
Neuralizing Symbolic Approaches to NLP

Kewei Tu

ShanghaiTech University

Propositional

logic
FOL

Logic

programming
Knowledge

graph

Bayesian

networks

CRF

MRF

Symbolism

Connectionism
Statistical

Approaches

Three types of

approaches

HMM

Perceptron

CNN

RNN/LSTM

MLP

Propositional

logic
FOL

Logic

programming
Knowledge

graph

Bayesian

networks

CRF

MRF

Symbolism

Connectionism
Statistical

Approaches

Three types of

approaches

HMM

Perceptron

CNN

RNN/LSTM

Deep NN

✔Expressive,

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance,

flexible

✘Black-box, data-hungry,

hard to incorporate

knowledge

✔ Interpretable,

rigorous, learnable

✘Less

expressive/flexible

Trends

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Symbolism Connectionism Statistical

Trends

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Symbolism Connectionism Statistical

Three types of approaches

will be integrated.

Today’s topic

 Neuralizing Symbolic

Approaches to NLP

 Turning symbolic systems

to neural networks

 Learning symbolic systems

using neural networks

Symbolism

Connectionism

✔ Expressive,

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance,

flexible

✘ Black-box, data-hungry,

hard to incorporate

knowledge

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and

Kewei Tu, "Cold-start and Interpretability: Turning Regular

Expressions into Trainable Recurrent Neural Networks", EMNLP

2020.

 Learning symbolic systems using neural networks

Regular Expressions (RE)

 One of the most representative and useful forms of

symbolic rules

 Widely used in practice: text classification, slot filling, etc.

Regular Expressions (RE)

 Pros

 Highly interpretable

 Support fine-grained diagnosis and manipulation

 Easy to add/delete/revise rules to quickly adapt to changes in

task specification

 No need for training

 Hence no need for data annotation, less computational cost

 Good for cold-start scenarios

 Cons

 Rely on human experts to write

 Often: high precision but low recall

 Cannot evolve by training on labeled data when available

 Underperform neural approaches in rich-resource scenarios

Our Idea

 Convert a RE to a new form of recurrent neural networks

 Roughly equivalent to RE

✓ Can still be used in cold-start scenarios

 Trainable on labeled data

✓ Can outperform REs and compete with neural approaches in

rich-resource scenarios

 Can be converted back to RE

✓ Possibility of fine-grained manipulation

 Let’s start with classification…

Step 1. RE to Finite Automaton (FA)

 Any RE can be converted into a FA that expresses the

same language

FA parameters

• Binary transition
tensor:

𝑇 ∈ ℝ𝑉×𝐾×𝐾

• Binary start vector:

𝛼0 ∈ ℝ𝐾

• Binary final vector:

𝛼∞ ∈ ℝ𝐾

𝑉: vocabulary size

𝐾: state number

Step 2. FA as Recurrent Neural Network (RNN)

 Score of a FA accepting a sentence can be calculated

using the forward algorithm

𝑠0

𝑠1

𝑠2

𝑠0 𝑠1𝑠2

𝛼0 𝑇[𝑥1] 𝑇[𝑥4] 𝑇[𝑥5] 𝑇 𝑥6 , … , 𝑇[𝑥9] 𝛼∞𝑇 𝑥2 , 𝑇[𝑥3]

<BOS> Tell me how far is Oakland airport <EOS>

Forward score:

Step 2. FA as Recurrent Neural Network (RNN)

 The computation can be rewritten into a recurrent form

(recurrent step)

Step 3. Decomposing the Parameter Tensor

 Goal: reduce the computational complexity to match that

of traditional RNN

 Now the recurrent step becomes:

Tensor Rank

Decomposition

(word embedding) (state embeddings)

Step 4. Integrating Pretrained Word Embedding

 Goal: bringing external lexical knowledge into our model

 Method:

