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Interpretability Disambiguation

Before we really get to our topic, it is important to distinguish two
groups of work usually sharing the term “interpretability of DNNs"

Interpretability of Interpretability of
concrete DNNs Deep learning methodology
A e S
input — output N ? — DLis good
cat convolution, generalize
%) dog pooling, well /
" SGD, no
specia .
ATCGC...GAT P _ dropout, ... overfitting
protein
e.g.
“Depth can be exponentially more valuable
than width for standard feedforward NNs”
R Eldan & O Shamir, 2016
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e.g. “A Survey of Methods for Explaining Black Box Models”. ACM
Computing Surveys. R Guidotti et al., 2018

Table 1. Legend of Tables 2, 3,4, and 5
OPEN THE BLACK
BOX PROBLEMS —
Column Description

Problem Model Explanation, Outcome Explanation, Model Inspection, Transparent

BLACK BOX TRANSPARENT Design
EXPLANATION BOX DESIGN Explanator DT-Decision Tree, DR-Decision Rules, FI-Features Importance,

111 SM-Saliency Masks, SA-Sensitivity Analysis, PDP-Partial Dependence Plot,
AM-Activation Maximization, PS-Prototype Selection
Black Box NN-Neural Network, TE-Tree Ensemble, SVM-Support Vector Machines,

DNN-Deep Neural Network, AGN-AGNostic black box, NLM-Non Linear

J - o
EXPLANATION EXPLANATION INSPECTION
Data Type TAB-TABular, IMG-IMaGe, TXT-TeXT, ANY-ANY type of data

> i E, TEQRIBTF—LE pre-recognized explanators (f2FF2S)
Eban JREEHT. feature importance. FIf{L. IENRE! FFH

> MIXLE explanators ZBIFIX A LLBCREL
ELEMEEE, MEETRETEAER—NER

> (BFHEBEBRESZRNNXER—EKGE, F2H)
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(WAV=L): ks

FMEINFR SRR

What

FAVGR F Doshi-Velez & B Kim, 2017 FRIZEIRI R #ERREIE N, BEF0

=
HE
Interpretability (of a DNN) is the ability to provide explanations
in understandable terms® to a human
1. f#F¥ Explanations, HEIKE

1
SEREM NE=

BRRIER T AR EENN &iF

TR
SR E ATEEARRK TeRBRER , RFEXRE R

, M
2. AIEfEAYARIE Understandable terms, MREBRINEARE T
ARITIHIR B R EE R EA ARSI AR EZ £
Ebal CV HBY image patches, NLP HBY $17,
Bioinfomatics 1Y motifs

Explanation-centred!
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AT AT E TR Why

=R EEER

HEMNBERBPLEEREAFINER (BEARRMKT)
XN FEKSAEENRARRRER (REE)

oM AT RMBENSEIR (A IEEZIEN domain
knowledge A1EFF) ; WBATRERTLAEER) debug, CSUHIRZEY
feIg / EMER

AYngit, BEfraam, FE FDA #lE
KX28 GDPR (right to explanation)

FAHRERFMENIAR

HENBELEKRSEFIHLLW EMER, KX, EE #HIHF
S T IR ARIR
BFEMRZBA T KIHEAIR, AIERIETUARERE
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A 3D Taxonomy How

of the interpretability research

—. FERE vs. XTI

Passive (post hoc) vs. Active (interpretability intervention)

TEERER Bt 30 JIgdiE T T

—. PRI RIEN

Types/Formats of explanations

tban ZEMN. EEEE F, HEzFAN

=. BEe TExE1 BE (w.r.t. the input space)

Local /simi-local/global interpretability

FEANfERE BIE— A BE B MRE

k4 7/26



ﬁgﬁﬁgﬁﬂlJHZEt Dimension 2

rules hidden semantics attribution by examples
s . | see "head” .
{4 8 . . 8
: V .cat . .cat
O
| see "feet”

If condition1 If such a “head"” If “this” and “that”  If all the same as
and condition2 and such “feet”, parts, “this example”,
and ..., then cat. then cat. then cat (or not).

then cat.
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ﬁgﬁﬁgﬁfm;ﬁﬁ Dimension 2

Question: Why do you think it is a cat?

Answer:
rules hidden semantics attribution by examples
= | see/”head"
W, O/// .
@
.cat .cat
O
| see "feet”

If condition1 If such a “head"” If “this” and “that”  If all the same as
and condition2 and such “feet”, parts, “this example”,
and ..., then cat. then cat. then cat (or not).
then cat.
Explicit Implicit
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25 vs. BEPER

Truth:

Explanations:

Global

If 22 + 23 > 1,y=N

Dimension 3

z=x()



Example Explanations

(Table 2 in the paper)

Local (and semi-local) interpretability
applies to a certain input 2() (and its associated output
9(9)), or a small range of inputs-outputs

Global interpretability
w.r.t. the whole input space

Rule as explanation

« The result “a (") is classified as §(*)” is because @1, 24, . . .
are present and a3, s, ... are absent [38].

