
Neuralizing Symbolic Approaches to NLP

Kewei Tu

ShanghaiTech University

Propositional

logic
FOL

Logic

programming
Knowledge

graph

Bayesian

networks

CRF

MRF

Symbolism

Connectionism
Statistical

Approaches

Three types of

approaches

HMM

Perceptron

CNN

RNN/LSTM

MLP

Propositional

logic
FOL

Logic

programming
Knowledge

graph

Bayesian

networks

CRF

MRF

Symbolism

Connectionism
Statistical

Approaches

Three types of

approaches

HMM

Perceptron

CNN

RNN/LSTM

Deep NN

✔Expressive,

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance,

flexible

✘Black-box, data-hungry,

hard to incorporate

knowledge

✔ Interpretable,

rigorous, learnable

✘Less

expressive/flexible

Trends

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Symbolism Connectionism Statistical

Trends

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Symbolism Connectionism Statistical

Three types of approaches

will be integrated.

Today’s topic

 Neuralizing Symbolic

Approaches to NLP

 Turning symbolic systems

to neural networks

 Learning symbolic systems

using neural networks

Symbolism

Connectionism

✔ Expressive,

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance,

flexible

✘ Black-box, data-hungry,

hard to incorporate

knowledge

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and

Kewei Tu, "Cold-start and Interpretability: Turning Regular

Expressions into Trainable Recurrent Neural Networks", EMNLP

2020.

 Learning symbolic systems using neural networks

Regular Expressions (RE)

 One of the most representative and useful forms of

symbolic rules

 Widely used in practice: text classification, slot filling, etc.

Regular Expressions (RE)

 Pros

 Highly interpretable

 Support fine-grained diagnosis and manipulation

 Easy to add/delete/revise rules to quickly adapt to changes in

task specification

 No need for training

 Hence no need for data annotation, less computational cost

 Good for cold-start scenarios

 Cons

 Rely on human experts to write

 Often: high precision but low recall

 Cannot evolve by training on labeled data when available

 Underperform neural approaches in rich-resource scenarios

Our Idea

 Convert a RE to a new form of recurrent neural networks

 Roughly equivalent to RE

✓ Can still be used in cold-start scenarios

 Trainable on labeled data

✓ Can outperform REs and compete with neural approaches in

rich-resource scenarios

 Can be converted back to RE

✓ Possibility of fine-grained manipulation

 Let’s start with classification…

Step 1. RE to Finite Automaton (FA)

 Any RE can be converted into a FA that expresses the

same language

FA parameters

• Binary transition
tensor:

𝑇 ∈ ℝ𝑉×𝐾×𝐾

• Binary start vector:

𝛼0 ∈ ℝ𝐾

• Binary final vector:

𝛼∞ ∈ ℝ𝐾

𝑉: vocabulary size

𝐾: state number

Step 2. FA as Recurrent Neural Network (RNN)

 Score of a FA accepting a sentence can be calculated

using the forward algorithm

𝑠0

𝑠1

𝑠2

𝑠0 𝑠1𝑠2

𝛼0 𝑇[𝑥1] 𝑇[𝑥4] 𝑇[𝑥5] 𝑇 𝑥6 , … , 𝑇[𝑥9] 𝛼∞𝑇 𝑥2 , 𝑇[𝑥3]

<BOS> Tell me how far is Oakland airport <EOS>

Forward score:

Step 2. FA as Recurrent Neural Network (RNN)

 The computation can be rewritten into a recurrent form

(recurrent step)

Step 3. Decomposing the Parameter Tensor

 Goal: reduce the computational complexity to match that

of traditional RNN

 Now the recurrent step becomes:

Tensor Rank

Decomposition

(word embedding) (state embeddings)

Step 4. Integrating Pretrained Word Embedding

 Goal: bringing external lexical knowledge into our model

 Method:

 Approximate 𝑬ℛ with 𝑬𝑤𝑮

 Interpolate 𝑬ℛ and 𝑬𝑤𝑮

 The recurrent step becomes:

external word embedding

initialized with 𝑬𝑤
† 𝑬ℛ

𝑬𝑤
†

is the pseudo-inverse of 𝑬𝑤

FA-RNN

FA-RNN Extensions

 Gated extension

 Add forget gate and reset gate like in GRU

 Initialize parameters to make the gates inactive initially

 Combine two FA-RNNs of opposite directions

 Create a left-to-right FA-RNN from the RE

 Create a right-to-left FA-RNN from the reversed RE

 Output the average score of the two FA-RNNs

Text classification

 An RE system for text classification:

 Aggregating results from multiple REs to form a prediction

simple propositional logic rules

specifying priorities among REs

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Trainable on

labeled data!

Experiments

 Three intent classification datasets:

 ATIS, QC (TREC-6), SMS

 Baselines

 Bi-RNN/GRU/LSTM, CNN, DAN

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.

2016]

Experiments – Zero-Shot

Experiments – Low-Resource and Full Training

Conversion Back to RE

 From a FA-RNN, we can recover a WFA tensor from the

model parameters

 The WFA tensor can be rounded to a 0/1 tensor, resulting

in a FA and hence a RE

 Extracted RE vs. original RE

 ATIS: +0.45%

 QC: +9.2%

 SMS: -1.2%

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Zijian Jin, and Kewei Tu, "Neuralizing Regular

Expressions for Slot Filling", EMNLP 2021.

