Neuralizing Symbolic Approaches to NLP

Kewei Tu
ShanghaiTech University

Symbolism

Three types of
approaches

Propositional
logic

FOL

Logic Knowledge
programming graph

RNN/LSTM

CNN
MRF

MLP

Bayesian
networks

Perceptron
Statistical

Connectionism Approaches

Symbolism

Three types of
approaches

Propositional

locio

-
v Expressive,

Interpretable, rigorous
X Hard to learn, rigid

/\ =
\/
HMM
N N
v Interpretable,
rigorous, learnable

X Less
expressive/flexible

(v

Good performance,
flexible

X Black-box, data-hungry, |
hard to incorporate
knowledge

networks

o Statistical
Connectionism

Approaches

Trends

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

—--Symbolism -+-Connectionism —=Statistical

Trends

Three types of approaches
will be integrated.

1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

—--Symbolism -+-Connectionism —=Statistical

Today’s topic

» Neuralizing Symbolic
Approaches to NLP

» Turning symbolic systems
to neural networks

» Learning symbolic systems
using neural networks

Symbolism

(V Expressive,
Interpretable, rigorous

X Hard to learn, rigid Y

'V Good performance,)
flexible

X Black-box, data-hungry,
hard to incorporate

_ knowledge \/J

Connectionism

Outline

4

» Turning symbolic systems to neural networks

Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and
Kewel Tu, "Cold-start and Interpretability: Turning Regular

Expressions into Trainable Recurrent Neural Networks", EMNLP
2020.

Regular Expressions (RE)

One of the most representative and useful forms of
symbolic rules

Widely used in practice: text classification, slot filling, etc.

Label |distance]

RE $*(how (far | long) | distance) $*
Matched (BOS) tell me how far is oakland air-
Text port from downtown (EOS)

Regular Expressions (RE)

Pros
» Highly interpretable

» Support fine-grained diagnosis and manipulation

Easy to add/delete/revise rules to quickly adapt to changes in
task specification

» No need for training
Hence no need for data annotation, less computational cost
Good for cold-start scenarios

Cons
» Rely on human experts to write
» Often: high precision but low recall

» Cannot evolve by training on labeled data when available
Underperform neural approaches in rich-resource scenarios

Our ldea

Convert a RE to a new form of recurrent neural networks
» Roughly equivalent to RE

v Can still be used in cold-start scenarios
» Trainable on labeled data

v Can outperform REs and compete with neural approaches in
rich-resource scenarios

» Can be converted back to RE
v Possibility of fine-grained manipulation

Let’s start with classification...

Step 1. RE to Finite Automaton (FA)

Any RE can be converted into a FA that expresses the
same language

Label |distance]

RE $*(how (far | long) | distance) $* FA parameters
« Binary transition
tensor:

T € RVXKXK
$ « Binary start vector:

" e far ‘ an € RK

FA o @ %

e F « Binary final vector:

X € RX

V. vocabulary size
K: state number

Step 2. FA as Recurrent Neural Network (RNN)

Score of a FA accepting a sentence can be calculated
using the forward algorithm

Forward score;:

$
$ f [3
‘ how — N
Sy () e
i=1
S0 S1S2
_ N _
| s B
24)) T{x1] Tlxz], T[x3] T[xa] T[xs] T[xe], ..., T[xo] X oo

<BOS> Tellme how far is Oakland airport <EOS>

Step 2. FA as Recurrent Neural Network (RNN)

» The computation can be rewritten into a recurrent form
N
o - (H T[a:@]) © Qoo
1=1

h,(] = leg
h: =hi_1-T|x], 1 <t <N (recurrent step)

Bforward(Aa ﬁ[}) — th " g

Step 3. Decomposing the Parameter Tensor

» Goal: reduce the computational complexity to match that
of traditional RNN

Tensor Rank

Decomposition
T € RV*EXK mm) Er € RV*" Dy € REX" Dy € REXT

(word embedding) (state embeddings)

» Now the recurrent step becomes:
vy = Er(zy)

ht = ht—l . T[fb‘t} ‘ a — (ht—l . Dl) O V¢

Step 4. Integrating Pretrained Word Embedding

» Goal: bringing external lexical knowledge into our model

» Method: initialized with ET E4

» Approximate Ex Witr;EwG " E! is the pseudo-inverse of E,,

external word embedding

» Interpolate E and E,,G
» The recurrent step becomes:

UV = E'R(Tf) U = Ew(xg)
~f — fj}’l?t + (1 — ;J))HtG
= (hy_1-D ‘
a (t lT l)O'Ut ﬂz(ht_l'Dl)DZt
ht = a- D2

vy = Er(z:)

T

FA-RNN Extensions

Gated extension
» Add forget gate and reset gate like in GRU
» Initialize parameters to make the gates inactive initially

Combine two FA-RNNSs of opposite directions

» Create a left-to-right FA-RNN from the RE

» Create a right-to-left FA-RNN from the reversed RE
» Output the average score of the two FA-RNNs

Text classification

An RE system for text classification:
» Aggregating results from multiple REs to form a prediction

Matching
RE Results Aggregation Label

1 0
r2 1

—_— — Logic — IJ
m 1

simple propositional logic rules
specifying priorities among REs

Text classification

From a RE system to a FA-RNN system

Matching
RE Results Aggregation Label
r1 0
RE r2 1 . [
system . * logic —— {;
m 1
L1
lo
FA-RNN MLP <
system FA-RNN — —— —
y Layer .
L
__ M atChlngLabelchre

3 Scores

Text classification

From a RE system to a FA-RNN system

Aggregation
RE .
system Logic
Logic Soft Logic
—-A 1l—a
FA-RNN MLP AV B min(1, a + b)
system Layer ANB max(0,a+b—1)

Text classification

From a RE system to a FA-RNN system

Matching
RE Results Aggregation Label
] 0
RE r2 1 ' [
system . » logic —— {5
m 1
L1
. : l,)
FA-RNN L MLP -
system FA-RNN — - —— —
y : Layer .
L

Trainable on

........ labeled datal MatChlngLabelchre
3 Scores

Experiments

Three intent classification datasets:

» ATIS, QC (TREC-6), SMS

Baselines

» BI-RNN/GRU/LSTM, CNN, DAN

» RE-enhanced NN (+i, +0, +i0) [Luo et al., 2016]

» Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.
2016]

Experiments - Zero-Shot

ATIS QC SMS
RE system 87.01 64.40 93.20

FA-RNN 86.53 6195 93.00
FA-GRU 86.81 6290 93.20
BiFA-RNN 88.10 6290 93.00
BiFA-GRU 88.63 6290 93.20

BiGRU+i 1.34 18.75 11.90
BiGRU+o 30.74 27.50 30.40
BiGRU+io 38.69 25.70 73.25
BiGRU+pr 9.94 17.70 53.00

BiGRU +kd 9.94 17.70 53.00

Experiments - Low-Resource and Full Training

ATIS (26-class) QC (6-class) SMS (2-class)
1% 10% 100% | 1% 10% 100% | 1% 10% 100%
FA-RNN 90.43 90.79 67.75 79.6 93.1 96.75
FA-GRU 88.94 90.85 66.2 80.7 94.25 96.8
BiFA-RNN | 89.31 90.85 57.65 815 91.7 96.7

BiFA-GRU | 90.62 90.26 64.15 82.8 939 96.75

CNN 86.09

DAN 83.68 90.4

RNN 9775
LSTM 1 97.85
GRU 19805
BiRNN

BIiLSTM

BiGRU 62.7 80.05

BiGRU +i 66.3 80.25 1 98.55
BiGRU +o 60.15 80.2 984
BiGRU +io 65.05 79.65

BiGRU +pr 61.6 80.45

BiGRU +kd 62.65 80.3

Conversion Back to RE

From a FA-RNN, we can recover a WFA tensor from the
model parameters

The WFA tensor can be rounded to a 0/1 tensor, resulting
In a FA and hence a RE

Extracted RE vs. original RE

» ATIS: +0.45% =

» QC: +9.2%
» SMS: -1.2%

airplanes

Outline

4

» Turning symbolic systems to neural networks

Chengyue Jiang, Zijian Jin, and Kewel Tu, "Neuralizing Regular
Expressions for Slot Filling", EMNLP 2021.