* (Semi-local) For @ in the neighboqrhood of &, if (1 >
a)A (3 < B)A..., then y =§® [34].

The neural network can be approximated by

If (x2 <a)A (3 >B)A... ,theny=1,
If (@y >v)A (x5 <) A... ,theny=2,
If (g...)A(7...)A ... ,theny = M

Explaining
hidden semantics
(make sense of certain
hidden neurons/layers)

*Some local attribution methods (see below) can be easily
modified to “explain” a hidden neuron rather than the final
output.

Tries to explain a hidden neuron/layer etc.

¢ An example active method [39] adds a special loss term
that encourages filters to learn consistent and exclusive
patterns (e.g. head patterns of animals)

image - animal label

actual

O
SO~
2020,
O L8
. s
“receptive fields” [44]: . n .

Attribution
as explanation

For z(9): i

->-> 9 junco bird

The “contribution”! of each pixel: ) [45]

ak.a. saliency map, which can be computed by different
methods like gradients [40], sensitivity analysis2 [41] etc.

(n.b. For a linear model, the coefficients is the global
attribution to its input features.)

« Kim et al. [42] calculate attribution to a target “concept”
rather than the input pixels of a certain input. For example,
how sensitive is the output (a prediction of zebra) to a concept
(the presence of stripes)?

Explanation by
showing examples

RN . I

By asking how much the network will change (%) if
removing a certain training image, we can find:

most helpful® training images

* Adds a (learnable) prototype layer to the network.

Every prototype should be similar to at least an encoded
input. Every input should be similar to at least a prototype.
The trained network explains itself by its prototypes. [46]




Passive. Rules

Global—i.e. Rule extraction

Rule Format

» Propositional logic rule ...y L Fu, 1991, GG Towell & JW Shavlik, 1993

» First-order logic rule R Nayak, 2009

> Fuzzy |OgiC rule ..., S Mitra & Y Hayashi, 2000, JL Castro et al., 2002
Methods

Assume we are interpreting a network f parameterized by ©

» Decompositional approaches
(extract rules from network weights ©)
» Pedagogical approaches (e.g. O Boz, 2002)

(extract rules from new training set {xi,fgi}N, 7 = f(z;0))
classic rule learning/decision tree learning algorithms can be used.
e.g. CART, C4.5




Passive. Rules

Local

e.g. “Explanations based on the Missing: Towards Contrastive
Explanations with Pertinent Negatives”. NeurlPS. A Dhurandhar et al., 2018

HXEMAN 2, DI TRIBIER

EAYHE z;, - -, zx FF1E (sufficiently present),
HEWE 2, -+, 2, NFTE (necessarily absent),
FrLA y #FIUMA 3 —38

Hye 77540

» Anchors MT Ribeiro et al., 2018

> Interpretable partial substitution T Wang, 2019
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Passive. Hidden Semantics
A Typical Method in CV——Visualization

Make sense of certain hidden neurons/layers

|

Y £
f m
o il
=]
L

Neuron Channel Layer/DeepDream Class Logits Class Probability

layer,[X,y,2] layer,[:,:,2] layer,[:,:,:]% pre_softmax[k] softmax[k]

Source: Feature Visualization - Distill



https://distill.pub/2017/feature-visualization/

Passive. Hidden Semantics

Visualization
Idea: find a representative input that a neuron/layer is looking for

Method: activation maximization

arg max act(xz) — AQ(x)

x
Problem: found input/patterns are unrealistic and unrecognizable
Solution: find a good regularizer/image prior

» Ly norm K Simonyan et al., 2013

» Total variation (low-pass filter) A Mahendran & A Vedaldi, 2015
encourage neighbouring pixels to have similar values

» Clipping pixels with small norm or small contribution
J Yosinski et al., 2015

» Generative network of a GAN A Nguyen et al., 2016
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Passive. Hidden Semantics

He A f40

» Network Dissection D Bau et al. 2017

» Net2Vec R Fong & A Vedaldi, 2018

» “Analyzing individual neurons in deep NLP models”
F Dalvi et al., 2019

ETT
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Passive. Attribution
Usually Local

Gradient
Integrated Edge

Original ] Guided Guided Integrated Gradients ©
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad  Input Detector

i P A .
. s gy - e
Junco ..* & ,;‘;‘b' #5 o 2 &
Bird Wi '-F.ne"{‘ b
Corn :‘sﬁ_-fta.:-!; ,3&- “’iﬁl a& s @-
sl s o : i
¥ ¥ & sy
Terrier 5 s :

“Sanity Checks for Saliency Maps”. NeurlPS. J Adebayo et al., 2018

A ZMERIERE (proxy models) KB Lt EIRM attribution fEFE

< @ 17/



Passive. Attribution
Usually Local

For individual predictions, attribution methods try to identify which
attributes (e.g. pixels) contribute most (or least) to a single prediction.

