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Today’s topic

 Neuralizing Symbolic 

Approaches to NLP

 Turning symbolic systems 

to neural networks

 Learning symbolic systems 

using neural networks

Symbolism

Connectionism

✔ Expressive, 

interpretable, rigorous

✘Hard to learn, rigid

✔Good performance, 

flexible

✘ Black-box, data-hungry, 

hard to incorporate 

knowledge



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and 

Kewei Tu, "Cold-start and Interpretability: Turning Regular 

Expressions into Trainable Recurrent Neural Networks", EMNLP 

2020.

 Learning symbolic systems using neural networks



Regular Expressions (RE)

 One of the most representative and useful forms of 

symbolic rules

 Widely used in practice: text classification, slot filling, etc.



Regular Expressions (RE)

 Pros

 Highly interpretable

 Support fine-grained diagnosis and manipulation

 Easy to add/delete/revise rules to quickly adapt to changes in 

task specification

 No need for training

 Hence no need for data annotation, less computational cost

 Good for cold-start scenarios

 Cons

 Rely on human experts to write 

 Often: high precision but low recall

 Cannot evolve by training on labeled data when available

 Underperform neural approaches in rich-resource scenarios



Our Idea

 Convert a RE to a new form of recurrent neural networks

 Roughly equivalent to RE

✓ Can still be used in cold-start scenarios

 Trainable on labeled data

✓ Can outperform REs and compete with neural approaches in 

rich-resource scenarios

 Can be converted back to RE

✓ Possibility of fine-grained manipulation

 Let’s start with classification…



Step 1. RE to Finite Automaton (FA)

 Any RE can be converted into a FA that expresses the 

same language

FA parameters

• Binary transition 
tensor: 

𝑇 ∈ ℝ𝑉×𝐾×𝐾

• Binary start vector: 

𝛼0 ∈ ℝ𝐾

• Binary final vector: 

𝛼∞ ∈ ℝ𝐾

𝑉: vocabulary size

𝐾: state number



Step 2. FA as Recurrent Neural Network (RNN)

 Score of a FA accepting a sentence can be calculated 

using the forward algorithm

𝑠0

𝑠1

𝑠2

𝑠0 𝑠1𝑠2

𝛼0 𝑇[𝑥1] 𝑇[𝑥4] 𝑇[𝑥5] 𝑇 𝑥6 , … , 𝑇[𝑥9] 𝛼∞𝑇 𝑥2 , 𝑇[𝑥3]

<BOS> Tell me how far is Oakland airport <EOS>

Forward score:



Step 2. FA as Recurrent Neural Network (RNN)

 The computation can be rewritten into a recurrent form

(recurrent step)



Step 3. Decomposing the Parameter Tensor

 Goal: reduce the computational complexity to match that 

of traditional RNN

 Now the recurrent step becomes:

Tensor Rank 

Decomposition

(word embedding) (state embeddings)



Step 4. Integrating Pretrained Word Embedding

 Goal: bringing external lexical knowledge into our model

 Method: 

 Approximate 𝑬ℛ with 𝑬𝑤𝑮

 Interpolate 𝑬ℛ and 𝑬𝑤𝑮

 The recurrent step becomes:

external word embedding

initialized with 𝑬𝑤
† 𝑬ℛ

𝑬𝑤
†

is the pseudo-inverse of 𝑬𝑤

FA-RNN



FA-RNN Extensions

 Gated extension

 Add forget gate and reset gate like in GRU

 Initialize parameters to make the gates inactive initially

 Combine two FA-RNNs of opposite directions

 Create a left-to-right FA-RNN from the RE

 Create a right-to-left FA-RNN from the reversed RE

 Output the average score of the two FA-RNNs



Text classification

 An RE system for text classification: 

 Aggregating results from multiple REs to form a prediction

simple propositional logic rules 

specifying priorities among REs
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Text classification

 From a RE system to a FA-RNN system

RE 

system

FA-RNN

system

Trainable on 

labeled data!