RE for slot filling

Slot filling

show me flights from (san francisco) to dallas
fr.city

Regular expression to catch fr.city:

wy from |w;|(frcity) to w}

capturing group

Step 1. RE - Finite State Transducer (FST)

wy from |w}|(frcity) to w}

T.L-‘O/f-o wofl-fr.city ?-L’o/[o

4& from/L, wo/B-fr.city
4o >

BIO scheme

Step 1. RE - Finite State Transducer (FST)

wy from |w}|(frcity) to w}

T.L-‘O/EO wofl—fr.city ?-L’o/lo
4& from/i, rm wo/B-fr.city { o to/l,
N
Input flights from san francisco to dallas
State Qo — Uo—0:— Q> Jo>Qz — .
Output Lo lo B-frcity I-fr.city Lo L,

Step 1. RE - Finite State Transducer (FST)

» FST parameters
» Transition tensor Ty € RV *LxKXK
» Start & final vectors p,v € R¥

Score u(qo) x To("flight",l,,q9,q0) X e X v(qs3)

Input
State
Output

Step 2. FST as BIRNN

FST inference
» Given an input sequence, find the highest-scoring output
sequence

Need to sum out the state sequence & optimize the output
sequence

NP-hard!
» Given an input sequence, find the highest-scoring output
label at each position Sum ot label
Compute forward scores o = a1 - T [x4] dimension of T,
Compute backward scores 3, 1 = B, - T4 [x]"
Compute label scores at each position

(co)r = (ae—1)i (Tole])rij (Be);

A form of Bidirectional RNN

Einsum notation

Step 3. FST = iFST

Independent FST (IFST)

» Each label (Y) is independent of the input (X) and source
state (F) given the target state (T)

FST 1-FST
X

factor graph F)—+—Y) f
D

parameter | T € RVXIXKXK | T g RVXKXK

0 € IRLXK

Step 3. FST = iFST

Independent FST (IFST)

» Each label (Y) is independent of the input (X) and source
state (F) given the target state (T)

» Inference
Forward

ar = o1 - To[rd] |:> a: = (a1 - T[z¢]) oo

Backward
Bi—1 = B - Th[xe]" :> Bi—1 = (Btoo") - Tx]"

Label scoring
(cor = (ae—1)i (Tolrd)ri; (Be); W) ¢ =(ar0fB:)- O
Time complexity per position: 0(LK?) - O(LK + 2K?)

Step 3. FST = iFST

wo /Lo we | I-fr.city

é from/ I, mwoz’B-fr.city’/t;\ to /1,
_/ _/

wo/lo

Step 4&5. Tensor Decomposition & Pretrained
Word Embedding

v =Bplw]i —— fvy = nEgln] + (1 —n) Byl - G
g _(at_l . DS) oy T X
a; =(g- Dg)oo’ external word
embedding
FST-RNN

FSTRNN Extensions

Nonlinearity

Dummy states

Gating

» Initialized to make the gates inactive initially
Label priority

CRF layer

» Initialized with uniform transitions

Experiments

Three slot-filling datasets

» ATIS, ATIS-ZH, SNIPS

Baselines:

» BI-RNN/GRU/LSTM

» RE-enhanced NN (+1, +0, +i0) [Luo et al., 2016]

» Knowledge Distillation (+kd, +pr) [Hinton et al,.2015; Hu et al,.
2016]

Experiments - Zero-Shot

Model ATIS ATIS-ZH SNIPS

FSTRNN 73.10 7487 5202

S ||FSTGRU 73.10 74.87 52.02
% BiGRU+(kd/pr/none) | 1.76 o1 0.69
S | BiGRU+i 0.17 0.29 0.48
BiGRU+o0 1170 2288 10.49

< [|FSTRNN 73.10 74.87 5202
S ||FSTGRU 73.10 7487 52,02
/ | RE 7236 7521 5198

Experiments - Low-Resource and Full Training

Model ATIS ATIS-ZH SNIPS Average over Datasets
oce 10 50 10% 100% 10 50 10% 100% 10 50 10% 100% 10 50 10% 100%
FSTRNN | 7459 7494 8543 75.09 7525 8225 51.94 52.84 78.14 67.21 67.68 81.94
BiRNN [57.11 6580 80.93 65.07 81.90 39.37 77.58 14590 5675 80.14
BiRNN+i | 59.24 6929 8225 6572 70.84 81.64 89.64 | 43.68 79.45 48.86 6127 81.11
BiRNN+0 6644 80.63 6489 6579 81.29 39.75 76.75 5733 79.56
BiRNN+kd 6545 8144 65.10 81.80 39.56 7847 56.70 80.57

§ BiRNN+pr 68.28 81.13 65.07 81.90 39.56 71.50 57.64 80.

g; FSTGRU | 74.59 74.94 86.89 75.85 76.19 82.80 | 52.05 52.75 80.50 67.50 67.96

41.17
44.12
40.56 80.
41.44 80.16
41.30

BiGRU 6769 81.25
BiGRU+i | 57.68 69.87 83.11
BiGRU+o 66.97 80.73
BiGRU+kd 6723 80.99
BiGRU+pr 67.69 8125

