑 ℎ𝑒𝑎𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑒𝑛𝑐𝑦)



Learning Neural DMV

 Expectation-Maximization

 Gradient descent can be even better!

 Songlin Yang, Yong Jiang, Wenjuan Han, and Kewei Tu, "Second-

Order Unsupervised Neural Dependency Parsing", COLING 2020
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Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

 Wenjuan Han, Yong Jiang, and Kewei Tu, "Enhancing 

Unsupervised Generative Dependency Parser with Contextual 

Information", ACL 2019.



Another Problem

 The same grammar rule may have different probabilities 

in different contexts

 “He is reading a book.” vs. “What is he reading?”

dobjdobj



Discriminative parsing

 A discriminative parser models P(parse | sentence)

 Utilize rich features of the whole sentence in predicting the 

parse tree

 Grammar rule probabilities or weights depend on the context



Neural DMV

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦



Discriminative Neural DMV

D-N-DMV objective: 𝐽 𝜃 = σ𝑦 𝑃𝜃 𝑥, 𝑦|𝑣𝑤

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Also applicable to 

constituency parsing 

[Kim et al., “Compound 

PCFG for Grammar 

Induction”, ACL 2019]



Experimental results
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Part 2 Summary

 Neural approaches to grammar induction

 Unfold inference as neural networks

 Easy to implement, parallelize, scale up

 Symbol embedding and neural parameterization

 Captures similarity & correlation between symbols

 Informed smoothing

 Contextualize grammar rules

 Break the context-free assumption, more expressive



Summary



Summary

 Symbolism vs. Connectionism

 Each has its own pros and cons

 Even in the era of deep learning, symbolic approaches 

should not be ignored

 Integrating symbolism & connectionism is a fruitful 

direction

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks



Thank you!

Q&A