Experiments

 Three intent classification datasets: 

 ATIS, QC (TREC-6), SMS

 Baselines

 Bi-RNN/GRU/LSTM, CNN, DAN

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,. 

2016]



Experiments – Zero-Shot



Experiments – Low-Resource and Full Training



Conversion Back to RE

 From a FA-RNN, we can recover a WFA tensor from the 

model parameters

 The WFA tensor can be rounded to a 0/1 tensor, resulting 

in a FA and hence a RE

 Extracted RE vs. original RE

 ATIS: +0.45%

 QC: +9.2%

 SMS: -1.2%



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Chengyue Jiang, Zijian Jin, and Kewei Tu, "Neuralizing Regular 

Expressions for Slot Filling", EMNLP 2021.

 Learning symbolic systems using neural networks



RE for slot filling

 Slot filling

 Regular expression to catch fr.city:

show me flights from  san francisco to dallas(san francisco)
fr.city

capturing group



Step 1. RE → Finite State Transducer (FST)

BIO scheme
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Step 1. RE → Finite State Transducer (FST)

 FST parameters

 Transition tensor 𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾

 Start & final vectors  𝝁, 𝝂 ∈ ℝ𝐾

q0 q0 q1 q2 q2 q3 q3

Input

State

Output

flights from san francisco to dallas

𝝁(𝑞0) 𝝂(𝑞3)𝑻Ω("flight", 𝑙⋄, 𝑞0, 𝑞0)× × ×⋯⋯Score



Step 2. FST as BiRNN

 FST inference

 Given an input sequence, find the highest-scoring output 

sequence

 Need to sum out the state sequence & optimize the output 

sequence

 NP-hard!

 Given an input sequence, find the highest-scoring output 

label at each position

1. Compute forward scores

2. Compute backward scores

3. Compute label scores at each position

A form of Bidirectional RNN

Sum out label 

dimension of 𝑻Ω

Einsum notation



Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source 

state (F) given the target state (T)

𝑻Ω ∈ ℝ𝑉×𝐿×𝐾×𝐾 𝑻 ∈ ℝ𝑉×𝐾×𝐾

𝑶 ∈ ℝ𝐿×𝐾

parameter



Step 3. FST → iFST

 Independent FST (iFST)

 Each label (Y) is independent of the input (X) and source 

state (F) given the target state (T)

 Inference

1. Forward

2. Backward

3. Label scoring

Time complexity per position: 𝑂 𝐿𝐾2 → 𝑂(𝐿𝐾 + 2𝐾2)



Step 3. FST → iFST



 Exactly the same as in the FA-RNN paper

external word 

embedding

Rank Decomposition

Step 4&5. Tensor Decomposition & Pretrained 

Word Embedding

FST-RNN



 Nonlinearity

 Dummy states

 Gating

 Initialized to make the gates inactive initially

 Label priority

 CRF layer

 Initialized with uniform transitions

FSTRNN Extensions



Experiments

 Three slot-filling datasets

 ATIS, ATIS-ZH, SNIPS

 Baselines:

 Bi-RNN/GRU/LSTM

 RE-enhanced NN (+i, +o, +io) [Luo et al., 2016]

 Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,. 

2016]



Experiments – Zero-Shot



Fewshot and rich resource results

Experiments – Low-Resource and Full Training



Part 1 Summary

 FA-RNN / FST-RNN combines strengths of symbolic 

rules and neural networks

 Can be converted from RE

 Can also learn from labeled data

 Excels in zero-shot and low-resource scenarios; competitive 

in rich-resource scenarios



Outline

 Symbolism vs. Connectionism

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks



Learning symbolic systems using neural networks

 Goal: learning symbolic rules from scratch

 Running example: grammar induction

 Grammar: a set of rules (with probabilities)