67.16 81.25
64.55 7196 82.02
68.54 80.90
67.23 81.36
67.16 81.25

80.51

CRF

FSTRNN | 74.61 74.76 _85.94
BIiRNN 70.75 82.06

76.08 75.92 82.92
67.04 82.82

- 90.07 | 51.77 52.83 80.77
40.47 = 80.21

BIRNN+i 69.37 83.84 65.75 7140 82.68 45.26
BiRNN+o 67.88 83.77 67.21 8242 40.63 .
BIiRNN+kd 69.08 8246 67.04 82.84 40.48 80.31
BIiRNN+pr 68.02 82.77 67.04 82.84 40.23 80.47

74.61 74.76 86.50 75.85 7592 83.48
BiGRU 67.22 79.11 68.72 82.71 .
BiGRU+i 70.67 | 84.44 71.43 83.39

BiGRU+o0 6739 83.24 69.27 82.49

BiGRU+kd 68.14 82.17 68.72 82.52

BiGRU+pr 6834 82.15 68.72 8271

4

Part 1 Summary

FA-RNN / FST-RNN combines strengths of symbolic
rules and neural networks

» Can be converted from RE
» Can also learn from labeled data

» Excels in zero-shot and low-resource scenarios; competitive
In rich-resource scenarios

Outline

<
<

» Learning symbolic systems using neural networks

Learning symbolic systems using neural networks

Goal: learning symbolic rules from scratch

Running example: grammar induction
» Grammar: a set of rules (with probabilities)
» Induction: unsupervised learning

Outline

Introduction of grammar induction

Unfold inference as neural networks

Symbol embedding and neural parameterization
Contextualize grammar rules

Context-Free Grammars

S — NP VP
A context-free grammar (CFG) has < e NP VP
four components S — VP
» Aset X of terminals (words) NP — Pronoun

_ NP — Proper-Noun
» Aset N of nonterminals (phrases) NP — Det Nominal
» A start symbol SeN NP — Nominal

Nominal — Noun

» AsetRof prOdUCtlon rules Nominal — Nominal Noun
Specifies how a nonterminal can Nominal — Nominal PP
produce a string of terminals and/or VP — Verb
nonterminals VP — Verb NP

VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP

PP — Preposition NP

Generation & Parsing

S — NPVP
S — Aux NP VP
S — VP VP
NP — Pronoun
NP — Proper-Noun Verb NP
NP — Det Nominal |
NP — Nominal Book Det Nomunal
Nominal — Noun
Nominal — Nominal Noun the Nominal Noun
Nominal — Nominal PP | |
VP s Verb Noun flighr
VP — Verb NP a
anmmer

VP — Verb NP PP
VP — Verb PP Book the dinner flight
VP — Verb NP NP

—_

l

> VEFP
Preposition NP

4 Example from [Jurafsky & Martin, 2006]

Probabilistic Grammars

Each rule is associated with a conditional probability

a— [Pla— fla)

The probability of a parse tree is the product of the
probabilities of all the rules used in generating the parse
tree

Example

S — NPVP

S — Aux NP VP

S — VP

NP — Pronoun
NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal — Noun

15
05
35]
30
20
15
75
20]
05
35
20
10
15
05
15
1.0

S
.|
VP
Verb NP
l
Book Det Nonunal

the Nominal Noun

I I
Noun flight
dinner

Book the dinner flight

P(T) = .05 x.20 x .20 x .20 x .75 x .30 x .60 x .10
x.40=2.2%10°

Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb
VP — Verhb NP
VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP
PP — Preposition NP
4

Example from [Jurafsky & Martin, 2006]

Parse tree scoring

Assign a probability (or score) to a parse tree of a
sentence

Why?

» Disambiguation!

» A natural language sentence may have many possible
parses

» Ambiguities are ubiquitous in natural languages

Ambiguity

» Astronomers saw stars with ears.

4
S10 51.0
/\ /\
NPo.1 VPo.3 1‘11:’0.1 VPo.7
/\ /\
astronlomers VPo.7 PP o astronomers \l’rl.o /T\PO\-L
\é\NP()‘]S Ié\NPo,lg saw NPpig PP1o
sa!w stlrs thh ea!rs sta|rs Pﬁ\NPDJB

with ears

4 Example from [Manning and Schiitze, 1999]

Dependency Grammar

Dependency grammar & parsing
» ROOT =2 is, ROOT - give,
» Istleft - learning, is+right - hard,

ROOT

Learning probabilistic grammars is hard

Learning a grammar from a corpus

Training Corpus _ Grammar
| Learning

| S — NP VP

NP — Det N

VP — Vt NP (0.3)
| Vi PP (0.2)
| rolls (0.2)
| bounces (0.1)

A square is above the
triangle.