 Approximate 𝑬ℛ with 𝑬𝑤𝑮

 Interpolate 𝑬ℛ and 𝑬𝑤𝑮

 The recurrent step becomes:

external word embedding

initialized with 𝑬𝑤
† 𝑬ℛ

𝑬𝑤
†

is the pseudo-inverse of 𝑬𝑤

FA-RNN

FA-RNN Extensions

 Gated extension

 Add forget gate and reset gate like in GRU

 Initialize parameters to make the gates inactive initially

 Combine two FA-RNNs of opposite directions

 Create a left-to-right FA-RNN from the RE

 Create a right-to-left FA-RNN from the reversed RE

 Output the average score of the two FA-RNNs

Text classification

 An RE system for text classification:

 Aggregating results from multiple REs to form a prediction

simple propositional logic rules

specifying priorities among REs

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Text classification

 From a RE system to a FA-RNN system

RE

system

FA-RNN

system

Trainable on

labeled data!

Experiments

 Three intent classification datasets:

 ATIS, QC (TREC-6), SMS

 Baselines

 Bi-RNN/GRU/LSTM, CNN, DAN

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.

2016]

Experiments – Zero-Shot

Experiments – Low-Resource and Full Training

Conversion Back to RE

 From a FA-RNN, we can recover a WFA tensor from the

model parameters

 The WFA tensor can be rounded to a 0/1 tensor, resulting

in a FA and hence a RE

 Extracted RE vs. original RE

 ATIS: +0.45%

 QC: +9.2%

 SMS: -1.2%

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Zijian Jin, and Kewei Tu, "Neuralizing Regular

Expressions for Slot Filling", EMNLP 2021.

 Learning symbolic systems using neural networks

RE for slot filling

 Slot filling

 Regular expression to catch fr.city:

show me flights from san francisco to dallas(san francisco)
fr.city

capturing group

Step 1. RE → Finite State Transducer (FST)

BIO scheme

Step 1. RE → Finite State Transducer (FST)

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

Step 1. RE → Finite State Transducer (FST)

 FST parameters

 Transition tensor 𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾

 Start & final vectors 𝝁, 𝝂 ∈ ℝ𝐾

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

𝝁(𝑞0) 𝝂(𝑞3)𝑻Ω("flight", 𝑙⋄, 𝑞0, 𝑞0)× × ×⋯⋯Score

Step 2. FST as BiRNN

 FST inference

 Given an input sequence, find the highest-scoring output

sequence

 Need to sum out the state sequence & optimize the output

sequence

 NP-hard!

 Given an input sequence, find the highest-scoring output

label at each position

1. Compute forward scores

2. Compute backward scores

3. Compute label scores at each position

A form of Bidirectional RNN

Sum out label

dimension of 𝑻Ω

Einsum notation

Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source

state (F) given the target state (T)

𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾 𝑻 ∈ ℝ𝑉×𝐾×𝐾

𝑶 ∈ ℝ𝐿×𝐾

parameter

Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source

state (F) given the target state (T)

 Inference

1. Forward

2. Backward

3. Label scoring

Time complexity per position: 𝑂 𝐿𝐾2 → 𝑂(𝐿𝐾 + 2𝐾2)

Step 3. FST → iFST

 Exactly the same as in the FA-RNN paper

external word

embedding

Rank Decomposition

Step 4&5. Tensor Decomposition & Pretrained

Word Embedding

FST-RNN

 Nonlinearity

 Dummy states

 Gating

 Initialized to make the gates inactive initially

 Label priority

 CRF layer

 Initialized with uniform transitions

FSTRNN Extensions

Experiments

 Three slot-filling datasets

 ATIS, ATIS-ZH, SNIPS

 Baselines:

 Bi-RNN/GRU/LSTM

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.