Intuitively, instead of interpreting f, it tries to interpret f|,_,: for each
sample z*

Two representative categories: gradient-related methods and Model
agnostic attribution

Gradient-related Methods

> (Immediate) gradient MT Ribeiro et al., 2016
» Discrete gradient A Binder et al., 2016, A Shrikumar et al., 2017
between a reference input ' and the target input z°

> Integrated gradient M Sundararajan et al., 2017
the path integral of all the gradients between z™ and z'
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Passive. Attribution
Local, Model Agnostic

e.g. Shapley Value

Shapley value is a solution to a game theory problem how to fairly
assign payoff for each player in a coalition.

If we have a set of players NV, S C N, v(S) is the total gain of the set
of players S. Then, the payoff for player i is

-v—i V|~ 1 _11) 1) —v
6= X (Mg 1) @sUn-us)

SCN\{i}

v(S Ui) —v(S) is the marginal contribution of player i to coalition S.
The rest of the formula is a normalization factor.

The practical problem: the computational complexity (exponential).
Some approximation methods are needed. ..., S Lundberg & S Lee, 2017

2 19 / 26



Passive. By Showing Examples
Usually Local

—MEMAE: SHAFERED input & T BI—MIIgREZD
(TERZZYAY inner representation BEI_EFE{A) R Caruana et al,, 1999

e.g. “Understanding black-box predictions via influence functions”.
ICML. PW Koh & P Liang, 2017

RE— IgsER 22 RERE, #meimxd MitiEads a9
M A influence functions BJ LA AT EEA™ target test input FZMMExAHY

PlEREZN
For m(i):* neural net |- ¢(9): fish

By asking how much the network will change 9 if
removing a certain training image, we can find:

most helpful? training images: Sgl

¢ 20 / 26



Active Interpretability Intervention

X5 FBIME passive (post hoc) /5%, active FiE=ESIERERY
Z2F9igit BE I3 RE FAANLDR, HED interpretability loss

Rules as Explanations

e.g. “Beyond sparsity: Tree regularization of deep models for
interpretability”. AAAL M Wu et al., 2018

BE FERE fw: X - ) B BMBRERRRNIUNS

rré‘ifn (Z Loss(y, f(z; W)) + A - TreeReg(W))

HM TreeReg RN BEWSERITINIZMBAVRERI BIFIIRERE

Z [EIRES4E “Regional Tree Regularization ...". AAAL M Wu et al., 2020
et semi-local FIREREME
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Active. Hidden Semantics

e.g. “Interpretable convolutional neural networks”. CVPR.
Q Zhang et al., 2018

2B FEEHNE filter RERRI—MBLR (concept)
makes a filter to either have a consistent activation pattern or keep
inactivated

Tries to explain a hidden neuron/layer etc.

* An example active method [39] adds a special loss term
that encourages filters to learn consistent and exclusive
patterns (e.g. head patterns of animals)

—» animal label

ORY
s
2020
actual -y,
“receptive fields” [44]: . n .

image -
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Active. Attribution

Local

» ExpO G Plumb et al., 2020

TGN RIER, FEFBIFSEIE fidelitous, stable BY

attribution

» DAPr E Weinberger et al., 2020

T2 attribution BN A—LE (RHERREY) SUHSTIE (priors)

Global

» Dual-net M Wojtas & K Chen, 2020
BTGRP LS, selector L& F1E$FE feature set,
opeartor PIZENIEF 1% feature set RFERTIMMESS

() X=R/XEERKRT NeurlPS 2020
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Active. By Showing Examples

> “Deep learning for case-based reasoning through prototypes: A
neural network that explains its predictions’. AAAL O Liet al., 2018

Adds a prototype layer to an autoencoder

> “This looks like that: deep learning for interpretable image
recognition”. NeurlPS. C Chen et al, 2019
Adds a prototype layer to a CNN

B
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The Interpretability Paper Space Discussions

((JHide colored panes (for better hover information)
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https://plotly.com/

Q&A

Takeaways

» Interpretability of a DNN vs. DL theory
> What is interpretability: an explanation-centred definition
» Why interpretability:
> High reliability - Ethical/legal requirements - Scientific usages
» How to get interpretability: A 3D Taxonomy

> Passive vs. Active - Types/formats of explanations -
Local /semi-local/global interpretability

Links

> Interpretability Paper Space (online,_interactive)
> arXiv link (2012.14261)
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https://yzhang-gh.github.io/tmp-data/index.html
https://arxiv.org/abs/2012.14261
https://zhuanlan.zhihu.com/p/341153242
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