 Learning symbolic systems using neural networks

RE for slot filling

 Slot filling

 Regular expression to catch fr.city:

show me flights from san francisco to dallas(san francisco)
fr.city

capturing group

Step 1. RE → Finite State Transducer (FST)

BIO scheme

Step 1. RE → Finite State Transducer (FST)

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

Step 1. RE → Finite State Transducer (FST)

 FST parameters

 Transition tensor 𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾

 Start & final vectors 𝝁, 𝝂 ∈ ℝ𝐾

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

𝝁(𝑞0) 𝝂(𝑞3)𝑻Ω("flight", 𝑙⋄, 𝑞0, 𝑞0)× × ×⋯⋯Score

Step 2. FST as BiRNN

 FST inference

 Given an input sequence, find the highest-scoring output

sequence

 Need to sum out the state sequence & optimize the output

sequence

 NP-hard!

 Given an input sequence, find the highest-scoring output

label at each position

1. Compute forward scores

2. Compute backward scores

3. Compute label scores at each position

A form of Bidirectional RNN

Sum out label

dimension of 𝑻Ω

Einsum notation

Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source

state (F) given the target state (T)

𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾 𝑻 ∈ ℝ𝑉×𝐾×𝐾

𝑶 ∈ ℝ𝐿×𝐾

parameter

Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source

state (F) given the target state (T)

 Inference

1. Forward

2. Backward

3. Label scoring

Time complexity per position: 𝑂 𝐿𝐾2 → 𝑂(𝐿𝐾 + 2𝐾2)

Step 3. FST → iFST

 Exactly the same as in the FA-RNN paper

external word

embedding

Rank Decomposition

Step 4&5. Tensor Decomposition & Pretrained

Word Embedding

FST-RNN

 Nonlinearity

 Dummy states

 Gating

 Initialized to make the gates inactive initially

 Label priority

 CRF layer

 Initialized with uniform transitions

FSTRNN Extensions

Experiments

 Three slot-filling datasets

 ATIS, ATIS-ZH, SNIPS

 Baselines:

 Bi-RNN/GRU/LSTM

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.

2016]

Experiments – Zero-Shot

Fewshot and rich resource results

Experiments – Low-Resource and Full Training

Part 1 Summary

 FA-RNN / FST-RNN combines strengths of symbolic

rules and neural networks

 Can be converted from RE

 Can also learn from labeled data

 Excels in zero-shot and low-resource scenarios; competitive

in rich-resource scenarios

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks

Learning symbolic systems using neural networks

 Goal: learning symbolic rules from scratch

 Running example: grammar induction

 Grammar: a set of rules (with probabilities)

 Induction: unsupervised learning

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

Context-Free Grammars

 A context-free grammar (CFG) has

four components

 A set of terminals (words)

 A set N of nonterminals (phrases)

 A start symbol SN

 A set R of production rules

 Specifies how a nonterminal can

produce a string of terminals and/or

nonterminals

Generation & Parsing

……

Book the dinner flight

Example from [Jurafsky & Martin, 2006]

Probabilistic Grammars

 Each rule is associated with a conditional probability

 The probability of a parse tree is the product of the

probabilities of all the rules used in generating the parse

tree

Example

……

Book the dinner flight

P(T) = .05 .20 .20 .20 .75 .30 .60 .10

 .40 = 2.2×10−6

Example from [Jurafsky & Martin, 2006]

Parse tree scoring

 Assign a probability (or score) to a parse tree of a

sentence

 Why?

 Disambiguation!

 A natural language sentence may have many possible

parses

 Ambiguities are ubiquitous in natural languages

Ambiguity

 Astronomers saw stars with ears.

Example from [Manning and Schütze, 1999]

Dependency Grammar

 Dependency grammar & parsing

 ROOT → is, ROOT → give, …

 is+left → learning, is+right → hard, …

Learning probabilistic grammars is hard

ROOT

Learning a grammar from a corpus

 Supervised Methods

 Rely on a training corpus of sentences annotated with

parses (treebank)

 Unsupervised Methods (Grammar Induction)

 Do not require annotated data

A square is above the

triangle.

A triangle rolls.

The square rolls.

A triangle is above the

square.

A circle touches a square.

……

S → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces(0.1)

……

Training Corpus Grammar
Learning

Grammar Induction

 Learn a grammar from unannotated sentences

 Two subtasks

 Structure search

 Learn a set of grammar rules

 Parameter learning

 Given a set of grammar rules, learn their probabilities

Extremely difficult on real data.

Almost no success.

Still difficult, but doable. A lot of

work over the past 20yrs.

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "PCFGs Can Do

Better: Inducing Probabilistic Context-Free Grammars with

Many Symbols", NAACL 2021.

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "Neural Bi-

Lexicalized PCFG Induction", ACL 2021.