2016]

Experiments – Zero-Shot

Fewshot and rich resource results

Experiments – Low-Resource and Full Training

Part 1 Summary

 FA-RNN / FST-RNN combines strengths of symbolic

rules and neural networks

 Can be converted from RE

 Can also learn from labeled data

 Excels in zero-shot and low-resource scenarios; competitive

in rich-resource scenarios

Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks

Learning symbolic systems using neural networks

 Goal: learning symbolic rules from scratch

 Running example: grammar induction

 Grammar: a set of rules (with probabilities)

 Induction: unsupervised learning

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

Context-Free Grammars

 A context-free grammar (CFG) has

four components

 A set  of terminals (words)

 A set N of nonterminals (phrases)

 A start symbol SN

 A set R of production rules

 Specifies how a nonterminal can

produce a string of terminals and/or

nonterminals

Generation & Parsing

……

Book the dinner flight

Example from [Jurafsky & Martin, 2006]

Probabilistic Grammars

 Each rule is associated with a conditional probability

 The probability of a parse tree is the product of the

probabilities of all the rules used in generating the parse

tree

Example

……

Book the dinner flight

P(T) = .05  .20  .20  .20  .75  .30  .60  .10

 .40 = 2.2×10−6

Example from [Jurafsky & Martin, 2006]

Parse tree scoring

 Assign a probability (or score) to a parse tree of a

sentence

 Why?

 Disambiguation!

 A natural language sentence may have many possible

parses

 Ambiguities are ubiquitous in natural languages

Ambiguity

 Astronomers saw stars with ears.

Example from [Manning and Schütze, 1999]

Dependency Grammar

 Dependency grammar & parsing

 ROOT → is, ROOT → give, …

 is+left → learning, is+right → hard, …

Learning probabilistic grammars is hard

ROOT

Learning a grammar from a corpus

 Supervised Methods

 Rely on a training corpus of sentences annotated with

parses (treebank)

 Unsupervised Methods (Grammar Induction)

 Do not require annotated data

A square is above the

triangle.

A triangle rolls.

The square rolls.

A triangle is above the

square.

A circle touches a square.

……

S → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces(0.1)

……

Training Corpus Grammar
Learning

Grammar Induction

 Learn a grammar from unannotated sentences

 Two subtasks

 Structure search

 Learn a set of grammar rules

 Parameter learning

 Given a set of grammar rules, learn their probabilities

Extremely difficult on real data.

Almost no success.

Still difficult, but doable. A lot of

work over the past 20yrs.

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "PCFGs Can Do

Better: Inducing Probabilistic Context-Free Grammars with

Many Symbols", NAACL 2021.

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "Neural Bi-

Lexicalized PCFG Induction", ACL 2021.

 Symbol embedding and neural parameterization

 Contextualize grammar rules

Parameter Learning

 Typical objective function: MLE

𝐹 𝜃 = log 𝑃𝜃(𝒘) = log ෍

𝑡∈𝑇(𝒘)

𝑃𝜃(𝑡) = log ෍

𝑡∈𝑇(𝒘)

ෑ

𝑟∈𝑡

𝜃𝑟

 Can be computed with dynamic programming (the inside

algorithm)

 Traditionally optimized using the EM algorithm

 Non-trivial to understand, implement, and parallelize

 Optimization with gradient descent?

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

w0 w1 w2 w3

Computation graph of the inside algorithm

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

Probabilities of

preterminal rules

(A→w)

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

Probabilities of

binary rule

(A→BC)
1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

𝑃(𝒘)

w0 w1 w2 w3

𝑃(𝒘) = 𝐬0,𝑛𝐫

Probabilities of

start rule (S→A)

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

𝑃(𝒘)

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

𝑃(𝒘) = 𝐬0,𝑛𝐫

𝑂(𝑚3𝑙3) time &

space complexity!

Reducing Complexity

 Kruskal form of T:

 Neural parameterization of U, V, W

 More on this later…

 Problem: T contains probabilities

 Solution:

 V and W are column-normalized

 U is row-normalized

A Bayesian network perspective

 A→BC

A

B C

A

B C

RT

U

V W

Reducing Complexity

 Simplified update formula:

 Reduced complexity: 𝑂(𝑑𝑙3 +𝑚𝑑𝑙2)

 A form of recursive neural networks if given a parse tree!