 Induction: unsupervised learning

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules



Context-Free Grammars

 A context-free grammar (CFG) has 

four components

 A set  of terminals (words)

 A set N of nonterminals (phrases)

 A start symbol SN

 A set R of production rules

 Specifies how a nonterminal can 

produce a string of terminals and/or 

nonterminals



Generation & Parsing

……

Book   the  dinner   flight

Example from [Jurafsky & Martin, 2006]



Probabilistic Grammars

 Each rule is associated with a conditional probability

 The probability of a parse tree is the product of the 

probabilities of all the rules used in generating the parse 

tree



Example

……

Book   the  dinner   flight

P(T) = .05  .20  .20  .20  .75  .30  .60  .10 

 .40 = 2.2×10−6

Example from [Jurafsky & Martin, 2006]



Parse tree scoring

 Assign a probability (or score) to a parse tree of a 

sentence

 Why?

 Disambiguation!

 A natural language sentence may have many possible 

parses

 Ambiguities are ubiquitous in natural languages



Ambiguity

 Astronomers saw stars with ears.

Example from [Manning and Schütze, 1999]



Dependency Grammar

 Dependency grammar & parsing

 ROOT → is,   ROOT → give,   …

 is+left → learning,   is+right → hard,   …

Learning probabilistic grammars is hard

ROOT



Learning a grammar from a corpus

 Supervised Methods

 Rely on a training corpus of sentences annotated with 

parses (treebank)

 Unsupervised Methods (Grammar Induction)

 Do not require annotated data

A square is above the 

triangle.

A triangle rolls.

The square rolls.

A triangle is above the 

square.

A circle touches a square.

……

S  → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces(0.1)

……

Training Corpus Grammar
Learning



Grammar Induction

 Learn a grammar from unannotated sentences

 Two subtasks

 Structure search

 Learn a set of grammar rules

 Parameter learning

 Given a set of grammar rules, learn their probabilities

Extremely difficult on real data. 

Almost no success.

Still difficult, but doable. A lot of 

work over the past 20yrs.



Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "PCFGs Can Do 

Better: Inducing Probabilistic Context-Free Grammars with 

Many Symbols", NAACL 2021.

 Songlin Yang, Yanpeng Zhao, and Kewei Tu, "Neural Bi-

Lexicalized PCFG Induction", ACL 2021.

 Symbol embedding and neural parameterization

 Contextualize grammar rules



Parameter Learning

 Typical objective function: MLE

𝐹 𝜃 = log 𝑃𝜃(𝒘) = log ෍

𝑡∈𝑇(𝒘)

𝑃𝜃(𝑡) = log ෍

𝑡∈𝑇(𝒘)

ෑ

𝑟∈𝑡

𝜃𝑟

 Can be computed with dynamic programming (the inside 

algorithm)

 Traditionally optimized using the EM algorithm

 Non-trivial to understand, implement, and parallelize

 Optimization with gradient descent?
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Computation graph of the inside algorithm
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Computation graph of the inside algorithm
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Computation graph of the inside algorithm
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Computation graph of the inside algorithm

𝑃(𝒘)

w0 w1 w2 w3

𝑃(𝒘) = 𝐬0,𝑛𝐫

Probabilities of 

start rule ( S→A )
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1,2 2,30,1

0,2

0,3

0,0 1,1

1,3

2,2 3,3

Computation graph of the inside algorithm

w0 w1 w2 w3

𝑃(𝒘)

𝐬𝑖,𝑖 = 𝐐(𝑤𝑖)

𝑃(𝒘) = 𝐬0,𝑛𝐫

𝑂(𝑚3𝑙3) time & 

space complexity!



Reducing Complexity

 Kruskal form of T:

 Neural parameterization of U, V, W

 More on this later…

 Problem: T contains probabilities

 Solution:

 V and W are column-normalized

 U is row-normalized



A Bayesian network perspective

 A→BC

A

B C

A

B C

RT

U

V W



Reducing Complexity

 Simplified update formula:

 Reduced complexity: 𝑂(𝑑𝑙3 +𝑚𝑑𝑙2)

 A form of recursive neural networks if given a parse tree!