 Symbol embedding and neural parameterization

 Contextualize grammar rules

Parameter Learning

 Typical objective function: MLE

𝐹 𝜃 = log 𝑃𝜃(𝒘) = log

𝑡∈𝑇(𝒘)

𝑃𝜃(𝑡) = log

𝑡∈𝑇(𝒘)

ෑ

𝑟∈𝑡

𝜃𝑟

 Can be computed with dynamic programming (the inside

algorithm)

 Traditionally optimized using the EM algorithm

 Non-trivial to understand, implement, and parallelize

 Optimization with gradient descent?

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

w0 w1 w2 w3

Computation graph of the inside algorithm

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

Probabilities of

preterminal rules

(A→w)

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

𝑃(𝒘)

w0 w1 w2 w3

𝑃(𝒘) = 𝐬0,𝑛𝐫

Probabilities of

start rule (S→A)

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

𝑃(𝒘)

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

𝑃(𝒘) = 𝐬0,𝑛𝐫

𝑂(𝑚3𝑙3) time &

space complexity!

Reducing Complexity

 Kruskal form of T:

 Neural parameterization of U, V, W

 More on this later…

 Problem: T contains probabilities

 Solution:

 V and W are column-normalized

 U is row-normalized

A Bayesian network perspective

 A→BC

A

B C

A

B C

RT

U

V W

Reducing Complexity

 Simplified update formula:

 Reduced complexity: 𝑂(𝑑𝑙3 +𝑚𝑑𝑙2)

 A form of recursive neural networks if given a parse tree!

Experimental results

F1 of Previous

SOTA

Extension to Bilexical PCFG

 Unlexicalized production rules:

 A → B C

Pronoun

wash

cats

S

VPNP

Verb NP

Determiner Noun

our

we

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

Pronounwe

wash

cats

Swash

VPwashNPwe

Verbwash NPcats

Determinerour Nouncats

our

we

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

 A bilexical CFG can simultaneously produce a

constituency parse and a dependency parse

we wash our cats

ROOT

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

 Rule probability:

wp

B C

A

wq D

wp

B C

A

wq D

R

Kruskal Form

Experimental results

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Yong Jiang, Wenjuan Han, and Kewei Tu, "Unsupervised Neural

Dependency Parsing", EMNLP 2016.

 Contextualize grammar rules

Problem

 Different terminal/nonterminal symbols in a grammar are

regarded as being distinct

 But correlations exist between many of them

 Example: verb base form, past tense, 3rd person singular

(subtypes of the same parent type)

Problem

 Solution: symbol embedding

 Learn to embed terminal/nonterminal symbols into a

continuous vector space

 Similar symbols are close to each other in the embedding

space

 Predict grammar rule weights or parsing actions from the

vector representations of the grammar symbols

Neural DMV

𝑃 𝑐ℎ𝑖𝑙𝑑 ℎ𝑒𝑎𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑒𝑛𝑐𝑦)

Learning Neural DMV

 Expectation-Maximization

 Gradient descent can be even better!

 Songlin Yang, Yong Jiang, Wenjuan Han, and Kewei Tu, "Second-

Order Unsupervised Neural Dependency Parsing", COLING 2020

Experimental results

40

45

50

55

60

65

70

75

DMV
(2004)

LN
Families
(2009)

PR-S
(2010)

EVG
(2009)

TSG-DMV
(2010)

UR-A E-
DMV

(2012)

N E-DMV
good init
(2016)

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)

Generative Approaches

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

 Wenjuan Han, Yong Jiang, and Kewei Tu, "Enhancing

Unsupervised Generative Dependency Parser with Contextual

Information", ACL 2019.

Another Problem

 The same grammar rule may have different probabilities

in different contexts

 “He is reading a book.” vs. “What is he reading?”

dobjdobj

Discriminative parsing

 A discriminative parser models P(parse | sentence)

 Utilize rich features of the whole sentence in predicting the

parse tree

 Grammar rule probabilities or weights depend on the context

Neural DMV

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Discriminative Neural DMV

D-N-DMV objective: 𝐽 𝜃 = σ𝑦 𝑃𝜃 𝑥, 𝑦|𝑣𝑤

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Also applicable to

constituency parsing

[Kim et al., “Compound

PCFG for Grammar

Induction”, ACL 2019]

Experimental results

40

45

50

55

60

65

70

75

80

DMV
(2004)

LN
Families
(2009)

PR-S
(2010)

EVG
(2009)

TSG-DMV
(2010)

UR-A E-
DMV

(2012)

N E-DMV
good init
(2016)

D-N-DMV
(2019)

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)

Generative Approaches Discriminative

Approaches

Part 2 Summary

 Neural approaches to grammar induction

 Unfold inference as neural networks

 Easy to implement, parallelize, scale up

 Symbol embedding and neural parameterization

 Captures similarity & correlation between symbols

 Informed smoothing

 Contextualize grammar rules

 Break the context-free assumption, more expressive

Summary

Summary

 Symbolism vs. Connectionism

 Each has its own pros and cons

 Even in the era of deep learning, symbolic approaches

should not be ignored

 Integrating symbolism & connectionism is a fruitful

direction

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks

Thank you!

Q&A