Experimental results

F1 of Previous

SOTA

Extension to Bilexical PCFG

 Unlexicalized production rules:

 A → B C

Pronoun

wash

cats

S

VPNP

Verb NP

Determiner Noun

our

we

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

Pronounwe

wash

cats

Swash

VPwashNPwe

Verbwash NPcats

Determinerour Nouncats

our

we

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

 A bilexical CFG can simultaneously produce a

constituency parse and a dependency parse

we wash our cats

ROOT

Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq] or A[wp] → B[wq] C[wp]

 Rule probability:

wp

B C

A

wq D

wp

B C

A

wq D

R

Kruskal Form

Experimental results

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Yong Jiang, Wenjuan Han, and Kewei Tu, "Unsupervised Neural

Dependency Parsing", EMNLP 2016.

 Contextualize grammar rules

Problem

 Different terminal/nonterminal symbols in a grammar are

regarded as being distinct

 But correlations exist between many of them

 Example: verb base form, past tense, 3rd person singular

(subtypes of the same parent type)

Problem

 Solution: symbol embedding

 Learn to embed terminal/nonterminal symbols into a

continuous vector space

 Similar symbols are close to each other in the embedding

space

 Predict grammar rule weights or parsing actions from the

vector representations of the grammar symbols

Neural DMV

𝑃 𝑐ℎ𝑖𝑙𝑑 ℎ𝑒𝑎𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑒𝑛𝑐𝑦)

Learning Neural DMV

 Expectation-Maximization

 Gradient descent can be even better!

 Songlin Yang, Yong Jiang, Wenjuan Han, and Kewei Tu, "Second-

Order Unsupervised Neural Dependency Parsing", COLING 2020

Experimental results

40

45

50

55

60

65

70

75

DMV
(2004)

LN
Families
(2009)

PR-S
(2010)

EVG
(2009)

TSG-DMV
(2010)

UR-A E-
DMV

(2012)

N E-DMV
good init
(2016)

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)

Generative Approaches

Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

 Wenjuan Han, Yong Jiang, and Kewei Tu, "Enhancing

Unsupervised Generative Dependency Parser with Contextual

Information", ACL 2019.

Another Problem

 The same grammar rule may have different probabilities

in different contexts

 “He is reading a book.” vs. “What is he reading?”

dobjdobj

Discriminative parsing

 A discriminative parser models P(parse | sentence)

 Utilize rich features of the whole sentence in predicting the

parse tree

 Grammar rule probabilities or weights depend on the context

Neural DMV

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Discriminative Neural DMV

D-N-DMV objective: 𝐽 𝜃 = σ𝑦 𝑃𝜃 𝑥, 𝑦|𝑣𝑤

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Also applicable to

constituency parsing

[Kim et al., “Compound

PCFG for Grammar

Induction”, ACL 2019]

Experimental results

40

45

50

55

60

65

70

75

80

DMV
(2004)

LN
Families
(2009)

PR-S
(2010)

EVG
(2009)

TSG-DMV
(2010)

UR-A E-
DMV

(2012)

N E-DMV
good init
(2016)

D-N-DMV
(2019)

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)

Generative Approaches Discriminative

Approaches

Part 2 Summary

 Neural approaches to grammar induction

 Unfold inference as neural networks

 Easy to implement, parallelize, scale up

 Symbol embedding and neural parameterization

 Captures similarity & correlation between symbols

 Informed smoothing

 Contextualize grammar rules

 Break the context-free assumption, more expressive

Summary

Summary

 Symbolism vs. Connectionism

 Each has its own pros and cons

 Even in the era of deep learning, symbolic approaches

should not be ignored

 Integrating symbolism & connectionism is a fruitful

direction

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks

Thank you!

Q&A