A triangle rolls.

The square rolls.

A triangle is above the
square.

A circle touches a square.

» Supervised Methods

» Rely on a training corpus of sentences annotated with
parses (treebank)

» Unsupervised Methods (Grammar Induction)
» Do not require annotated data

Grammar Induction

Learn a grammar from unannotated sentences

Two subtasks —
Extremely difficult on real data.
> Structure SearCh Almost NO success.

Learn a set of grammar rules

» Parameter learning
Given a set of grammar rules, learn their probabilities

Still difficult, but doable. A lot of
work over the past 20yrs.

Learning symbolic systems using neural networks

» Outline
4

» Unfold inference as neural networks

Songlin Yang, Yanpeng Zhao, and Kewei Tu, "PCFGs Can Do
Better: Inducing Probabilistic Context-Free Grammars with
Many Symbols", NAACL 2021.

Songlin Yang, Yanpeng Zhao, and Kewel Tu, "Neural Bi-
Lexicalized PCFG Induction”, ACL 2021.

Parameter Learning

Typical objective function: MLE

F(6@) =logPg(w) = log 2 Pg(t) = log 2 HHT

teT(w) teT(w) ret

» Can be computed with dynamic programming (the inside
algorithm)

» Traditionally optimized using the EM algorithm
Non-trivial to understand, implement, and parallelize
» Optimization with gradient descent?

Computation graph of the inside algorithm

Probabilities of
preterminal rules
(A>w)

s;; = Q(w;)

Computation graph of the inside algorithm

sij =) (T-spe1y) - sik
®
Probabilities of
@ @
(A->BC)

Computation graph of the inside algorithm

Probabilities of
binary rule
(A>BC)

Computation graph of the inside algorithm

(T\Skﬂ,j) " Sk
Probabilities of

binary rule
(A>BC)

Computation graph of the inside algorithm

P(w) = SonT

Probabilities of
start rule (S2>A)

Computation graph of the inside algorithm

0(m313) time &
space complexity!

Reducing Complexity

Kruskal form of T:

d
r=Y 10 10 -y e v g w®
[=1

» Neural parameterization of U, V, W
More on this later...

» Problem: T contains probabilities

» Solution:
V and W are column-normalized
U is row-normalized

A Bayesian network perspective

Reducing Complexity

Simplified update formula:
j—1
S;j = Z (T - Sg+1.) Sik
k=i
. \ 4
T T
iy = U) ((Visie) @ (Wsii)
k=i
Reduced complexity: 0(dl3 + mdl?)
A form of recursive neural networks if given a parse tree!

Experimental results

62 - Fl
60 - —&— Perplexity -260
58 - - 250
~ 56 L 240 g
S 5
— 54 5 -230 £
£3 3}
o,
52 7 - 220
F1 of Previous - 510
SOTA
48 1
- 200

100 200 300 400 500 600
Preterminal number of TN-PCFG

Extension to Bilexical PCFG

Unlexicalized production rules:

» A= BC
S
NP VP
Pronoun V(Tb NP
we wash Determiner Noun

our cats

Extension to Bilexical PCFG

Lexicalized production rules:
» Alwp] = Blw,] Clw,] or Alw,] = Blw,] Clw,]

S

wash
N Pwe prash
Pronoun,, Verb,,.<h NP
we wash Deterrr‘unerour Nouncats
our cats

Extension to Bilexical PCFG

Lexicalized production rules:
» Alwp] = Blw,] Clw,] or Alw,] = Blw,] Clw,]

ROOT

we wash our cats

A bilexical CFG can simultaneously produce a
constituency parse and a dependency parse

Extension to Bilexical PCFG

Lexicalized production rules:
» Alwp] = Blw,] Clw,] or Alw,] = Blw,] Clw,]
» Rule probability:

® ®]

(CHO)

Kruskal Form

© © ©
@ ©, O}

Experimental results

—¥— F1 of NL-PCFGs

—V— F1 of NBL-PCFGs
65 —@— Perplexity of NL-PCFGs | 260
—@— Perplexity of NBL-PCFGs

L 240
>
_ =
N =
< 220 &
= 5
L 200 &

| 180

L 160

Learning symbolic systems using neural networks

» Qutline
>
>

» Symbol embedding and neural parameterization

Yong Jiang, Wenjuan Han, and Kewei Tu, "Unsupervised Neural
Dependency Parsing", EMNLP 2016.