Experimental results

F1 of Previous 

SOTA



Extension to Bilexical PCFG

 Unlexicalized production rules:

 A → B C

Pronoun

wash

cats

S

VPNP

Verb NP

Determiner Noun

our

we



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

Pronounwe

wash

cats

Swash

VPwashNPwe

Verbwash NPcats

Determinerour Nouncats

our

we



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

 A bilexical CFG can simultaneously produce a 

constituency parse and a dependency parse

we wash our cats

ROOT



Extension to Bilexical PCFG

 Lexicalized production rules:

 A[wp] → B[wp] C[wq]  or  A[wp] → B[wq] C[wp]

 Rule probability:

wp

B C

A

wq D

wp

B C

A

wq D

R

Kruskal Form 



Experimental results



Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Yong Jiang, Wenjuan Han, and Kewei Tu, "Unsupervised Neural 

Dependency Parsing", EMNLP 2016.

 Contextualize grammar rules



Problem

 Different terminal/nonterminal symbols in a grammar are 

regarded as being distinct

 But correlations exist between many of them

 Example: verb base form, past tense, 3rd person singular 

(subtypes of the same parent type)



Problem

 Solution: symbol embedding

 Learn to embed terminal/nonterminal symbols into a 

continuous vector space

 Similar symbols are close to each other in the embedding 

space

 Predict grammar rule weights or parsing actions from the 

vector representations of the grammar symbols



Neural DMV

𝑃 𝑐ℎ𝑖𝑙𝑑 ℎ𝑒𝑎𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑒𝑛𝑐𝑦)



Learning Neural DMV

 Expectation-Maximization

 Gradient descent can be even better!

 Songlin Yang, Yong Jiang, Wenjuan Han, and Kewei Tu, "Second-

Order Unsupervised Neural Dependency Parsing", COLING 2020



Experimental results
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Learning symbolic systems using neural networks

 Outline

 Introduction of grammar induction

 Unfold inference as neural networks

 Symbol embedding and neural parameterization

 Contextualize grammar rules

 Wenjuan Han, Yong Jiang, and Kewei Tu, "Enhancing 

Unsupervised Generative Dependency Parser with Contextual 

Information", ACL 2019.



Another Problem

 The same grammar rule may have different probabilities 

in different contexts

 “He is reading a book.” vs. “What is he reading?”

dobjdobj



Discriminative parsing

 A discriminative parser models P(parse | sentence)

 Utilize rich features of the whole sentence in predicting the 

parse tree

 Grammar rule probabilities or weights depend on the context



Neural DMV

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦



Discriminative Neural DMV

D-N-DMV objective: 𝐽 𝜃 = σ𝑦 𝑃𝜃 𝑥, 𝑦|𝑣𝑤

N-DMV objective: 𝐽 𝜃 = σ𝑦𝑃𝜃 𝑥, 𝑦

Also applicable to 

constituency parsing 

[Kim et al., “Compound 

PCFG for Grammar 

Induction”, ACL 2019]



Experimental results
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Part 2 Summary

 Neural approaches to grammar induction

 Unfold inference as neural networks

 Easy to implement, parallelize, scale up

 Symbol embedding and neural parameterization

 Captures similarity & correlation between symbols

 Informed smoothing

 Contextualize grammar rules

 Break the context-free assumption, more expressive



Summary



Summary

 Symbolism vs. Connectionism

 Each has its own pros and cons

 Even in the era of deep learning, symbolic approaches 

should not be ignored

 Integrating symbolism & connectionism is a fruitful 

direction

 Turning symbolic systems to neural networks

 Learning symbolic systems using neural networks



Thank you!

Q&A