Problem

Different terminal/nonterminal symbols in a grammar are
regarded as being distinct

But correlations exist between many of them

» Example: verb base form, past tense, 3rd person singular
(subtypes of the same parent type)

Problem

Solution: symbol embedding

» Learn to embed terminal/nonterminal symbols into a
continuous vector space

» Similar symbols are close to each other in the embedding
space

» Predict grammar rule weights or parsing actions from the
vector representations of the grammar symbols

Neural DMV

Output values

Softmaz(W, h) n

Layer:
dir ['Uh y vva.’.]) 4

Inputs: Head POS Tag Valency

Learning Neural DMV

» EXxpectation-Maximization

Forward Count
valuating Normalizing

M eural Network Training

» Gradient descent can be even better!

» Songlin Yang, Yong Jiang, Wenjuan Han, and Kewel Tu, "Second-
Order Unsupervised Neural Dependency Parsing”, COLING 2020

--

Experimental results

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)

75

70

65

60

55

50

45

40
DMV PR-S EVG TSG-DMV UR-AE- E-DM
(2004) Famllles (2010) (2009) (2010) DMV good init

(2009) (2012) _(2016)

500

400

300

200

100

-100

-200

-300

-400

-500

-500

-400

RrRBS RBR

x| *

pOT VBG we
*)¢ UH WRB *
* PRP
IN I S ---“E-‘:f B-----..--- S S — P —

x é
S

-300

CcD NNP
NNS * PRP$
NN * cC
-200 -100 0 100 200 300 400

+ Adj
A Adv

@ Noun
Y Others

@ Verb

500

Learning symbolic systems using neural networks

» Outline

v v VvV v

Contextualize grammar rules

Wenjuan Han, Yong Jiang, and Kewei Tu, "Enhancing
Unsupervised Generative Dependency Parser with Contextual
Information”, ACL 20109.

Another Problem

The same grammar rule may have different probabilities
In different contexts

» “He is reading a book.” vs. “What is he reading?”

dobj dobj

Discriminative parsing

A discriminative parser models P(parse | sentence)

» Utilize rich features of the whole sentence in predicting the
parse tree

» Grammar rule probabilities or weights depend on the context

Neural DMV

Output values

R 00000 00000
p = Softmax(W_h)
Hidden Layer: &
h = tanh(Wdir [Uha U*ual])

Continous Representation: —

[Uh,: Uval]

Inputs: Head POS Tag Valency

N-DMV objective: J(8) = ¥, P (x,y)

Discriminative Neural DMV

Output values

Softmax Layer:
p = Softmax(W_h)

Hidden Layer:
h = ta’n,h(de'r[Uh: Uual]) ‘

Continous Representation:
[’Uh,a 'Uva.!]

Inputs: Head POS Tag Valency

N-DMV objective: J(0) = X, Po(x,y)
D-N-DMV objective: J(8) = X, Po(x,y|vy,)

S

Also applicable to
constituency parsing
[Kim et al., “Compound
PCFG for Grammar
Induction”, ACL 2019]

LSTM

—1 LSTM LSTM

I

:

word 1

I I

¢ e

word 2 word 3

Experimental results

Dependency Accuracy on WSJ10 Testset
(Training with WSJ10, no lexicalization)
80

75
70
65
60
55
50

45

40
DMV LN PR-S EVG TSG-DMV UR-AE- NE-DMV /D
(2004) Families (2010) (2009) (2010) DMV good init
(2009) (2012) (2016)

------------------------------ Generative Approaches -------------------- Discriminative -------------------
4 Approaches

Part 2 Summary

Neural approaches to grammar induction

» Unfold inference as neural networks
Easy to implement, parallelize, scale up

» Symbol embedding and neural parameterization
Captures similarity & correlation between symbols
Informed smoothing

» Contextualize grammar rules
Break the context-free assumption, more expressive

Summary

Summary

Symbolism vs. Connectionism
» Each has its own pros and cons

» Even in the era of deep learning, symbolic approaches
should not be ignored

Integrating symbolism & connectionism is a fruitful
direction

» Turning symbolic systems to neural networks
» Learning symbolic systems using neural networks

Thank you!

Q&A

